未验证 提交 b036294c 编写于 作者: P pangyoki 提交者: GitHub

fix uniform CI random fail problem (#26932)

* fix uniform CI random fail problem

* decrease diag_num in DiagInit
上级 29b844ad
...@@ -239,12 +239,12 @@ class TestUniformRandomOpSelectedRows(unittest.TestCase): ...@@ -239,12 +239,12 @@ class TestUniformRandomOpSelectedRows(unittest.TestCase):
op = Operator( op = Operator(
"uniform_random", "uniform_random",
Out="X", Out="X",
shape=[100, 784], shape=[1000, 784],
min=-5.0, min=-5.0,
max=10.0, max=10.0,
seed=10) seed=10)
op.run(scope, place) op.run(scope, place)
self.assertEqual(out.get_tensor().shape(), [100, 784]) self.assertEqual(out.get_tensor().shape(), [1000, 784])
hist, prob = output_hist(np.array(out.get_tensor())) hist, prob = output_hist(np.array(out.get_tensor()))
self.assertTrue( self.assertTrue(
np.allclose( np.allclose(
...@@ -260,15 +260,15 @@ class TestUniformRandomOpSelectedRowsWithDiagInit( ...@@ -260,15 +260,15 @@ class TestUniformRandomOpSelectedRowsWithDiagInit(
op = Operator( op = Operator(
"uniform_random", "uniform_random",
Out="X", Out="X",
shape=[100, 784], shape=[500, 784],
min=-5.0, min=-5.0,
max=10.0, max=10.0,
seed=10, seed=10,
diag_num=100, diag_num=500,
diag_step=784, diag_step=784,
diag_val=1.0) diag_val=1.0)
op.run(scope, place) op.run(scope, place)
self.assertEqual(out.get_tensor().shape(), [100, 784]) self.assertEqual(out.get_tensor().shape(), [500, 784])
hist, prob = output_hist_diag(np.array(out.get_tensor())) hist, prob = output_hist_diag(np.array(out.get_tensor()))
self.assertTrue( self.assertTrue(
np.allclose( np.allclose(
...@@ -391,7 +391,7 @@ class TestUniformRandomOpSelectedRowsShapeTensor(unittest.TestCase): ...@@ -391,7 +391,7 @@ class TestUniformRandomOpSelectedRowsShapeTensor(unittest.TestCase):
scope = core.Scope() scope = core.Scope()
out = scope.var("X").get_selected_rows() out = scope.var("X").get_selected_rows()
shape_tensor = scope.var("Shape").get_tensor() shape_tensor = scope.var("Shape").get_tensor()
shape_tensor.set(np.array([100, 784]).astype("int64"), place) shape_tensor.set(np.array([1000, 784]).astype("int64"), place)
paddle.manual_seed(10) paddle.manual_seed(10)
op = Operator( op = Operator(
"uniform_random", "uniform_random",
...@@ -401,7 +401,7 @@ class TestUniformRandomOpSelectedRowsShapeTensor(unittest.TestCase): ...@@ -401,7 +401,7 @@ class TestUniformRandomOpSelectedRowsShapeTensor(unittest.TestCase):
max=10.0, max=10.0,
seed=10) seed=10)
op.run(scope, place) op.run(scope, place)
self.assertEqual(out.get_tensor().shape(), [100, 784]) self.assertEqual(out.get_tensor().shape(), [1000, 784])
hist, prob = output_hist(np.array(out.get_tensor())) hist, prob = output_hist(np.array(out.get_tensor()))
self.assertTrue( self.assertTrue(
np.allclose( np.allclose(
...@@ -423,7 +423,7 @@ class TestUniformRandomOpSelectedRowsShapeTensorList(unittest.TestCase): ...@@ -423,7 +423,7 @@ class TestUniformRandomOpSelectedRowsShapeTensorList(unittest.TestCase):
scope = core.Scope() scope = core.Scope()
out = scope.var("X").get_selected_rows() out = scope.var("X").get_selected_rows()
shape_1 = scope.var("shape1").get_tensor() shape_1 = scope.var("shape1").get_tensor()
shape_1.set(np.array([100]).astype("int64"), place) shape_1.set(np.array([1000]).astype("int64"), place)
shape_2 = scope.var("shape2").get_tensor() shape_2 = scope.var("shape2").get_tensor()
shape_2.set(np.array([784]).astype("int64"), place) shape_2.set(np.array([784]).astype("int64"), place)
paddle.manual_seed(10) paddle.manual_seed(10)
...@@ -435,7 +435,7 @@ class TestUniformRandomOpSelectedRowsShapeTensorList(unittest.TestCase): ...@@ -435,7 +435,7 @@ class TestUniformRandomOpSelectedRowsShapeTensorList(unittest.TestCase):
max=10.0, max=10.0,
seed=10) seed=10)
op.run(scope, place) op.run(scope, place)
self.assertEqual(out.get_tensor().shape(), [100, 784]) self.assertEqual(out.get_tensor().shape(), [1000, 784])
hist, prob = output_hist(np.array(out.get_tensor())) hist, prob = output_hist(np.array(out.get_tensor()))
self.assertTrue( self.assertTrue(
np.allclose( np.allclose(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册