提交 aff8a26d 编写于 作者: C chengduoZH

check generated_op_

上级 2e5d44f1
...@@ -36,7 +36,7 @@ void NCCLAllReduceOpHandle::RunImpl() { ...@@ -36,7 +36,7 @@ void NCCLAllReduceOpHandle::RunImpl() {
// Wait input done // Wait input done
for (auto *in : inputs_) { for (auto *in : inputs_) {
auto &p = static_cast<VarHandle *>(in)->place_; auto &p = static_cast<VarHandle *>(in)->place_;
in->generated_op_->Wait(dev_ctxes_[p]); if (in->generated_op_) in->generated_op_->Wait(dev_ctxes_[p]);
} }
auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_; auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_;
......
...@@ -32,7 +32,7 @@ void SendOpHandle::RunImpl() { ...@@ -32,7 +32,7 @@ void SendOpHandle::RunImpl() {
if (in->DebugString() == "dummy") { // HACK if (in->DebugString() == "dummy") { // HACK
continue; continue;
} }
in->generated_op_->Wait(dev_ctxes_[p]); if (in->generated_op_) in->generated_op_->Wait(dev_ctxes_[p]);
} }
auto &tmp_scope = local_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>(); auto &tmp_scope = local_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
// FIXME(wuyi): can not use RunAndRecordEvent here, for it will cause dead // FIXME(wuyi): can not use RunAndRecordEvent here, for it will cause dead
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import numpy import numpy as np
import unittest import unittest
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -243,7 +243,7 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -243,7 +243,7 @@ class TestParallelExecutorBase(unittest.TestCase):
begin = time.time() begin = time.time()
first_loss, = run_executor( first_loss, = run_executor(
exe=exe, feed=feed_dict, fetch_list=[loss.name]) exe=exe, feed=feed_dict, fetch_list=[loss.name])
first_loss = numpy.array(first_loss) first_loss = np.array(first_loss)
for i in xrange(iter): for i in xrange(iter):
run_executor(exe=exe, feed=feed_dict, fetch_list=[]) run_executor(exe=exe, feed=feed_dict, fetch_list=[])
...@@ -256,7 +256,7 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -256,7 +256,7 @@ class TestParallelExecutorBase(unittest.TestCase):
print "%.4f Instance per second" % ( print "%.4f Instance per second" % (
(batch_size * iter + 2) / (end - begin)) (batch_size * iter + 2) / (end - begin))
last_loss = numpy.array(last_loss) last_loss = np.array(last_loss)
print first_loss, last_loss print first_loss, last_loss
# self.assertGreater(first_loss[0], last_loss[0]) # self.assertGreater(first_loss[0], last_loss[0])
...@@ -284,8 +284,8 @@ class TestMNIST(TestParallelExecutorBase): ...@@ -284,8 +284,8 @@ class TestMNIST(TestParallelExecutorBase):
self.check_network_convergence(simple_fc_net) self.check_network_convergence(simple_fc_net)
self.check_network_convergence(simple_fc_net, allow_op_delay=True) self.check_network_convergence(simple_fc_net, allow_op_delay=True)
img = numpy.zeros(shape=[32, 784], dtype='float32') img = np.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64') label = np.ones(shape=[32, 1], dtype='int64')
self.check_network_convergence( self.check_network_convergence(
simple_fc_net, feed_dict={"image": img, simple_fc_net, feed_dict={"image": img,
"label": label}) "label": label})
...@@ -294,8 +294,8 @@ class TestMNIST(TestParallelExecutorBase): ...@@ -294,8 +294,8 @@ class TestMNIST(TestParallelExecutorBase):
self.check_simple_fc_convergence() self.check_simple_fc_convergence()
def check_simple_fc_parallel_accuracy(self): def check_simple_fc_parallel_accuracy(self):
img = numpy.zeros(shape=[32, 784], dtype='float32') img = np.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64') label = np.ones(shape=[32, 1], dtype='int64')
single_first_loss, single_last_loss = self.check_network_convergence( single_first_loss, single_last_loss = self.check_network_convergence(
method=simple_fc_net, method=simple_fc_net,
seed=1000, seed=1000,
...@@ -319,8 +319,8 @@ class TestMNIST(TestParallelExecutorBase): ...@@ -319,8 +319,8 @@ class TestMNIST(TestParallelExecutorBase):
def check_batchnorm_fc_convergence(self): def check_batchnorm_fc_convergence(self):
self.check_network_convergence(fc_with_batchnorm) self.check_network_convergence(fc_with_batchnorm)
img = numpy.zeros(shape=[32, 784], dtype='float32') img = np.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64') label = np.ones(shape=[32, 1], dtype='int64')
self.check_network_convergence( self.check_network_convergence(
fc_with_batchnorm, feed_dict={"image": img, fc_with_batchnorm, feed_dict={"image": img,
"label": label}) "label": label})
...@@ -404,9 +404,6 @@ class ModelHyperParams(object): ...@@ -404,9 +404,6 @@ class ModelHyperParams(object):
dropout = 0.1 dropout = 0.1
import numpy as np
def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head): def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head):
""" """
Pad the instances to the max sequence length in batch, and generate the Pad the instances to the max sequence length in batch, and generate the
...@@ -533,9 +530,8 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): ...@@ -533,9 +530,8 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
opt.minimize(loss) opt.minimize(loss)
batch_size = 32 batch_size = 32
image = numpy.random.normal(size=(batch_size, image = np.random.normal(size=(batch_size, 784)).astype('float32')
784)).astype('float32') label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")
label = numpy.random.randint(0, 10, (batch_size, 1), dtype="int64")
place = fluid.CUDAPlace(0) place = fluid.CUDAPlace(0)
exe = fluid.Executor(place) exe = fluid.Executor(place)
...@@ -552,12 +548,12 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): ...@@ -552,12 +548,12 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
for i in xrange(5): for i in xrange(5):
test_loss, = test_exe.run([loss.name], feed=feed_dict) test_loss, = test_exe.run([loss.name], feed=feed_dict)
test_loss = numpy.array(test_loss) test_loss = np.array(test_loss)
train_loss, = train_exe.run([loss.name], feed=feed_dict) train_loss, = train_exe.run([loss.name], feed=feed_dict)
train_loss = numpy.array(train_loss) train_loss = np.array(train_loss)
self.assertTrue( self.assertTrue(
numpy.allclose( np.allclose(
train_loss, test_loss, atol=1e-8), train_loss, test_loss, atol=1e-8),
"Train loss: " + str(train_loss) + "\n Test loss:" + "Train loss: " + str(train_loss) + "\n Test loss:" +
str(test_loss)) str(test_loss))
...@@ -712,7 +708,7 @@ class TestCRFModel(unittest.TestCase): ...@@ -712,7 +708,7 @@ class TestCRFModel(unittest.TestCase):
data = train_data() data = train_data()
for i in xrange(10): for i in xrange(10):
cur_batch = next(data) cur_batch = next(data)
print map(numpy.array, print map(np.array,
pe.run(feed=feeder.feed(cur_batch), pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name]))[0] fetch_list=[avg_cost.name]))[0]
...@@ -723,7 +719,7 @@ class TestCRFModel(unittest.TestCase): ...@@ -723,7 +719,7 @@ class TestCRFModel(unittest.TestCase):
self.check_network_convergence(is_sparse=False) self.check_network_convergence(is_sparse=False)
# test fetch op # test fetch all the variables of global_block
import paddle.dataset.flowers as flowers import paddle.dataset.flowers as flowers
...@@ -763,7 +759,8 @@ class TestFetchOp(unittest.TestCase): ...@@ -763,7 +759,8 @@ class TestFetchOp(unittest.TestCase):
opt.minimize(loss) opt.minimize(loss)
# TODO(zcd): I found that onece the memory optimizer is open, # TODO(zcd): I found that onece the memory optimizer is open,
# parallel_exe doesn't fetch some variable, such as conv2d_0.b_0@GRAD, conv2d_1.b_0@GRAD. # parallel_exe doesn't fetch some variable, such as conv2d_0.b_0@GRAD,
# conv2d_1.b_0@GRAD. Those variables should not be pruned.
# fluid.memory_optimize(main) # fluid.memory_optimize(main)
place = fluid.CUDAPlace(0) place = fluid.CUDAPlace(0)
...@@ -775,16 +772,15 @@ class TestFetchOp(unittest.TestCase): ...@@ -775,16 +772,15 @@ class TestFetchOp(unittest.TestCase):
use_cuda=True, loss_name=loss.name, main_program=main) use_cuda=True, loss_name=loss.name, main_program=main)
fetch_list = [] fetch_list = []
for data in train_inputs: all_vars = main.global_block().vars
all_vars = main.global_block().vars for k, v in all_vars.iteritems():
for k, v in all_vars.iteritems(): if 'velocity' not in k:
if v.persistable and 'velocity' not in k: fetch_list.append(k)
fetch_list.append(k)
for data in train_inputs:
ret = pe.run(fetch_list, feed=feeder.feed(data)) ret = pe.run(fetch_list, feed=feeder.feed(data))
result = {}
for i in range(len(fetch_list)): for i in range(len(fetch_list)):
result[fetch_list[i]] = np.sum(ret[i]) print("%s - %s" % (fetch_list[i], np.sum(ret[i])))
def test_update_sparse_parameter(self): def test_update_sparse_parameter(self):
tst_reader = paddle.batch(flowers.test(use_xmap=False), batch_size=16) tst_reader = paddle.batch(flowers.test(use_xmap=False), batch_size=16)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册