Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
aeb33958
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aeb33958
编写于
5月 16, 2022
作者:
C
Chen Weihang
提交者:
GitHub
5月 16, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add custom linear backward test (#42740)
上级
5198a497
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
72 addition
and
30 deletion
+72
-30
python/paddle/fluid/tests/custom_op/custom_linear_op.cc
python/paddle/fluid/tests/custom_op/custom_linear_op.cc
+16
-1
python/paddle/fluid/tests/custom_op/test_custom_linear.py
python/paddle/fluid/tests/custom_op/test_custom_linear.py
+56
-29
未找到文件。
python/paddle/fluid/tests/custom_op/custom_linear_op.cc
浏览文件 @
aeb33958
...
@@ -23,6 +23,16 @@ std::vector<paddle::Tensor> PhiLinearForward(const paddle::Tensor& x,
...
@@ -23,6 +23,16 @@ std::vector<paddle::Tensor> PhiLinearForward(const paddle::Tensor& x,
return
{
paddle
::
add
(
paddle
::
matmul
(
x
,
weight
),
bias
)};
return
{
paddle
::
add
(
paddle
::
matmul
(
x
,
weight
),
bias
)};
}
}
std
::
vector
<
paddle
::
Tensor
>
PhiLinearBackward
(
const
paddle
::
Tensor
&
x
,
const
paddle
::
Tensor
&
weight
,
const
paddle
::
Tensor
&
bias
,
const
paddle
::
Tensor
&
out_grad
)
{
auto
x_grad
=
paddle
::
matmul
(
out_grad
,
weight
,
false
,
true
);
auto
weight_grad
=
paddle
::
matmul
(
x
,
out_grad
,
true
,
false
);
auto
bias_grad
=
paddle
::
experimental
::
sum
(
out_grad
,
{
0
});
return
{
x_grad
,
weight_grad
,
bias_grad
};
}
std
::
vector
<
std
::
vector
<
int64_t
>>
LinearInferShape
(
std
::
vector
<
std
::
vector
<
int64_t
>>
LinearInferShape
(
const
std
::
vector
<
int64_t
>&
x_shape
,
const
std
::
vector
<
int64_t
>&
x_shape
,
const
std
::
vector
<
int64_t
>&
weight_shape
,
const
std
::
vector
<
int64_t
>&
weight_shape
,
...
@@ -86,9 +96,14 @@ std::vector<paddle::DataType> LinearInferDtype(
...
@@ -86,9 +96,14 @@ std::vector<paddle::DataType> LinearInferDtype(
return
{
x_dtype
};
return
{
x_dtype
};
}
}
PD_BUILD_OP
(
p
ten
_linear
)
PD_BUILD_OP
(
p
hi
_linear
)
.
Inputs
({
"X"
,
"Weight"
,
"Bias"
})
.
Inputs
({
"X"
,
"Weight"
,
"Bias"
})
.
Outputs
({
"Out"
})
.
Outputs
({
"Out"
})
.
SetKernelFn
(
PD_KERNEL
(
PhiLinearForward
))
.
SetKernelFn
(
PD_KERNEL
(
PhiLinearForward
))
.
SetInferShapeFn
(
PD_INFER_SHAPE
(
LinearInferShape
))
.
SetInferShapeFn
(
PD_INFER_SHAPE
(
LinearInferShape
))
.
SetInferDtypeFn
(
PD_INFER_DTYPE
(
LinearInferDtype
));
.
SetInferDtypeFn
(
PD_INFER_DTYPE
(
LinearInferDtype
));
PD_BUILD_GRAD_OP
(
phi_linear
)
.
Inputs
({
"X"
,
"Weight"
,
"Bias"
,
paddle
::
Grad
(
"Out"
)})
.
Outputs
({
paddle
::
Grad
(
"X"
),
paddle
::
Grad
(
"Weight"
),
paddle
::
Grad
(
"Bias"
)})
.
SetKernelFn
(
PD_KERNEL
(
PhiLinearBackward
));
python/paddle/fluid/tests/custom_op/test_custom_linear.py
浏览文件 @
aeb33958
...
@@ -40,43 +40,56 @@ custom_ops = load(
...
@@ -40,43 +40,56 @@ custom_ops = load(
verbose
=
True
)
verbose
=
True
)
def
linear_dynamic
(
func
,
dtype
,
np_x
,
np_weight
,
np_bias
):
def
linear_dynamic
(
func
,
d
evice
,
d
type
,
np_x
,
np_weight
,
np_bias
):
paddle
.
set_device
(
"cpu"
)
paddle
.
set_device
(
device
)
x
=
paddle
.
to_tensor
(
np_x
,
dtype
=
dtype
)
x
=
paddle
.
to_tensor
(
np_x
,
dtype
=
dtype
,
stop_gradient
=
False
)
weight
=
paddle
.
to_tensor
(
np_weight
,
dtype
=
dtype
)
weight
=
paddle
.
to_tensor
(
np_weight
,
dtype
=
dtype
,
stop_gradient
=
False
)
bias
=
paddle
.
to_tensor
(
np_bias
,
dtype
=
dtype
)
bias
=
paddle
.
to_tensor
(
np_bias
,
dtype
=
dtype
,
stop_gradient
=
False
)
out
=
func
(
x
,
weight
,
bias
)
out
=
func
(
x
,
weight
,
bias
)
return
out
.
numpy
()
out
.
backward
()
return
out
.
numpy
(),
x
.
grad
.
numpy
(),
weight
.
grad
.
numpy
(),
bias
.
grad
.
numpy
()
def
linear_static
(
func
,
dtype
,
np_x
,
np_weight
,
np_bias
):
def
linear_static
(
func
,
d
evice
,
d
type
,
np_x
,
np_weight
,
np_bias
):
paddle
.
enable_static
()
paddle
.
enable_static
()
paddle
.
set_device
(
"cpu"
)
paddle
.
set_device
(
device
)
with
static
.
scope_guard
(
static
.
Scope
()):
with
static
.
scope_guard
(
static
.
Scope
()):
with
static
.
program_guard
(
static
.
Program
()):
with
static
.
program_guard
(
static
.
Program
()):
x
=
static
.
data
(
name
=
"x"
,
shape
=
np_x
.
shape
,
dtype
=
dtype
)
x
=
static
.
data
(
name
=
"x"
,
shape
=
[
None
,
np_x
.
shape
[
1
]]
,
dtype
=
dtype
)
weight
=
static
.
data
(
weight
=
static
.
data
(
name
=
"weight"
,
shape
=
np_weight
.
shape
,
dtype
=
dtype
)
name
=
"weight"
,
shape
=
np_weight
.
shape
,
dtype
=
dtype
)
bias
=
static
.
data
(
name
=
"bias"
,
shape
=
np_bias
.
shape
,
dtype
=
dtype
)
bias
=
static
.
data
(
name
=
"bias"
,
shape
=
np_bias
.
shape
,
dtype
=
dtype
)
x
.
stop_gradient
=
False
weight
.
stop_gradient
=
False
bias
.
stop_gradient
=
False
out
=
func
(
x
,
weight
,
bias
)
out
=
func
(
x
,
weight
,
bias
)
mean_out
=
paddle
.
mean
(
out
)
static
.
append_backward
(
mean_out
)
exe
=
static
.
Executor
()
exe
=
static
.
Executor
()
exe
.
run
(
static
.
default_startup_program
())
exe
.
run
(
static
.
default_startup_program
())
out_v
,
=
exe
.
run
(
static
.
default_main_program
(),
out_v
,
x_grad_v
,
weight_grad_v
,
bias_grad_v
=
exe
.
run
(
feed
=
{
static
.
default_main_program
(),
"x"
:
np_x
.
astype
(
dtype
),
feed
=
{
"weight"
:
np_weight
.
astype
(
dtype
),
"x"
:
np_x
.
astype
(
dtype
),
"bias"
:
np_bias
.
astype
(
dtype
)
"weight"
:
np_weight
.
astype
(
dtype
),
},
"bias"
:
np_bias
.
astype
(
dtype
)
fetch_list
=
[
out
.
name
])
},
fetch_list
=
[
out
.
name
,
x
.
name
+
"@GRAD"
,
weight
.
name
+
"@GRAD"
,
bias
.
name
+
"@GRAD"
])
paddle
.
disable_static
()
paddle
.
disable_static
()
return
out_v
return
out_v
,
x_grad_v
,
weight_grad_v
,
bias_grad_v
class
TestCustomLinearJit
(
unittest
.
TestCase
):
class
TestCustomLinearJit
(
unittest
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
dtypes
=
[
'float32'
,
'float64'
]
self
.
dtypes
=
[
'float32'
,
'float64'
]
self
.
devices
=
[
'cpu'
]
if
paddle
.
is_compiled_with_cuda
():
self
.
devices
.
append
(
'gpu'
)
self
.
np_x
=
np
.
random
.
random
((
3
,
2
)).
astype
(
"float32"
)
self
.
np_x
=
np
.
random
.
random
((
3
,
2
)).
astype
(
"float32"
)
self
.
np_weight
=
np
.
full
([
2
,
4
],
fill_value
=
0.5
,
dtype
=
"float32"
)
self
.
np_weight
=
np
.
full
([
2
,
4
],
fill_value
=
0.5
,
dtype
=
"float32"
)
self
.
np_bias
=
np
.
ones
([
4
],
dtype
=
"float32"
)
self
.
np_bias
=
np
.
ones
([
4
],
dtype
=
"float32"
)
...
@@ -88,20 +101,34 @@ class TestCustomLinearJit(unittest.TestCase):
...
@@ -88,20 +101,34 @@ class TestCustomLinearJit(unittest.TestCase):
pd_out
))
pd_out
))
def
test_static
(
self
):
def
test_static
(
self
):
for
dtype
in
self
.
dtypes
:
for
device
in
self
.
devices
:
pten_out
=
linear_static
(
custom_ops
.
pten_linear
,
dtype
,
self
.
np_x
,
for
dtype
in
self
.
dtypes
:
self
.
np_weight
,
self
.
np_bias
)
phi_out
,
phi_x_grad
,
phi_weight_grad
,
phi_bias_grad
=
linear_static
(
pd_out
=
linear_static
(
F
.
linear
,
dtype
,
self
.
np_x
,
self
.
np_weight
,
custom_ops
.
phi_linear
,
device
,
dtype
,
self
.
np_x
,
self
.
np_bias
)
self
.
np_weight
,
self
.
np_bias
)
self
.
check_output
(
pten_out
,
pd_out
,
"pten_out"
)
pd_out
,
pd_x_grad
,
pd_weight_grad
,
pd_bias_grad
=
linear_static
(
F
.
linear
,
device
,
dtype
,
self
.
np_x
,
self
.
np_weight
,
self
.
np_bias
)
self
.
check_output
(
phi_out
,
pd_out
,
"out"
)
self
.
check_output
(
phi_x_grad
,
pd_x_grad
,
"x_grad"
)
self
.
check_output
(
phi_weight_grad
,
pd_weight_grad
,
"weight_grad"
)
self
.
check_output
(
phi_bias_grad
,
pd_bias_grad
,
"bias_grad"
)
def
func_dynamic
(
self
):
def
func_dynamic
(
self
):
for
dtype
in
self
.
dtypes
:
for
device
in
self
.
devices
:
pten_out
=
linear_dynamic
(
custom_ops
.
pten_linear
,
dtype
,
self
.
np_x
,
for
dtype
in
self
.
dtypes
:
self
.
np_weight
,
self
.
np_bias
)
phi_out
,
phi_x_grad
,
phi_weight_grad
,
phi_bias_grad
=
linear_dynamic
(
pd_out
=
linear_dynamic
(
F
.
linear
,
dtype
,
self
.
np_x
,
self
.
np_weight
,
custom_ops
.
phi_linear
,
device
,
dtype
,
self
.
np_x
,
self
.
np_bias
)
self
.
np_weight
,
self
.
np_bias
)
self
.
check_output
(
pten_out
,
pd_out
,
"pten_out"
)
pd_out
,
pd_x_grad
,
pd_weight_grad
,
pd_bias_grad
=
linear_dynamic
(
F
.
linear
,
device
,
dtype
,
self
.
np_x
,
self
.
np_weight
,
self
.
np_bias
)
self
.
check_output
(
phi_out
,
pd_out
,
"phi_out"
)
self
.
check_output
(
phi_x_grad
,
pd_x_grad
,
"x_grad"
)
self
.
check_output
(
phi_weight_grad
,
pd_weight_grad
,
"weight_grad"
)
self
.
check_output
(
phi_bias_grad
,
pd_bias_grad
,
"bias_grad"
)
def
test_dynamic
(
self
):
def
test_dynamic
(
self
):
with
_test_eager_guard
():
with
_test_eager_guard
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录