提交 aaf2d66d 编写于 作者: Y Yu Yang

Merge branch 'develop' of github.com:baidu/Paddle into gradient_check_utils

...@@ -36,8 +36,8 @@ include(simd) ...@@ -36,8 +36,8 @@ include(simd)
################################ Configurations ####################################### ################################ Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND}) option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND}) option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." OFF) option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." ${AVX_FOUND})
option(WITH_MKLML "Compile PaddlePaddle with mklml package." OFF) option(WITH_MKLML "Compile PaddlePaddle with mklml package." ${AVX_FOUND})
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON) option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON) option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON)
option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON) option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON)
......
...@@ -72,7 +72,7 @@ We provide [English](http://doc.paddlepaddle.org/develop/doc/) and ...@@ -72,7 +72,7 @@ We provide [English](http://doc.paddlepaddle.org/develop/doc/) and
- [Deep Learning 101](http://book.paddlepaddle.org/index.html) - [Deep Learning 101](http://book.paddlepaddle.org/index.html)
You might want to start from the this online interactive book that can run in Jupyter Notebook. You might want to start from this online interactive book that can run in Jupyter Notebook.
- [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html) - [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html)
......
...@@ -20,34 +20,30 @@ INCLUDE(ExternalProject) ...@@ -20,34 +20,30 @@ INCLUDE(ExternalProject)
SET(MKLDNN_PROJECT "extern_mkldnn") SET(MKLDNN_PROJECT "extern_mkldnn")
SET(MKLDNN_SOURCES_DIR ${THIRD_PARTY_PATH}/mkldnn) SET(MKLDNN_SOURCES_DIR ${THIRD_PARTY_PATH}/mkldnn)
SET(MKLDNN_INSTALL_ROOT ${CMAKE_INSTALL_PREFIX}) SET(MKLDNN_INSTALL_DIR ${THIRD_PARTY_PATH}/install/mkldnn)
IF(NOT "$ENV{HOME}" STREQUAL "/root") SET(MKLDNN_INC_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
SET(MKLDNN_INSTALL_ROOT "$ENV{HOME}")
ENDIF()
SET(MKLDNN_INSTALL_DIR "${MKLDNN_INSTALL_ROOT}/opt/paddle/third_party/mkldnn")
SET(MKLDNN_INCLUDE_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
IF(WIN32) IF(WIN32 OR APPLE)
MESSAGE(WARNING "It is not supported compiling with mkldnn in windows Paddle yet." MESSAGE(WARNING
"Force WITH_MKLDNN=OFF") "Windows or Mac is not supported with MKLDNN in Paddle yet."
SET(WITH_MKLDNN OFF) "Force WITH_MKLDNN=OFF")
SET(WITH_MKLDNN OFF CACHE STRING "Disable MKLDNN in Windows and MacOS" FORCE)
return() return()
ELSE(WIN32) ENDIF()
SET(MKLDNN_LIBRARY "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path") SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE) MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path")
#SET(CMAKE_MACOSX_RPATH 1) # hold for MacOS SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib") SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib")
ENDIF(WIN32)
INCLUDE_DIRECTORIES(${MKLDNN_INCLUDE_DIR}) INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR})
IF(${CBLAS_PROVIDER} STREQUAL "MKLML") IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
SET(MKLDNN_DEPENDS ${MKLML_PROJECT}) SET(MKLDNN_DEPENDS ${MKLML_PROJECT})
SET(MKLDNN_MKLROOT ${MKLML_ROOT}) SET(MKLDNN_MKLROOT ${MKLML_ROOT})
SET(MKLDNN_IOMP_LIB ${MKLML_IOMP_LIB}) SET(MKLDNN_IOMP_LIB ${MKLML_IOMP_LIB})
SET(MKLDNN_IOMP_DIR ${MKLML_LIB_DIR}) SET(MKLDNN_IOMP_DIR ${MKLML_LIB_DIR})
MESSAGE(STATUS "Build MKLDNN with ${MKLDNN_MKLROOT}")
ENDIF() ENDIF()
ExternalProject_Add( ExternalProject_Add(
...@@ -57,16 +53,15 @@ ExternalProject_Add( ...@@ -57,16 +53,15 @@ ExternalProject_Add(
GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git" GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git"
GIT_TAG "v0.9" GIT_TAG "v0.9"
PREFIX ${MKLDNN_SOURCES_DIR} PREFIX ${MKLDNN_SOURCES_DIR}
CONFIGURE_COMMAND mkdir -p <SOURCE_DIR>/build
BUILD_COMMAND cd <SOURCE_DIR>/build
&& cmake .. -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR} -DMKLROOT=${MKLDNN_MKLROOT}
&& $(MAKE)
INSTALL_COMMAND cd <SOURCE_DIR>/build && $(MAKE) install
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
CMAKE_ARGS -DMKLROOT=${MKLDNN_MKLROOT}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR}
-DMKLROOT:PATH=${MKLDNN_MKLROOT}
) )
ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL) ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIBRARY}) SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB})
ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT})
MESSAGE(STATUS "Mkldnn library: ${MKLDNN_LIBRARY}") MESSAGE(STATUS "Mkldnn library: ${MKLDNN_LIB}")
LIST(APPEND external_project_dependencies mkldnn) LIST(APPEND external_project_dependencies mkldnn)
...@@ -16,19 +16,23 @@ IF(NOT ${WITH_MKLML}) ...@@ -16,19 +16,23 @@ IF(NOT ${WITH_MKLML})
return() return()
ENDIF(NOT ${WITH_MKLML}) ENDIF(NOT ${WITH_MKLML})
IF(WIN32 OR APPLE)
MESSAGE(WARNING
"Windows or Mac is not supported with MKLML in Paddle yet."
"Force WITH_MKLML=OFF")
SET(WITH_MKLML OFF CACHE STRING "Disable MKLML package in Windows and MacOS" FORCE)
return()
ENDIF()
INCLUDE(ExternalProject) INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml") SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.20170425") SET(MKLML_VER "mklml_lnx_2018.0.20170720")
SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.9/${MKLML_VER}.tgz") SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.9/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml") SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}") SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "opt/paddle/third_party/mklml") SET(MKLML_DST_DIR "mklml")
SET(MKLML_INSTALL_ROOT "${CMAKE_INSTALL_PREFIX}") SET(MKLML_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
IF(NOT "$ENV{HOME}" STREQUAL "/root")
SET(MKLML_INSTALL_ROOT "$ENV{HOME}")
ENDIF()
SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR}) SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR})
SET(MKLML_ROOT ${MKLML_INSTALL_DIR}/${MKLML_VER}) SET(MKLML_ROOT ${MKLML_INSTALL_DIR}/${MKLML_VER})
SET(MKLML_INC_DIR ${MKLML_ROOT}/include) SET(MKLML_INC_DIR ${MKLML_ROOT}/include)
......
...@@ -15,7 +15,6 @@ if(Boost_FOUND) ...@@ -15,7 +15,6 @@ if(Boost_FOUND)
add_subdirectory(platform) add_subdirectory(platform)
add_subdirectory(framework) add_subdirectory(framework)
add_subdirectory(operators) add_subdirectory(operators)
add_subdirectory(pybind)
endif() endif()
if(WITH_C_API) if(WITH_C_API)
......
...@@ -31,8 +31,14 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc. ...@@ -31,8 +31,14 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init) add_dependencies(framework_py_proto framework_py_proto_init)
cc_library(net SRCS net.cc DEPS op_registry) cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(net_op_test SRCS net_op_test.cc DEPS net)
cc_library(backward SRCS backward.cc DEPS net)
cc_test(backward_test SRCS backward_test.cc DEPS backward) cc_test(backward_test SRCS backward_test.cc DEPS backward)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
fc_op
sgd_op
add_op
mean_op
cross_entropy_op
recurrent_op)
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include <list> #include <list>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -32,7 +32,7 @@ static bool AllInSet(const std::vector<std::string>& names, ...@@ -32,7 +32,7 @@ static bool AllInSet(const std::vector<std::string>& names,
} }
static std::shared_ptr<OperatorBase> NOP() { static std::shared_ptr<OperatorBase> NOP() {
auto net_op = std::make_shared<NetOp>(); auto net_op = std::make_shared<operators::NetOp>();
net_op->type_ = "@NOP@"; net_op->type_ = "@NOP@";
net_op->CompleteAddOp(); net_op->CompleteAddOp();
return net_op; return net_op;
...@@ -42,9 +42,9 @@ static std::shared_ptr<OperatorBase> NOP() { ...@@ -42,9 +42,9 @@ static std::shared_ptr<OperatorBase> NOP() {
// //
// no_grad_names the gradient variable names without gradient calculating. // no_grad_names the gradient variable names without gradient calculating.
// //
// uniq_id is a unique index used inside recursively calling BackwardRecursive. // uniq_id is a unique index used inside recursively calling
// use `uid = uniq_id++;` to get the unique index, and pass `uniq_id` through // BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
// recursive calling. // pass `uniq_id` through recursive calling.
// //
// returns The backward operator. For simple situation, it is a simple // returns The backward operator. For simple situation, it is a simple
// operator. For complex situation, it is a NetOp. // operator. For complex situation, it is a NetOp.
...@@ -64,8 +64,8 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -64,8 +64,8 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
return NOP(); return NOP();
} }
// All output gradients of forwarding operator do not need to calculate. Then // All output gradients of forwarding operator do not need to calculate.
// all input gradients cannot be computed at all, and we put them into // Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP. // `no_grad_names` set. Return an NOP.
if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(), if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(),
no_grad_names)) { no_grad_names)) {
...@@ -77,14 +77,14 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -77,14 +77,14 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
} }
// Returned gradient network // Returned gradient network
auto net = std::make_shared<NetOp>(); auto net = std::make_shared<operators::NetOp>();
if (forwardOp.IsNetOp()) { if (forwardOp.IsNetOp()) {
// Because forwardOp is a net op, it can static_cast. // Because forwardOp is a net op, it can static_cast.
auto& forwardNet = static_cast<const NetOp&>(forwardOp); auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
// Map from output gradient variable name to operator's indices in backward // Map from output gradient variable name to operator's indices in
// net. That operator generates that variable. // backward net. That operator generates that variable.
std::unordered_map<std::string, std::vector<size_t>> dup_output_ops; std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;
size_t local_op_id = 0; size_t local_op_id = 0;
...@@ -168,6 +168,9 @@ std::shared_ptr<OperatorBase> Backward( ...@@ -168,6 +168,9 @@ std::shared_ptr<OperatorBase> Backward(
std::unordered_set<std::string> no_grad_names; std::unordered_set<std::string> no_grad_names;
no_grad_names.reserve(no_grad_vars.size()); no_grad_names.reserve(no_grad_vars.size());
no_grad_names.insert(OperatorBase::EMPTY_VAR_NAME() +
OperatorBase::GRAD_VAR_SUFFIX());
for (auto& name : no_grad_vars) { for (auto& name : no_grad_vars) {
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX()); no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX());
} }
......
...@@ -15,8 +15,9 @@ ...@@ -15,8 +15,9 @@
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -70,7 +71,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker { ...@@ -70,7 +71,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker {
} }
}; };
class FcOp : public NetOp { class FcOp : public ops::NetOp {
public: public:
void Init() override { void Init() override {
AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")}, AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")},
...@@ -161,8 +162,8 @@ TEST(Backward, simple_op_grad) { ...@@ -161,8 +162,8 @@ TEST(Backward, simple_op_grad) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
auto gop = f::OpRegistry::CreateGradOp(*fwd); auto gop = f::OpRegistry::CreateGradOp(*fwd);
ASSERT_EQ(1UL, gop->inputs_.size()); ASSERT_EQ(4UL, gop->inputs_.size());
ASSERT_EQ("Out" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->inputs_[0]); ASSERT_EQ(f::OperatorBase::EMPTY_VAR_NAME(), gop->inputs_[0]);
ASSERT_EQ("rowwise_add_grad", gop->type_); ASSERT_EQ("rowwise_add_grad", gop->type_);
ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[0]); ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[0]);
ASSERT_EQ("b" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[1]); ASSERT_EQ("b" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[1]);
...@@ -182,7 +183,8 @@ TEST(Backward, simple_op_not_need_grad) { ...@@ -182,7 +183,8 @@ TEST(Backward, simple_op_not_need_grad) {
auto no_input_gop = f::Backward(*fwd, {"X", "b"}); auto no_input_gop = f::Backward(*fwd, {"X", "b"});
ASSERT_NE(no_input_gop, nullptr); ASSERT_NE(no_input_gop, nullptr);
ASSERT_TRUE(no_input_gop->IsNetOp()); ASSERT_TRUE(no_input_gop->IsNetOp());
ASSERT_EQ(0UL, std::static_pointer_cast<f::NetOp>(no_input_gop)->ops_.size()); ASSERT_EQ(0UL,
std::static_pointer_cast<ops::NetOp>(no_input_gop)->ops_.size());
} }
TEST(Backward, net_fc_backward_normal) { TEST(Backward, net_fc_backward_normal) {
...@@ -191,7 +193,7 @@ TEST(Backward, net_fc_backward_normal) { ...@@ -191,7 +193,7 @@ TEST(Backward, net_fc_backward_normal) {
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {}); std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
ASSERT_TRUE(gop->IsNetOp()); ASSERT_TRUE(gop->IsNetOp());
auto net = static_cast<f::NetOp *>(gop.get()); auto net = static_cast<ops::NetOp *>(gop.get());
ASSERT_NO_THROW(net->DebugString()); ASSERT_NO_THROW(net->DebugString());
...@@ -214,7 +216,7 @@ TEST(Backward, net_fc_backward_not_have_b) { ...@@ -214,7 +216,7 @@ TEST(Backward, net_fc_backward_not_have_b) {
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {}); std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
ASSERT_TRUE(gop->IsNetOp()); ASSERT_TRUE(gop->IsNetOp());
auto net = static_cast<f::NetOp *>(gop.get()); auto net = static_cast<ops::NetOp *>(gop.get());
ASSERT_NO_THROW(net->DebugString()); ASSERT_NO_THROW(net->DebugString());
...@@ -228,7 +230,7 @@ TEST(Backward, net_fc_backward_not_have_b) { ...@@ -228,7 +230,7 @@ TEST(Backward, net_fc_backward_not_have_b) {
} }
TEST(Backward, net_input_of_network_not_need_grad) { TEST(Backward, net_input_of_network_not_need_grad) {
f::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"},
{"mul_tmp_0", "add_tmp_0", "hidden0"}, {})); {"mul_tmp_0", "add_tmp_0", "hidden0"}, {}));
net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"},
...@@ -236,7 +238,7 @@ TEST(Backward, net_input_of_network_not_need_grad) { ...@@ -236,7 +238,7 @@ TEST(Backward, net_input_of_network_not_need_grad) {
net.CompleteAddOp(); net.CompleteAddOp();
auto bwd = Backward(net, {"X"}); // X@GRAD is not need. auto bwd = Backward(net, {"X"}); // X@GRAD is not need.
ASSERT_TRUE(bwd->IsNetOp()); ASSERT_TRUE(bwd->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(bwd.get()); auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
std::unordered_set<std::string> all_output = std::unordered_set<std::string>( std::unordered_set<std::string> all_output = std::unordered_set<std::string>(
bwd_net->outputs_.begin(), bwd_net->outputs_.end()); bwd_net->outputs_.begin(), bwd_net->outputs_.end());
...@@ -253,7 +255,7 @@ TEST(Backward, net_input_of_network_not_need_grad) { ...@@ -253,7 +255,7 @@ TEST(Backward, net_input_of_network_not_need_grad) {
ASSERT_EQ(2UL, bwd_net->ops_.size()); ASSERT_EQ(2UL, bwd_net->ops_.size());
ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp()); ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
auto first_fc_grad = static_cast<f::NetOp *>(bwd_net->ops_[1].get()); auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
ASSERT_EQ(3UL, first_fc_grad->ops_.size()); ASSERT_EQ(3UL, first_fc_grad->ops_.size());
ASSERT_EQ( ASSERT_EQ(
f::OperatorBase::EMPTY_VAR_NAME(), f::OperatorBase::EMPTY_VAR_NAME(),
...@@ -261,14 +263,14 @@ TEST(Backward, net_input_of_network_not_need_grad) { ...@@ -261,14 +263,14 @@ TEST(Backward, net_input_of_network_not_need_grad) {
} }
TEST(Backward, net_shared_weight) { TEST(Backward, net_shared_weight) {
f::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {})); net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {}));
net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {})); net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {}));
net.CompleteAddOp(); net.CompleteAddOp();
auto bwd = f::Backward(net, {}); auto bwd = f::Backward(net, {});
ASSERT_TRUE(bwd->IsNetOp()); ASSERT_TRUE(bwd->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(bwd.get()); auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
ASSERT_EQ(3UL, bwd_net->ops_.size()); ASSERT_EQ(3UL, bwd_net->ops_.size());
ASSERT_EQ("add", bwd_net->ops_[2]->type_); ASSERT_EQ("add", bwd_net->ops_[2]->type_);
} }
...@@ -285,7 +287,7 @@ TEST(Backward, op_all_input_are_not_need) { ...@@ -285,7 +287,7 @@ TEST(Backward, op_all_input_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
auto backward = f::Backward(*fwd, {"X", "b"}); auto backward = f::Backward(*fwd, {"X", "b"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
ASSERT_TRUE(net->ops_.empty()); ASSERT_TRUE(net->ops_.empty());
} }
...@@ -293,7 +295,7 @@ TEST(Backward, op_all_output_are_not_need) { ...@@ -293,7 +295,7 @@ TEST(Backward, op_all_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
auto backward = f::Backward(*fwd, {"Out"}); auto backward = f::Backward(*fwd, {"Out"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
ASSERT_TRUE(net->ops_.empty()); ASSERT_TRUE(net->ops_.empty());
} }
...@@ -301,7 +303,7 @@ TEST(Backward, op_part_of_output_are_not_need) { ...@@ -301,7 +303,7 @@ TEST(Backward, op_part_of_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {}); auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {});
auto backward = f::Backward(*fwd, {"Z"}); auto backward = f::Backward(*fwd, {"Z"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
ASSERT_EQ(net->ops_.size(), 2UL); ASSERT_EQ(net->ops_.size(), 2UL);
auto &fill_zero = *net->ops_[0]; auto &fill_zero = *net->ops_[0];
...@@ -341,7 +343,7 @@ TEST(Backward, op_part_of_input_are_not_need) { ...@@ -341,7 +343,7 @@ TEST(Backward, op_part_of_input_are_not_need) {
} }
TEST(Backward, linear_net_intermediate_variable_has_no_grad) { TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
f::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"},
{"mul_out1", "add_out1", "out1"}, {})); {"mul_out1", "add_out1", "out1"}, {}));
net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"},
...@@ -351,14 +353,13 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { ...@@ -351,14 +353,13 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
net.CompleteAddOp(); net.CompleteAddOp();
auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"}); auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(backward.get()); auto bwd_net = static_cast<ops::NetOp *>(backward.get());
ASSERT_EQ(bwd_net->ops_.size(), 3UL); ASSERT_EQ(bwd_net->ops_.size(), 3UL);
auto &grad_fc = *bwd_net->ops_[0]; auto &grad_fc = *bwd_net->ops_[0];
EXPECT_EQ(grad_fc.inputs_.size(), EXPECT_EQ(grad_fc.inputs_.size(),
3UL /* external input number */ 3UL /* external input number */
+ 1UL /* external output number*/ + 1UL /* external output number*/
+ 1UL /* number of gradient of external output*/ + 1UL /* number of gradient of external output*/
- 1UL /*ignoreGradient varable number*/
+ 2U /* internal variable number*/); + 2U /* internal variable number*/);
EXPECT_EQ(grad_fc.outputs_.size(), 2UL /* input number of mul*/ EXPECT_EQ(grad_fc.outputs_.size(), 2UL /* input number of mul*/
+ 2UL /* input number of rowwise_add */ + 2UL /* input number of rowwise_add */
......
...@@ -8,107 +8,97 @@ You may obtain a copy of the License at ...@@ -8,107 +8,97 @@ You may obtain a copy of the License at
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOpArgType::OUT WARRANTIES OR CONDITIONS OF ANY KOpArgType::IND, either
See the License for the specific language governing permissions and express or implied. See the License for the specific language governing
limitations under the License. */ permissions and limitations under the License. */
#include "paddle/framework/grad_op_builder.h" #include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
OperatorBase* GradOpBuilder::Build() { class OpRegistry;
BuildOpInOutArgList();
std::string grad_op_type = OpRegistry::grad_ops().at(op_.type_); using VarIndexMap = std::unordered_map<std::string, int>;
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type;
CompleteGradOp(grad_op);
return grad_op;
}
OpInOutArg* GradOpBuilder::BuildArg(const VarProto& var, enum class OpArgType { IN, OUT };
const VarIndexMap& var_map,
const std::vector<int>& format, static std::vector<int>* GetOpFormat(OperatorBase* op, const OpArgType& type) {
InOutType type) { std::string key = type == OpArgType::IN ? "input_format" : "output_format";
int idx = var_map.at(var.name()); return op->attrs_.count(key)
int begin_idx = format.empty() ? idx : format.at(idx); ? &boost::get<std::vector<int>>(op->attrs_.at(key))
int end_idx = format.empty() ? idx + 1 : format.at(idx + 1); : nullptr;
return new OpInOutArg(var.name(), type, !var.ignore_gradient(), begin_idx,
end_idx);
} }
void GradOpBuilder::BuildOpInOutArgList() { static const std::vector<int>* GetOpFormat(const OperatorBase* op,
const OpProto& op_proto = OpRegistry::protos().at(op_.type_); const OpArgType& type) {
const auto& var_map = *(OpRegistry::VarIndexMaps().at(op_.type_)); std::string key = type == OpArgType::IN ? "input_format" : "output_format";
const std::vector<int>& in_format = return op->attrs_.count(key)
op_.attrs_.count("input_format") ? &boost::get<std::vector<int>>(op->attrs_.at(key))
? op_.GetAttr<std::vector<int>>("input_format") : nullptr;
: std::vector<int>();
const std::vector<int>& out_format =
op_.attrs_.count("output_format")
? op_.GetAttr<std::vector<int>>("output_format")
: std::vector<int>();
for (const auto& var : op_proto.inputs()) {
arg_list_.emplace_back(
std::shared_ptr<OpInOutArg>(BuildArg(var, var_map, in_format, IN)));
}
for (const auto& var : op_proto.outputs()) {
arg_list_.emplace_back(
std::shared_ptr<OpInOutArg>(BuildArg(var, var_map, out_format, OUT)));
}
} }
void GradOpBuilder::AddArgIntoGradOp(const OpInOutArg* arg, static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
std::vector<std::string>& in_out, const OpArgType& src_type, const OpArgType& dst_type,
std::vector<int>& format, int& idx, bool is_grad) {
VarIndexMap* varmap, int& idx, const std::vector<std::string>& src_inout =
bool is_grad) const { src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_;
std::string var_name = arg->proto_name_; const std::vector<int>* src_format = GetOpFormat(src_op, src_type);
if (is_grad) {
var_name += OperatorBase::GRAD_VAR_SUFFIX(); std::vector<std::string>& dst_inout =
} dst_type == OpArgType::IN ? dst_op->inputs_ : dst_op->outputs_;
(*varmap)[var_name] = idx++; std::vector<int>* dst_format = GetOpFormat(dst_op, dst_type);
size_t pre_sz = in_out.size(); const OpProto& proto = OpRegistry::protos().at(src_op->type_);
auto base_it = arg->type_ == IN ? op_.inputs_.begin() : op_.outputs_.begin(); const auto& src_arg_list =
std::copy(base_it + arg->begin_idx_, base_it + arg->end_idx_, src_type == OpArgType::IN ? proto.inputs() : proto.outputs();
std::back_inserter(in_out));
if (is_grad) { for (const auto& arg : src_arg_list) {
for (size_t i = pre_sz; i < in_out.size(); ++i) { std::string src_name = arg.name();
in_out[i] += OperatorBase::GRAD_VAR_SUFFIX(); std::string dst_name =
is_grad ? src_name + OperatorBase::GRAD_VAR_SUFFIX() : src_name;
(*dst_op->in_out_idxs_)[dst_name] = idx++;
int src_arg_idx = src_op->in_out_idxs_->at(src_name);
int src_begin =
src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx);
int src_end = src_format == nullptr ? src_arg_idx + 1
: src_format->at(src_arg_idx + 1);
for (int i = src_begin; i < src_end; ++i) {
std::string s = is_grad ? src_inout[i] + OperatorBase::GRAD_VAR_SUFFIX()
: arg.ignore_gradient()
? OperatorBase::EMPTY_VAR_NAME()
: src_inout[i];
dst_inout.emplace_back(s);
}
if (dst_format != nullptr) {
dst_format->push_back(dst_inout.size());
} }
} }
format.push_back(in_out.size());
} }
void GradOpBuilder::CompleteGradOp(OperatorBase* grad_op) const { OperatorBase* BuildGradOp(const OperatorBase* op) {
grad_op->attrs_ = op_.attrs_; std::string grad_op_type = OpRegistry::grad_ops().at(op->type_);
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type;
grad_op->attrs_ = op->attrs_;
grad_op->attrs_.erase("input_format"); grad_op->attrs_.erase("input_format");
grad_op->attrs_.erase("output_format"); grad_op->attrs_.erase("output_format");
VarIndexMap* grad_varmap = new VarIndexMap(); if (GetOpFormat(op, OpArgType::IN) != nullptr) {
grad_op->attrs_["output_format"] = std::vector<int>({0});
}
if (GetOpFormat(op, OpArgType::IN) != nullptr ||
GetOpFormat(op, OpArgType::OUT) != nullptr) {
grad_op->attrs_["input_format"] = std::vector<int>({0});
}
grad_op->in_out_idxs_.reset(new VarIndexMap());
int in_idx = 0; int in_idx = 0;
int out_idx = 0; int out_idx = 0;
std::vector<int> in_format({0}); TransOpArg(op, grad_op, OpArgType::IN, OpArgType::IN, in_idx, false); // I
std::vector<int> out_format({0}); TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, false); // G
for (const auto& arg : arg_list_) { TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, true); // OG
// op_'s inputs_ and outputs_ TransOpArg(op, grad_op, OpArgType::IN, OpArgType::OUT, out_idx, true); // IG
if (arg->needed_in_grad_) { return grad_op;
AddArgIntoGradOp(arg.get(), grad_op->inputs_, in_format, grad_varmap,
in_idx, false);
}
if (arg->type_ == IN) {
// gradients of op_'s inputs_
AddArgIntoGradOp(arg.get(), grad_op->outputs_, out_format, grad_varmap,
out_idx, true);
} else {
// gradients of op_'s outputs_
AddArgIntoGradOp(arg.get(), grad_op->inputs_, in_format, grad_varmap,
in_idx, true);
}
}
grad_op->attrs_["input_format"] = in_format;
grad_op->attrs_["output_format"] = out_format;
grad_op->in_out_idxs_.reset(grad_varmap);
} }
} // namespace framework } // namespace framework
......
#pragma once #pragma once
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class OpRegistry;
enum InOutType { IN, OUT }; OperatorBase* BuildGradOp(const OperatorBase* op);
struct OpInOutArg {
OpInOutArg(const std::string& proto_name, const InOutType& type,
bool needed_in_grad, size_t begin_idx, size_t end_idx)
: proto_name_(proto_name),
type_(type),
needed_in_grad_(needed_in_grad),
begin_idx_(begin_idx),
end_idx_(end_idx) {}
std::string proto_name_;
InOutType type_;
bool needed_in_grad_;
size_t begin_idx_;
size_t end_idx_;
};
class GradOpBuilder {
using VarIndexMap = std::unordered_map<std::string, int>;
public:
GradOpBuilder(const OperatorBase& op) : op_(op) {}
OperatorBase* Build();
private:
OpInOutArg* BuildArg(const VarProto& var, const VarIndexMap& var_map,
const std::vector<int>& format, InOutType type);
void BuildOpInOutArgList();
void AddArgIntoGradOp(const OpInOutArg* arg, std::vector<std::string>& in_out,
std::vector<int>& format, VarIndexMap* varmap, int& idx,
bool is_grad) const;
void CompleteGradOp(OperatorBase* grad_op) const;
const OperatorBase& op_;
std::vector<std::shared_ptr<OpInOutArg>> arg_list_;
};
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -8,10 +8,49 @@ USE_OP(add_two); ...@@ -8,10 +8,49 @@ USE_OP(add_two);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class NOP : public OperatorBase {
public:
void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope,
const platform::DeviceContext &dev_ctx) const override {}
};
class MutiInOutOpMaker : public OpProtoAndCheckerMaker {
public:
MutiInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("In1", "a single input");
AddInput("In2_mult", "a multiple input").SetMultiple();
AddInput("In3", "another single input");
AddOutput("Out1", "a single output");
AddOutput("Out2_mult", "a multiple output").SetMultiple();
AddComment("test op with multiple inputs and outputs");
}
};
class IOIgnoredOpMaker : public OpProtoAndCheckerMaker {
public:
IOIgnoredOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("In1", "a single input");
AddInput("In2_mult", "a multiple input").SetMultiple().IgnoreGradient();
AddInput("In3_mult", "another multiple input").SetMultiple();
AddOutput("Out1_mult", "a multiple output").SetMultiple();
AddOutput("Out2", "a single output").IgnoreGradient();
AddComment("op with inputs and outputs ignored in gradient calculating");
}
};
} // namespace framework
} // namespace paddle
namespace f = paddle::framework;
TEST(GradOpBuilder, AddTwo) { TEST(GradOpBuilder, AddTwo) {
std::shared_ptr<OperatorBase> add_op( std::shared_ptr<f::OperatorBase> add_op(
OpRegistry::CreateOp("add_two", {"x", "y"}, {"out"}, {})); f::OpRegistry::CreateOp("add_two", {"x", "y"}, {"out"}, {}));
std::shared_ptr<OperatorBase> grad_add_op = OpRegistry::CreateGradOp(*add_op); std::shared_ptr<f::OperatorBase> grad_add_op =
f::OpRegistry::CreateGradOp(*add_op);
EXPECT_EQ(static_cast<int>(grad_add_op->inputs_.size()), 4); EXPECT_EQ(static_cast<int>(grad_add_op->inputs_.size()), 4);
EXPECT_EQ(static_cast<int>(grad_add_op->outputs_.size()), 2); EXPECT_EQ(static_cast<int>(grad_add_op->outputs_.size()), 2);
EXPECT_EQ(grad_add_op->Input("X"), "x"); EXPECT_EQ(grad_add_op->Input("X"), "x");
...@@ -22,5 +61,85 @@ TEST(GradOpBuilder, AddTwo) { ...@@ -22,5 +61,85 @@ TEST(GradOpBuilder, AddTwo) {
EXPECT_EQ(grad_add_op->Output("Y@GRAD"), "y@GRAD"); EXPECT_EQ(grad_add_op->Output("Y@GRAD"), "y@GRAD");
} }
} // namespace framework REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker);
} // namespace paddle REGISTER_GRADIENT_OP(mult_io, mult_io_grad, f::NOP);
\ No newline at end of file REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker);
REGISTER_GRADIENT_OP(io_ignored, io_ignored_grad, f::NOP);
TEST(GradOpBuilder, MutiInOut) {
f::AttributeMap attrs{{"input_format", std::vector<int>{0, 1, 4, 5}},
{"output_format", std::vector<int>{0, 1, 3}}};
std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp(
"mult_io", {"in1", "in2_1", "in2_2", "in2_3", "in3"},
{"out1", "out2_1", "out2_2"}, attrs));
std::shared_ptr<f::OperatorBase> grad_test_op =
f::OpRegistry::CreateGradOp(*test_op);
ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL);
EXPECT_EQ(grad_test_op->Input("In1"), "in1");
EXPECT_EQ(grad_test_op->Inputs("In2_mult"),
std::vector<std::string>({"in2_1", "in2_2", "in2_3"}));
EXPECT_EQ(grad_test_op->Input("In3"), "in3");
EXPECT_EQ(grad_test_op->Input("Out1"), "out1");
EXPECT_EQ(grad_test_op->Inputs("Out2_mult"),
std::vector<std::string>({"out2_1", "out2_2"}));
EXPECT_EQ(grad_test_op->Input("Out1" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out1" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(
grad_test_op->Inputs("Out2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>(
{"out2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"out2_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL);
EXPECT_EQ(grad_test_op->Output("In1" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"in1" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(
grad_test_op->Outputs("In2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>({"in2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in2_2" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in2_3" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
EXPECT_EQ(grad_test_op->Output("In3" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"in3" + f::OperatorBase::GRAD_VAR_SUFFIX());
}
TEST(GradOpBuilder, IOIgnoredInGradient) {
f::AttributeMap attrs{{"input_format", std::vector<int>{0, 1, 3, 5}},
{"output_format", std::vector<int>{0, 2, 3}}};
std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp(
"io_ignored", {"in1", "in2_1", "in2_2", "in3_1", "in3_2"},
{"out1_1", "out1_2", "out2"}, attrs));
std::shared_ptr<f::OperatorBase> grad_test_op =
f::OpRegistry::CreateGradOp(*test_op);
// 'In2' and 'Out2' are ignored in gradient calculating
ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL);
EXPECT_EQ(grad_test_op->Input("In1"), "in1");
EXPECT_EQ(grad_test_op->Inputs("In2_mult"),
std::vector<std::string>({f::OperatorBase::EMPTY_VAR_NAME(),
f::OperatorBase::EMPTY_VAR_NAME()}));
EXPECT_EQ(grad_test_op->Inputs("In3_mult"),
std::vector<std::string>({"in3_1", "in3_2"}));
EXPECT_EQ(grad_test_op->Inputs("Out1_mult"),
std::vector<std::string>({"out1_1", "out1_2"}));
EXPECT_EQ(grad_test_op->Input("Out2"), f::OperatorBase::EMPTY_VAR_NAME());
EXPECT_EQ(
grad_test_op->Inputs("Out1_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>(
{"out1_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"out1_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
EXPECT_EQ(grad_test_op->Input("Out2" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out2" + f::OperatorBase::GRAD_VAR_SUFFIX());
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL);
EXPECT_EQ(grad_test_op->Output("In1" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"in1" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(
grad_test_op->Outputs("In2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>({"in2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in2_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
EXPECT_EQ(
grad_test_op->Outputs("In3_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>({"in3_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in3_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
}
...@@ -306,8 +306,7 @@ class OpRegistry { ...@@ -306,8 +306,7 @@ class OpRegistry {
static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op) { static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op) {
PADDLE_ENFORCE(!op.IsNetOp(), PADDLE_ENFORCE(!op.IsNetOp(),
"Use framework::Backward to get backward ops"); "Use framework::Backward to get backward ops");
GradOpBuilder builder(op); std::shared_ptr<OperatorBase> grad_op(BuildGradOp(&op));
std::shared_ptr<OperatorBase> grad_op(builder.Build());
grad_op->Init(); grad_op->Init();
return grad_op; return grad_op;
} }
......
...@@ -55,6 +55,10 @@ class OperatorBase { ...@@ -55,6 +55,10 @@ class OperatorBase {
/// e.g. Variable "x@GRAD" is the gradient of varibale "x". /// e.g. Variable "x@GRAD" is the gradient of varibale "x".
static std::string GRAD_VAR_SUFFIX() { return "@GRAD"; } static std::string GRAD_VAR_SUFFIX() { return "@GRAD"; }
static std::string GRAD_VAR_NAME(const std::string& name) {
return name + GRAD_VAR_SUFFIX();
}
/// Variables with this suffix are supposed to be filled up with zeros. /// Variables with this suffix are supposed to be filled up with zeros.
static std::string ZERO_VAR_SUFFIX() { return "@ZERO"; } static std::string ZERO_VAR_SUFFIX() { return "@ZERO"; }
......
...@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License"); ...@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
...@@ -17,19 +17,19 @@ limitations under the License. */ ...@@ -17,19 +17,19 @@ limitations under the License. */
#include <vector> #include <vector>
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
#include "paddle/framework/tensor_py.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
#include "paddle/pybind/tensor_bind.h"
#include "pybind11/numpy.h" #include "pybind11/numpy.h"
#include "pybind11/pybind11.h" #include "pybind11/pybind11.h"
#include "pybind11/stl.h" #include "pybind11/stl.h"
namespace py = pybind11; namespace py = pybind11;
namespace pd = paddle::framework;
USE_OP(add_two); USE_OP(add_two);
USE_OP(onehot_cross_entropy); USE_OP(onehot_cross_entropy);
...@@ -41,17 +41,18 @@ USE_OP(sigmoid); ...@@ -41,17 +41,18 @@ USE_OP(sigmoid);
USE_OP(softmax); USE_OP(softmax);
USE_OP(rowwise_add); USE_OP(rowwise_add);
USE_OP_WITHOUT_KERNEL(recurrent_op); USE_OP_WITHOUT_KERNEL(recurrent_op);
namespace paddle {
namespace framework {
template <typename ClassType> template <typename ClassType>
void ExposeOperator(ClassType& m) { void ExposeOperator(ClassType &m) {
m.def("infer_shape", &ClassType::type::InferShape) m.def("infer_shape", &ClassType::type::InferShape)
.def("run", &ClassType::type::Run) .def("run", &ClassType::type::Run)
.def("type", .def("type",
[](const typename ClassType::type& op) -> std::string { [](const typename ClassType::type &op) -> std::string {
return op.type_; return op.type_;
}) })
.def("outputs", .def("outputs",
[](const typename ClassType::type& op) -> std::vector<std::string> { [](const typename ClassType::type &op) -> std::vector<std::string> {
return op.outputs_; return op.outputs_;
}) })
.def("__str__", &ClassType::type::DebugString); .def("__str__", &ClassType::type::DebugString);
...@@ -73,88 +74,81 @@ bool IsCompileGPU() { ...@@ -73,88 +74,81 @@ bool IsCompileGPU() {
PYBIND11_PLUGIN(core) { PYBIND11_PLUGIN(core) {
py::module m("core", "C++ core of PaddlePaddle"); py::module m("core", "C++ core of PaddlePaddle");
py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol()) py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
.def_buffer([](pd::Tensor& self) -> py::buffer_info { .def_buffer(
return paddle::pybind::CastToPyBuffer(self); [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
})
.def("get_dims", .def("get_dims",
[](const pd::Tensor& self) { return pd::vectorize(self.dims()); }) [](const Tensor &self) { return vectorize(self.dims()); })
.def("set_dims", .def("set_dims",
[](pd::Tensor& self, const std::vector<int>& dim) { [](Tensor &self, const std::vector<int> &dim) {
self.Resize(pd::make_ddim(dim)); self.Resize(make_ddim(dim));
}) })
.def("alloc_float", .def("alloc_float",
[](pd::Tensor& self, paddle::platform::GPUPlace& place) { [](Tensor &self, paddle::platform::GPUPlace &place) {
self.mutable_data<float>(place); self.mutable_data<float>(place);
}) })
.def("alloc_float", .def("alloc_float",
[](pd::Tensor& self, paddle::platform::CPUPlace& place) { [](Tensor &self, paddle::platform::CPUPlace &place) {
self.mutable_data<float>(place); self.mutable_data<float>(place);
}) })
.def("alloc_int", .def("alloc_int",
[](pd::Tensor& self, paddle::platform::CPUPlace& place) { [](Tensor &self, paddle::platform::CPUPlace &place) {
self.mutable_data<int>(place); self.mutable_data<int>(place);
}) })
.def("alloc_int", .def("alloc_int",
[](pd::Tensor& self, paddle::platform::GPUPlace& place) { [](Tensor &self, paddle::platform::GPUPlace &place) {
self.mutable_data<int>(place); self.mutable_data<int>(place);
}) })
.def("set", paddle::pybind::PyCPUTensorSetFromArray<float>) .def("set", PyCPUTensorSetFromArray<float>)
.def("set", paddle::pybind::PyCPUTensorSetFromArray<int>) .def("set", PyCPUTensorSetFromArray<int>)
#ifndef PADDLE_ONLY_CPU #ifndef PADDLE_ONLY_CPU
.def("set", paddle::pybind::PyCUDATensorSetFromArray<float>) .def("set", PyCUDATensorSetFromArray<float>)
.def("set", paddle::pybind::PyCUDATensorSetFromArray<int>) .def("set", PyCUDATensorSetFromArray<int>)
#endif #endif
.def("shape", [](pd::Tensor& self) { return pd::vectorize(self.dims()); }) .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
.def("set_float_element", .def("set_float_element",
[](pd::Tensor& self, size_t offset, float f) { [](Tensor &self, size_t offset, float f) {
// TODO(yuyang18): Only support GPU now. // TODO(yuyang18): Only support GPU now.
self.data<float>()[offset] = f; self.data<float>()[offset] = f;
}) })
.def("get_float_element", [](pd::Tensor& self, size_t offset) -> float { .def("get_float_element", [](Tensor &self, size_t offset) -> float {
// TODO(yuyang18): Only support GPU now. // TODO(yuyang18): Only support GPU now.
return self.data<float>()[offset]; return self.data<float>()[offset];
}); });
py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class. py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
All parameter, weight, gradient are variables in Paddle. All parameter, weight, gradient are variables in Paddle.
)DOC") )DOC")
.def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); }) .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
.def("set_int", .def("set_int",
[](pd::Variable& var, int val) -> void { [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
*var.GetMutable<int>() = val; .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
})
.def("get_int",
[](const pd::Variable& var) -> int { return var.Get<int>(); })
.def("get_tensor", .def("get_tensor",
[](pd::Variable& self) -> pd::Tensor* { [](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
return self.GetMutable<pd::Tensor>();
},
py::return_value_policy::reference) py::return_value_policy::reference)
.def("get_net", .def("get_net",
[](pd::Variable& self) -> pd::NetOp* { [](Variable &self) -> ops::NetOp * {
return self.GetMutable<pd::NetOp>(); return self.GetMutable<ops::NetOp>();
}, },
py::return_value_policy::reference); py::return_value_policy::reference);
py::class_<pd::Scope>(m, "Scope", "") py::class_<Scope>(m, "Scope", "")
.def("new_var", .def("new_var",
[](pd::Scope& self, const std::string& name) -> pd::Variable* { [](Scope &self, const std::string &name) -> Variable * {
return self.NewVar(name); return self.NewVar(name);
}, },
py::return_value_policy::reference) py::return_value_policy::reference)
.def("find_var", &pd::Scope::FindVar, py::return_value_policy::reference) .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
.def(py::init<>()) .def(py::init<>())
.def("new_scope", .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
[](pd::Scope& self) -> pd::Scope* { return &self.NewScope(); },
py::return_value_policy::reference) py::return_value_policy::reference)
.def("drop_kids", &pd::Scope::DropKids); .def("drop_kids", &Scope::DropKids);
//! @note: Be careful! PyBind will return std::string as an unicode, not //! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python. //! Python str. If you want a str object, you should cast them in Python.
m.def("get_all_op_protos", []() -> std::vector<py::bytes> { m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
auto& protos = pd::OpRegistry::protos(); auto &protos = OpRegistry::protos();
std::vector<py::bytes> ret_values; std::vector<py::bytes> ret_values;
for (auto it = protos.begin(); it != protos.end(); ++it) { for (auto it = protos.begin(); it != protos.end(); ++it) {
PADDLE_ENFORCE(it->second.IsInitialized(), PADDLE_ENFORCE(it->second.IsInitialized(),
...@@ -169,8 +163,8 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -169,8 +163,8 @@ All parameter, weight, gradient are variables in Paddle.
m.def_submodule( m.def_submodule(
"var_names", "var_names",
"The module will return special predefined variable name in Paddle") "The module will return special predefined variable name in Paddle")
.def("empty", pd::OperatorBase::EMPTY_VAR_NAME) .def("empty", OperatorBase::EMPTY_VAR_NAME)
.def("temp", pd::OperatorBase::TMP_VAR_NAME); .def("temp", OperatorBase::TMP_VAR_NAME);
// clang-format off // clang-format off
py::class_<paddle::platform::DeviceContext>(m, "DeviceContext") py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
.def_static("create", .def_static("create",
...@@ -193,43 +187,45 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -193,43 +187,45 @@ All parameter, weight, gradient are variables in Paddle.
py::class_<paddle::platform::CPUPlace>(m, "CPUPlace").def(py::init<>()); py::class_<paddle::platform::CPUPlace>(m, "CPUPlace").def(py::init<>());
py::class_<pd::OperatorBase, std::shared_ptr<pd::OperatorBase>> operator_base( py::class_<OperatorBase, std::shared_ptr<OperatorBase>> operator_base(
m, "Operator"); m, "Operator");
operator_base.def_static("create", [](py::bytes protobin) { operator_base.def_static("create", [](py::bytes protobin) {
pd::OpDesc desc; OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc"); "Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(), PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s", "User OpDesc is not initialized, reason %s",
desc.InitializationErrorString()); desc.InitializationErrorString());
return pd::OpRegistry::CreateOp(desc); return OpRegistry::CreateOp(desc);
}); });
operator_base.def("backward", operator_base.def("backward",
[](const pd::OperatorBase& forwardOp, [](const OperatorBase &forwardOp,
const std::unordered_set<std::string>& no_grad_vars) { const std::unordered_set<std::string> &no_grad_vars) {
return pd::Backward(forwardOp, no_grad_vars); return Backward(forwardOp, no_grad_vars);
}); });
ExposeOperator(operator_base); ExposeOperator(operator_base);
py::class_<pd::NetOp, std::shared_ptr<pd::NetOp>> net(m, "Net"); py::class_<ops::NetOp, std::shared_ptr<ops::NetOp>> net(m, "Net");
net.def_static("create", net.def_static("create",
[]() -> std::shared_ptr<pd::NetOp> { []() -> std::shared_ptr<ops::NetOp> {
auto retv = std::make_shared<pd::NetOp>(); auto retv = std::make_shared<ops::NetOp>();
retv->type_ = "plain_net"; retv->type_ = "plain_net";
return retv; return retv;
}) })
.def("add_op", &pd::NetOp::AddOp) .def("add_op", &ops::NetOp::AddOp)
.def("add_op", .def(
[](pd::NetOp& self, const std::shared_ptr<pd::NetOp>& net) -> void { "add_op",
self.AddOp(std::static_pointer_cast<pd::OperatorBase>(net)); [](ops::NetOp &self, const std::shared_ptr<ops::NetOp> &net) -> void {
}) self.AddOp(std::static_pointer_cast<OperatorBase>(net));
.def("complete_add_op", &pd::NetOp::CompleteAddOp) })
.def("complete_add_op", &ops::NetOp::CompleteAddOp)
.def("complete_add_op", .def("complete_add_op",
[](std::shared_ptr<pd::NetOp>& self) { self->CompleteAddOp(); }); [](std::shared_ptr<ops::NetOp> &self) { self->CompleteAddOp(); });
ExposeOperator(net); ExposeOperator(net);
m.def("unique_integer", UniqueIntegerGenerator); m.def("unique_integer", UniqueIntegerGenerator);
...@@ -238,3 +234,5 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -238,3 +234,5 @@ All parameter, weight, gradient are variables in Paddle.
return m.ptr(); return m.ptr();
} }
} // namespace framework
} // namespace paddle
...@@ -26,19 +26,17 @@ limitations under the License. */ ...@@ -26,19 +26,17 @@ limitations under the License. */
#include "unsupported/Eigen/CXX11/Tensor" #include "unsupported/Eigen/CXX11/Tensor"
namespace paddle { namespace paddle {
namespace pybind {
namespace details { // forward declare
template <bool less, size_t i, typename... args>
struct CastToPyBufferImpl;
} // namespace details
} // namespace pybind
namespace framework { namespace framework {
namespace details {
template <bool less, size_t i, typename... args>
struct CastToPyBufferImpl;
}
class Tensor { class Tensor {
public: public:
template <bool less, size_t i, typename... args> template <bool less, size_t i, typename... args>
friend struct paddle::pybind::details::CastToPyBufferImpl; friend struct details::CastToPyBufferImpl;
template <typename T, size_t D, int MajorType, typename IndexType> template <typename T, size_t D, int MajorType, typename IndexType>
friend struct EigenTensor; friend struct EigenTensor;
...@@ -167,4 +165,4 @@ class Tensor { ...@@ -167,4 +165,4 @@ class Tensor {
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
#include "paddle/framework/detail/tensor-inl.h" #include "paddle/framework/tensor_impl.h"
...@@ -23,7 +23,7 @@ namespace py = pybind11; ...@@ -23,7 +23,7 @@ namespace py = pybind11;
namespace paddle { namespace paddle {
namespace pybind { namespace framework {
namespace details { namespace details {
...@@ -63,11 +63,8 @@ struct CastToPyBufferImpl<true, I, ARGS...> { ...@@ -63,11 +63,8 @@ struct CastToPyBufferImpl<true, I, ARGS...> {
} }
return py::buffer_info( return py::buffer_info(
dst_tensor.mutable_data<CUR_TYPE>(dst_tensor.holder_->place()), dst_tensor.mutable_data<CUR_TYPE>(dst_tensor.holder_->place()),
sizeof(CUR_TYPE), sizeof(CUR_TYPE), py::format_descriptor<CUR_TYPE>::format(),
py::format_descriptor<CUR_TYPE>::format(), (size_t)framework::arity(dst_tensor.dims()), dims_outside, strides);
(size_t)framework::arity(dst_tensor.dims()),
dims_outside,
strides);
} else { } else {
constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value; constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor); return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
...@@ -110,8 +107,8 @@ void PyCUDATensorSetFromArray( ...@@ -110,8 +107,8 @@ void PyCUDATensorSetFromArray(
self.Resize(framework::make_ddim(dims)); self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<T>(place); auto *dst = self.mutable_data<T>(place);
paddle::platform::GpuMemcpySync( paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(),
dst, array.data(), sizeof(T) * array.size(), cudaMemcpyHostToDevice); cudaMemcpyHostToDevice);
} }
#endif #endif
......
...@@ -41,6 +41,9 @@ function(op_library TARGET) ...@@ -41,6 +41,9 @@ function(op_library TARGET)
endif() endif()
endfunction() endfunction()
cc_library(net_op SRCS net_op.cc DEPS op_registry)
cc_test(net_op_test SRCS net_op_test.cc DEPS net_op)
op_library(add_op SRCS add_op.cc add_op.cu) op_library(add_op SRCS add_op.cc add_op.cu)
cc_test(add_op_test SRCS add_op_test.cc DEPS add_op) cc_test(add_op_test SRCS add_op_test.cc DEPS add_op)
...@@ -59,11 +62,6 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu) ...@@ -59,11 +62,6 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu)
op_library(fc_op op_library(fc_op
SRCS fc_op.cc SRCS fc_op.cc
DEPS mul_op rowwise_add_op sigmoid_op softmax_op net) DEPS mul_op rowwise_add_op sigmoid_op softmax_op net_op)
op_library(recurrent_op SRCS recurrent_op.cc DEPS op_desc tensor op_registry operator net_op)
op_library(recurrent_network_op cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op)
SRCS recurrent_network_op.cc
DEPS op_desc tensor net)
cc_test(recurrent_network_op_test
SRCS recurrent_network_op_test.cc
DEPS recurrent_network_op mul_op add_op)
...@@ -33,13 +33,23 @@ public: ...@@ -33,13 +33,23 @@ public:
MeanOpMaker(OpProto *proto, OpAttrChecker *op_checker) MeanOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input of mean op"); AddInput("X", "The input of mean op");
AddOutput("Out", "The output of mean op"); AddOutput("Out", "The output of mean op").IgnoreGradient();
AddComment("Mean Operator"); AddComment("Mean Operator");
} }
}; };
class MeanGradOp : public OperatorWithKernel {
protected:
void InferShape(const InferShapeContext &ctx) const override {
ctx.Output<Tensor>("X" + GRAD_VAR_SUFFIX())
->Resize(ctx.Input<Tensor>("X")->dims());
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
REGISTER_OP(mean, ops::MeanOp, ops::MeanOpMaker); REGISTER_OP(mean, ops::MeanOp, ops::MeanOpMaker);
REGISTER_OP_CPU_KERNEL(mean, ops::MeanKernel<ops::CPUPlace, float>); REGISTER_OP_CPU_KERNEL(mean, ops::MeanKernel<ops::CPUPlace, float>);
REGISTER_GRADIENT_OP(mean, mean_grad, ops::MeanGradOp);
REGISTER_OP_CPU_KERNEL(mean_grad, ops::MeanGradKernel<ops::CPUPlace, float>);
...@@ -3,3 +3,4 @@ ...@@ -3,3 +3,4 @@
#include "paddle/operators/mean_op.h" #include "paddle/operators/mean_op.h"
REGISTER_OP_GPU_KERNEL(mean, ops::MeanKernel<ops::GPUPlace, float>); REGISTER_OP_GPU_KERNEL(mean, ops::MeanKernel<ops::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(mean_grad, ops::MeanGradKernel<ops::GPUPlace, float>);
\ No newline at end of file
...@@ -35,5 +35,22 @@ public: ...@@ -35,5 +35,22 @@ public:
} }
}; };
template <typename Place, typename T>
class MeanGradKernel : public OpKernel {
public:
void Compute(const ExecutionContext& context) const override {
auto OG = context.Input<Tensor>("Out" + OperatorBase::GRAD_VAR_SUFFIX());
PADDLE_ENFORCE(framework::product(OG->dims()) == 1,
"Mean Gradient should be scalar");
auto IG = context.Output<Tensor>("X" + OperatorBase::GRAD_VAR_SUFFIX());
IG->mutable_data<T>(context.GetPlace());
T ig_size = (T)framework::product(IG->dims());
EigenVector<T>::Flatten(*IG).device(context.GetEigenDevice<Place>()) =
EigenScalar<T>::From(*OG) / ig_size;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -14,11 +14,11 @@ ...@@ -14,11 +14,11 @@
limitations under the License. limitations under the License.
*/ */
#include "paddle/framework/net.h" #include "paddle/operators/net_op.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace framework { namespace operators {
void NetOp::CompleteAddOp(bool calc) { void NetOp::CompleteAddOp(bool calc) {
add_op_done_ = true; add_op_done_ = true;
...@@ -74,5 +74,5 @@ std::string NetOp::DebugString() const { ...@@ -74,5 +74,5 @@ std::string NetOp::DebugString() const {
bool NetOp::IsNetOp() const { return true; } bool NetOp::IsNetOp() const { return true; }
} // namespace framework } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -14,15 +14,17 @@ limitations under the License. */ ...@@ -14,15 +14,17 @@ limitations under the License. */
#pragma once #pragma once
#include <paddle/framework/op_desc.pb.h> #include "paddle/framework/op_desc.pb.h"
#include <paddle/framework/operator.h>
#include "paddle/framework/op_proto.pb.h" #include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
#include "paddle/operators/type_alias.h"
#include "paddle/platform/device_context.h" #include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace framework { namespace operators {
/** /**
* @brief Network is also a type of Operator * @brief Network is also a type of Operator
* *
...@@ -37,13 +39,13 @@ namespace framework { ...@@ -37,13 +39,13 @@ namespace framework {
* This is the base class of network, all the networks should implement the APIs * This is the base class of network, all the networks should implement the APIs
* it defines. * it defines.
*/ */
class NetOp : public OperatorBase { class NetOp : public framework::OperatorBase {
public: public:
/** /**
* Infer all the operators' input and output variables' shapes, will be called * Infer all the operators' input and output variables' shapes, will be called
* before every mini-batch * before every mini-batch
*/ */
void InferShape(const Scope& scope) const override { void InferShape(const framework::Scope& scope) const override {
for (auto& op : ops_) { for (auto& op : ops_) {
op->InferShape(scope); op->InferShape(scope);
} }
...@@ -56,7 +58,7 @@ class NetOp : public OperatorBase { ...@@ -56,7 +58,7 @@ class NetOp : public OperatorBase {
* scope will be used instead. If no OpContext is provicded, default context * scope will be used instead. If no OpContext is provicded, default context
* will be used. * will be used.
*/ */
void Run(const Scope& scope, void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::DeviceContext& dev_ctx) const override {
for (auto& op : ops_) { for (auto& op : ops_) {
op->Run(scope, dev_ctx); op->Run(scope, dev_ctx);
...@@ -88,7 +90,7 @@ class NetOp : public OperatorBase { ...@@ -88,7 +90,7 @@ class NetOp : public OperatorBase {
std::vector<std::shared_ptr<OperatorBase>> ops_; std::vector<std::shared_ptr<OperatorBase>> ops_;
private: private:
bool add_op_done_{false}; bool add_op_done_{false};
template <typename T, typename KeyType> template <typename T, typename KeyType>
...@@ -97,5 +99,5 @@ class NetOp : public OperatorBase { ...@@ -97,5 +99,5 @@ class NetOp : public OperatorBase {
} }
}; };
} // namespace framework } // namespace operators
} // namespace paddle } // namespace paddle
#include "paddle/operators/net_op.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <paddle/framework/net.h>
#include <paddle/framework/op_registry.h> #include "paddle/framework/op_registry.h"
#include <paddle/framework/operator.h> #include "paddle/framework/operator.h"
namespace paddle { namespace paddle {
namespace framework { namespace operators {
static int infer_shape_cnt = 0; static int infer_shape_cnt = 0;
static int run_cnt = 0; static int run_cnt = 0;
class TestOp : public OperatorBase { class TestOp : public OperatorBase {
public: public:
void InferShape(const framework::Scope& scope) const override { void InferShape(const framework::Scope& scope) const override {
++infer_shape_cnt; ++infer_shape_cnt;
} }
...@@ -21,7 +23,7 @@ class TestOp : public OperatorBase { ...@@ -21,7 +23,7 @@ class TestOp : public OperatorBase {
}; };
class EmptyOp : public OperatorBase { class EmptyOp : public OperatorBase {
public: public:
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {} const platform::DeviceContext& dev_ctx) const override {}
...@@ -73,7 +75,7 @@ TEST(OpKernel, all) { ...@@ -73,7 +75,7 @@ TEST(OpKernel, all) {
ASSERT_THROW(net->AddOp(op2), paddle::platform::EnforceNotMet); ASSERT_THROW(net->AddOp(op2), paddle::platform::EnforceNotMet);
} }
TEST(Net, insert_op) { TEST(NetOp, insert_op) {
NetOp net; NetOp net;
auto op1 = std::make_shared<EmptyOp>(); auto op1 = std::make_shared<EmptyOp>();
op1->inputs_ = {"x", "w1", "b1"}; op1->inputs_ = {"x", "w1", "b1"};
...@@ -85,5 +87,5 @@ TEST(Net, insert_op) { ...@@ -85,5 +87,5 @@ TEST(Net, insert_op) {
ASSERT_EQ(3UL, net.ops_.size()); ASSERT_EQ(3UL, net.ops_.size());
} }
} // namespace framework } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -12,14 +12,14 @@ ...@@ -12,14 +12,14 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/operators/recurrent_network_op.h" #include "paddle/operators/recurrent_op.h"
#include <glog/logging.h> #include <glog/logging.h>
#include <cstring> #include <cstring>
#include <sstream> #include <sstream>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
namespace paddle { namespace paddle {
...@@ -29,11 +29,15 @@ namespace rnn { ...@@ -29,11 +29,15 @@ namespace rnn {
void SegmentInputs(const std::vector<Scope*>& step_scopes, void SegmentInputs(const std::vector<Scope*>& step_scopes,
const std::vector<Link>& inlinks, const std::vector<Link>& inlinks,
const size_t seq_len) { const size_t seq_len,
bool infer_shape_mode) {
PADDLE_ENFORCE(!inlinks.empty(), "no in links are provided."); PADDLE_ENFORCE(!inlinks.empty(), "no in links are provided.");
for (size_t i = 0; i < inlinks.size(); ++i) { for (size_t i = 0; i < inlinks.size(); ++i) {
Tensor* input = auto input_var = step_scopes[0]->FindVar(inlinks[i].external);
step_scopes[0]->FindVar(inlinks[i].external)->GetMutable<Tensor>(); PADDLE_ENFORCE(input_var != nullptr,
"input link [%s] is not in scope.",
inlinks[i].external);
Tensor* input = input_var->GetMutable<Tensor>();
DDim dims = input->dims(); DDim dims = input->dims();
PADDLE_ENFORCE(static_cast<size_t>(dims[0]) == seq_len, PADDLE_ENFORCE(static_cast<size_t>(dims[0]) == seq_len,
"all the inlinks must have same length"); "all the inlinks must have same length");
...@@ -41,7 +45,9 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes, ...@@ -41,7 +45,9 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
for (size_t j = 0; j < seq_len; j++) { for (size_t j = 0; j < seq_len; j++) {
Tensor* step_input = Tensor* step_input =
step_scopes[j]->NewVar(inlinks[i].internal)->GetMutable<Tensor>(); step_scopes[j]->NewVar(inlinks[i].internal)->GetMutable<Tensor>();
*step_input = input->Slice<float>(j, j + 1); if (!infer_shape_mode) {
*step_input = input->Slice<float>(j, j + 1);
}
step_input->Resize(step_dims); step_input->Resize(step_dims);
} }
} }
...@@ -49,36 +55,41 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes, ...@@ -49,36 +55,41 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
void ConcatOutputs(const std::vector<Scope*>& step_scopes, void ConcatOutputs(const std::vector<Scope*>& step_scopes,
const std::vector<Link>& outlinks, const std::vector<Link>& outlinks,
const size_t seq_len) { const size_t seq_len,
bool infer_shape_mode) {
for (size_t i = 0; i < outlinks.size(); i++) { for (size_t i = 0; i < outlinks.size(); i++) {
Tensor* output = auto output_var = step_scopes[0]->FindVar(outlinks[i].external);
step_scopes[0]->FindVar(outlinks[i].external)->GetMutable<Tensor>(); PADDLE_ENFORCE(output_var != nullptr,
"output link [%s] is not in scope.",
// TODO(qingiqng) remove following code after adding outlinks[i].external);
// InferShape in RecurrentGradientOp Tensor* output = output_var->GetMutable<Tensor>();
DDim step_dims = step_scopes[0] if (infer_shape_mode) {
->FindVar(outlinks[i].internal) DDim step_dims = step_scopes[0]
->GetMutable<Tensor>() ->FindVar(outlinks[i].internal)
->dims(); ->GetMutable<Tensor>()
std::vector<int> dims_vec = vectorize(step_dims); ->dims();
dims_vec.insert(dims_vec.begin(), seq_len); std::vector<int> dims_vec = vectorize(step_dims);
output->mutable_data<float>(make_ddim(dims_vec), platform::CPUPlace()); dims_vec.insert(dims_vec.begin(), seq_len);
output->Resize(make_ddim(dims_vec));
for (size_t j = 0; j < seq_len; j++) { } else {
Tensor* step_output = output->mutable_data<float>(platform::CPUPlace());
step_scopes[j]->FindVar(outlinks[i].internal)->GetMutable<Tensor>(); for (size_t j = 0; j < seq_len; j++) {
// TODO(luotao02) data type and platform::DeviceContext() should set Tensor* step_output =
// correctly step_scopes[j]->FindVar(outlinks[i].internal)->GetMutable<Tensor>();
(output->Slice<float>(j, j + 1)) // TODO(luotao02) data type and platform::DeviceContext() should set
.CopyFrom<float>(*step_output, platform::CPUPlace()); // correctly
(output->Slice<float>(j, j + 1))
.CopyFrom<float>(*step_output, platform::CPUPlace());
}
} }
} }
} }
void LinkMemories(const std::vector<Scope*>& scopes, void LinkMemories(const std::vector<Scope*>& scopes,
const std::vector<rnn::MemoryAttr>& memories, const std::vector<rnn::MemoryAttr>& memories,
size_t step_id, const size_t step_id,
int offset) { const int offset,
bool infer_shape_mode) {
PADDLE_ENFORCE(step_id < scopes.size(), PADDLE_ENFORCE(step_id < scopes.size(),
"step [%d] is out of range of step scopes' size [%d]", "step [%d] is out of range of step scopes' size [%d]",
step_id, step_id,
...@@ -95,18 +106,13 @@ void LinkMemories(const std::vector<Scope*>& scopes, ...@@ -95,18 +106,13 @@ void LinkMemories(const std::vector<Scope*>& scopes,
auto scope = scopes[step_id]; auto scope = scopes[step_id];
auto linked_scope = scopes[step_id + offset]; auto linked_scope = scopes[step_id + offset];
for (auto& attr : memories) { for (auto& attr : memories) {
auto mem = scope->NewVar(attr.pre_var)->GetMutable<Tensor>(); auto mem = scope->FindVar(attr.pre_var)->GetMutable<Tensor>();
// maybe share variable is better?
auto linked_mem = linked_scope->FindVar(attr.var)->GetMutable<Tensor>(); auto linked_mem = linked_scope->FindVar(attr.var)->GetMutable<Tensor>();
mem->ShareDataWith<float>(*linked_mem); if (infer_shape_mode) {
mem->Resize(linked_mem->dims());
// TODO(qingqing) remove following code } else {
// the memory of current step should be allocated in step net mem->ShareDataWith<float>(*linked_mem);
auto m = scope->NewVar(attr.var)->GetMutable<Tensor>(); }
// for unit test, as addOp and mulOp are null currently, if not
// mutable_data, mem.data() in output will be error. We will
// remove this line after merge the correct addOp and mulOp.
m->mutable_data<float>(mem->dims(), platform::CPUPlace());
} }
} }
...@@ -175,60 +181,39 @@ void RecurrentAlgorithm::InferShape(const Scope& scope) const { ...@@ -175,60 +181,39 @@ void RecurrentAlgorithm::InferShape(const Scope& scope) const {
->dims()[0]; ->dims()[0];
CreateScopes(scope); CreateScopes(scope);
auto step_scopes = GetStepScopes(scope); auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(
// SegmentInputs is called in InferShape. The input must hold memory in step_scopes, arg_->inlinks, seq_len_, true /*infer_shape_mode*/);
// SegmentInputs. But the other op only set dimension for the output in InitMemories(step_scopes[0], true /*infer_shape_mode*/);
// InferShape. That's a problem. Wether the RNN op needs InferShape or not?
// Wether the following functions (SegmentInputs, InitMemories, ...) need
// to rewrite for RNN op?
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_);
InitMemories(step_scopes[0]);
PADDLE_ENFORCE(scope.FindVar(arg_->step_net) != nullptr,
"stepnet [%s] is not in scope.",
arg_->step_net);
Variable* net = scope.FindVar(arg_->step_net); Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net"); PADDLE_ENFORCE(net != nullptr, "failed to get step net");
// If the InferShape is called in OperatorBase's run function,
// the rnn op only needs to do InferShape for the first time step
for (size_t i = 0; i < seq_len_; i++) { for (size_t i = 0; i < seq_len_; i++) {
if (i > 0) { if (i > 0) {
rnn::LinkMemories(step_scopes, arg_->memories, i, -1); rnn::LinkMemories(
step_scopes, arg_->memories, i, -1, true /*infer_shape_mode*/);
} }
net->GetMutable<NetOp>()->InferShape(*step_scopes[i]); net->GetMutable<NetOp>()->InferShape(*step_scopes[i]);
} }
rnn::ConcatOutputs(
auto outlinks = arg_->outlinks; step_scopes, arg_->outlinks, seq_len_, true /*infer_shape_mode*/);
for (size_t i = 0; i < outlinks.size(); i++) {
DDim step_dims = step_scopes[0]
->FindVar(outlinks[i].internal)
->GetMutable<Tensor>()
->dims();
std::vector<int> dims_vec = vectorize(step_dims);
// now only support fixed length
dims_vec.insert(dims_vec.begin(), seq_len_);
Tensor* output =
step_scopes[0]->FindVar(outlinks[i].external)->GetMutable<Tensor>();
output->Resize(make_ddim(dims_vec));
}
} }
void RecurrentAlgorithm::Run(const Scope& scope, void RecurrentAlgorithm::Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const { const platform::DeviceContext& dev_ctx) const {
auto step_scopes = GetStepScopes(scope); auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(
step_scopes, arg_->inlinks, seq_len_, false /*infer_shape_mode*/);
InitMemories(step_scopes[0], false /*infer_shape_mode*/);
Variable* net = scope.FindVar(arg_->step_net); Variable* net = scope.FindVar(arg_->step_net);
for (size_t step_id = 0; step_id < seq_len_; step_id++) { for (size_t step_id = 0; step_id < seq_len_; step_id++) {
// the link memory is done in InferShape
// maybe remove following code after testing
if (step_id > 0) { if (step_id > 0) {
rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1); rnn::LinkMemories(
step_scopes, arg_->memories, step_id, -1, false /*infer_shape_mode*/);
} }
net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx); net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx);
} }
rnn::ConcatOutputs(
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_); step_scopes, arg_->outlinks, seq_len_, false /*infer_shape_mode*/);
} }
void RecurrentAlgorithm::CreateScopes(const Scope& scope) const { void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
...@@ -244,18 +229,19 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const { ...@@ -244,18 +229,19 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// Now all variables in scope must be created outside of op. // Now all variables in scope must be created outside of op.
auto net_op = scope.FindVar(arg_->step_net)->GetMutable<NetOp>(); auto net_op = scope.FindVar(arg_->step_net)->GetMutable<NetOp>();
for (auto& input : net_op->inputs_) { for (auto& input : net_op->inputs_) {
// the weight are located in parent scope
if (!step_scope.FindVar(input)) step_scope.NewVar(input); if (!step_scope.FindVar(input)) step_scope.NewVar(input);
} }
for (auto& output : net_op->outputs_) { for (auto& output : net_op->outputs_) {
step_scope.NewVar(output); step_scope.NewVar(output);
} }
step_scopes->emplace_back(&step_scope); step_scopes->emplace_back(&step_scope);
} }
} }
} }
void RecurrentAlgorithm::InitMemories(Scope* step_scope) const { void RecurrentAlgorithm::InitMemories(Scope* step_scope,
bool infer_shape_mode) const {
for (auto& attr : arg_->memories) { for (auto& attr : arg_->memories) {
Tensor* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<Tensor>(); Tensor* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<Tensor>();
PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr, PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
...@@ -263,13 +249,11 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope) const { ...@@ -263,13 +249,11 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope) const {
attr.var, attr.var,
attr.boot_var); attr.boot_var);
Tensor* boot_mem = step_scope->FindVar(attr.boot_var)->GetMutable<Tensor>(); Tensor* boot_mem = step_scope->FindVar(attr.boot_var)->GetMutable<Tensor>();
pre_mem->ShareDataWith<float>(*boot_mem); if (infer_shape_mode) {
pre_mem->Resize(boot_mem->dims());
// TODO(qingqing) remove following code } else {
// the memory of current step should be allocated in step net pre_mem->ShareDataWith<float>(*boot_mem);
// here for unit test }
auto cur_step_mem = step_scope->NewVar(attr.var)->GetMutable<Tensor>();
cur_step_mem->mutable_data<float>(boot_mem->dims(), platform::CPUPlace());
} }
} }
...@@ -307,13 +291,14 @@ public: ...@@ -307,13 +291,14 @@ public:
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
const auto& name = RecurrentOp::kArgName; const auto& name = RecurrentOp::kArgName;
// inputs and outputs stored in proto // inputs and outputs stored in proto
AddInput(name.inlinks, "the input that need to be segmented for each step.") AddInput(name.inlinks,
"the inputs that need to be segmented for each step.")
.SetMultiple(); .SetMultiple();
AddInput(name.boot_memories, "variables to initialize memories.") AddInput(name.boot_memories, "variables to initialize memories.")
.SetMultiple(); .SetMultiple();
AddInput(name.step_net, "network shared by all steps."); AddInput(name.step_net, "network shared by all steps.");
AddOutput(name.outlinks, "the output that need to concated for all steps.") AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
.SetMultiple(); .SetMultiple();
AddOutput(name.step_scopes, "step scopes"); AddOutput(name.step_scopes, "step scopes");
...@@ -331,34 +316,39 @@ public: ...@@ -331,34 +316,39 @@ public:
void RecurrentGradientAlgorithm::Run( void RecurrentGradientAlgorithm::Run(
const Scope& scope, const platform::DeviceContext& dev_ctx) const { const Scope& scope, const platform::DeviceContext& dev_ctx) const {
auto step_scopes = GetStepScopes(scope); auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_); rnn::SegmentInputs(
PADDLE_ENFORCE(scope.FindVar(arg_->step_net) != nullptr, step_scopes, arg_->inlinks, seq_len_, false /*infer_shape_mode*/);
"step net is not in scope.");
Variable* net = scope.FindVar(arg_->step_net); Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net"); PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) { for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
if (static_cast<size_t>(step_id) != seq_len_ - 1) { if (static_cast<size_t>(step_id) != seq_len_ - 1) {
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1); rnn::LinkMemories(
step_scopes, arg_->memories, step_id, 1, false /*infer_shape_mode*/);
} }
net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx); net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx);
} }
LinkBootMemoryGradients(step_scopes[0]); LinkBootMemoryGradients(step_scopes[0], false);
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_); rnn::ConcatOutputs(
step_scopes, arg_->outlinks, seq_len_, false /*infer_shape_mode*/);
} }
void RecurrentGradientAlgorithm::LinkBootMemoryGradients( void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
Scope* step_scope) const { Scope* step_scope, bool infer_shape_mode) const {
for (auto& attr : arg_->memories) { for (auto& attr : arg_->memories) {
Tensor* mem_grad = step_scope->NewVar(attr.var)->GetMutable<Tensor>(); PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr,
PADDLE_ENFORCE(mem_grad != nullptr, "memory variable [%s] does not exists",
"boot_tensor should be retrieved before"); attr.var);
PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr, PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
"memory [%s]'s boot variable [%s] not exists", "boot variable [%s] does not exists",
attr.var,
attr.boot_var); attr.boot_var);
Tensor* mem_grad = step_scope->NewVar(attr.var)->GetMutable<Tensor>();
Tensor* boot_mem_grad = Tensor* boot_mem_grad =
step_scope->NewVar(attr.boot_var)->GetMutable<Tensor>(); step_scope->NewVar(attr.boot_var)->GetMutable<Tensor>();
boot_mem_grad->ShareDataWith<float>(*mem_grad); if (infer_shape_mode) {
boot_mem_grad->Resize(mem_grad->dims());
} else {
boot_mem_grad->ShareDataWith<float>(*mem_grad);
}
} }
} }
...@@ -367,34 +357,20 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const { ...@@ -367,34 +357,20 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
->GetMutable<Tensor>() ->GetMutable<Tensor>()
->dims()[0]; ->dims()[0];
auto step_scopes = GetStepScopes(scope); auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_); rnn::SegmentInputs(
step_scopes, arg_->inlinks, seq_len_, true /*infer_shape_mode*/);
PADDLE_ENFORCE(scope.FindVar(arg_->step_net) != nullptr,
"step net is not in scope.");
Variable* net = scope.FindVar(arg_->step_net); Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net"); PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) { for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
if (static_cast<size_t>(step_id) != seq_len_ - 1) { if (static_cast<size_t>(step_id) != seq_len_ - 1) {
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1); rnn::LinkMemories(
step_scopes, arg_->memories, step_id, 1, true /*infer_shape_mode*/);
} }
net->GetMutable<NetOp>()->InferShape(*step_scopes[step_id]); net->GetMutable<NetOp>()->InferShape(*step_scopes[step_id]);
} }
rnn::ConcatOutputs(
auto outlinks = arg_->outlinks; step_scopes, arg_->outlinks, seq_len_, true /*infer_shape_mode*/);
for (size_t i = 0; i < outlinks.size(); i++) { LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/);
DDim step_dims = step_scopes[0]
->FindVar(outlinks[i].internal)
->GetMutable<Tensor>()
->dims();
std::vector<int> dims_vec = vectorize(step_dims);
// now only support fixed length
dims_vec.insert(dims_vec.begin(), seq_len_);
Tensor* output =
step_scopes[0]->FindVar(outlinks[i].external)->GetMutable<Tensor>();
output->Resize(make_ddim(dims_vec));
}
LinkBootMemoryGradients(step_scopes[0]);
} }
void RecurrentGradientOp::Init() { void RecurrentGradientOp::Init() {
......
...@@ -72,19 +72,22 @@ struct ArgumentName { ...@@ -72,19 +72,22 @@ struct ArgumentName {
*/ */
void SegmentInputs(const std::vector<Scope*>& step_scopes, void SegmentInputs(const std::vector<Scope*>& step_scopes,
const std::vector<Link>& inlinks, const std::vector<Link>& inlinks,
const size_t seq_len); const size_t seq_len,
bool infer_shape_mode);
/** /**
* Process outputs of step nets and merge to variables. * Process outputs of step nets and merge to variables.
*/ */
void ConcatOutputs(const std::vector<Scope*>& step_scopes, void ConcatOutputs(const std::vector<Scope*>& step_scopes,
const std::vector<Link>& outlinks, const std::vector<Link>& outlinks,
const size_t seq_len); const size_t seq_len,
bool infer_shape_mode);
void LinkMemories(const std::vector<Scope*>& step_scopes, void LinkMemories(const std::vector<Scope*>& step_scopes,
const std::vector<MemoryAttr>& memories, const std::vector<MemoryAttr>& memories,
size_t step_id, const size_t step_id,
int offset); const int offset,
bool infer_shape_mode);
void InitArgument(const ArgumentName& name, Argument* arg); void InitArgument(const ArgumentName& name, Argument* arg);
...@@ -122,7 +125,7 @@ protected: ...@@ -122,7 +125,7 @@ protected:
return *scope.FindVar(arg_->step_scopes)->GetMutable<std::vector<Scope*>>(); return *scope.FindVar(arg_->step_scopes)->GetMutable<std::vector<Scope*>>();
} }
void InitMemories(Scope* step_scopes) const; void InitMemories(Scope* step_scopes, bool infer_shape_mode) const;
private: private:
std::unique_ptr<rnn::Argument> arg_; std::unique_ptr<rnn::Argument> arg_;
...@@ -145,7 +148,7 @@ public: ...@@ -145,7 +148,7 @@ public:
void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const; void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const;
void LinkBootMemoryGradients(Scope* step_scopes) const; void LinkBootMemoryGradients(Scope* step_scopes, bool infer_shape_mode) const;
/** /**
* InferShape must be called before Run. * InferShape must be called before Run.
......
...@@ -11,14 +11,15 @@ ...@@ -11,14 +11,15 @@
limitations under the License. limitations under the License.
*/ */
#include "paddle/operators/recurrent_op.h"
#include <glog/logging.h> #include <glog/logging.h>
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h" #include "paddle/framework/tensor.h"
#include "paddle/operators/recurrent_network_op.h" #include "paddle/operators/net_op.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -55,7 +56,7 @@ protected: ...@@ -55,7 +56,7 @@ protected:
w->GetMutable<Tensor>()->mutable_data<float>( w->GetMutable<Tensor>()->mutable_data<float>(
make_ddim(std::vector<int>{30, 30}), platform::CPUPlace()); make_ddim(std::vector<int>{30, 30}), platform::CPUPlace());
for (auto boot : std::vector<std::string>{"x_boot", "h_boot"}) { for (auto boot : std::vector<std::string>{"h_boot"}) {
LOG(INFO) << "create global variable " << boot; LOG(INFO) << "create global variable " << boot;
Variable* h_boot = scope_.NewVar(boot); Variable* h_boot = scope_.NewVar(boot);
h_boot->GetMutable<Tensor>()->mutable_data<float>( h_boot->GetMutable<Tensor>()->mutable_data<float>(
...@@ -79,7 +80,6 @@ protected: ...@@ -79,7 +80,6 @@ protected:
op_desc.add_inputs("x0"); op_desc.add_inputs("x0");
op_desc.add_inputs("x1"); op_desc.add_inputs("x1");
// boot_memories 3 // boot_memories 3
op_desc.add_inputs("x_boot");
op_desc.add_inputs("h_boot"); op_desc.add_inputs("h_boot");
// step net 5 // step net 5
op_desc.add_inputs("step_net"); op_desc.add_inputs("step_net");
...@@ -91,7 +91,7 @@ protected: ...@@ -91,7 +91,7 @@ protected:
auto _input_format = std::vector<int>{ auto _input_format = std::vector<int>{
0, // in_link 0, // in_link
3, // memories 3, // memories
5 // step_net 4 // step_net
}; };
auto input_format = op_desc.add_attrs(); auto input_format = op_desc.add_attrs();
input_format->set_name("input_format"); input_format->set_name("input_format");
...@@ -129,12 +129,11 @@ protected: ...@@ -129,12 +129,11 @@ protected:
inlink_alias->add_strings(item); inlink_alias->add_strings(item);
} }
// pre memories // pre memories
for (const auto& item : for (const auto& item : std::vector<std::string>{"rnn/h@pre"}) {
std::vector<std::string>{"rnn/x@pre", "rnn/h@pre"}) {
pre_memories->add_strings(item); pre_memories->add_strings(item);
} }
// memories // memories
for (const auto& item : std::vector<std::string>{"rnn/x", "rnn/h"}) { for (const auto& item : std::vector<std::string>{"rnn/h"}) {
memories->add_strings(item); memories->add_strings(item);
} }
// output alias // output alias
...@@ -151,14 +150,11 @@ protected: ...@@ -151,14 +150,11 @@ protected:
LOG(INFO) << "create variable step_net"; LOG(INFO) << "create variable step_net";
Variable* var = scope_.NewVar("step_net"); Variable* var = scope_.NewVar("step_net");
auto net = var->GetMutable<NetOp>(); auto net = var->GetMutable<NetOp>();
// rnn/s is net's input or output?
net->inputs_ = {"rnn/h@pre", "rnn/w", "rnn/x"};
net->inputs_ = {"rnn/s", "rnn/h"};
net->AddOp( net->AddOp(
OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {})); OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {}));
net->AddOp( net->AddOp(
OpRegistry::CreateOp("add_two", {"rnn/x", "rnn/s"}, {"rnn/h"}, {})); OpRegistry::CreateOp("add_two", {"x@alias", "rnn/s"}, {"rnn/h"}, {}));
net->CompleteAddOp(); net->CompleteAddOp();
} }
...@@ -297,7 +293,10 @@ protected: ...@@ -297,7 +293,10 @@ protected:
inlink.internal = "rnn/x"; inlink.internal = "rnn/x";
auto step_scopes = auto step_scopes =
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>(); scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10); rnn::SegmentInputs(*step_scopes,
std::vector<rnn::Link>{inlink},
10,
true /*infer_shape_mode*/);
} }
void LinkeMemories() { void LinkeMemories() {
...@@ -311,7 +310,8 @@ protected: ...@@ -311,7 +310,8 @@ protected:
auto step_scopes = auto step_scopes =
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>(); scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
for (int i = 1; i < 10; ++i) { for (int i = 1; i < 10; ++i) {
rnn::LinkMemories(*step_scopes, memories, i, -1); rnn::LinkMemories(
*step_scopes, memories, i, -1, true /*infer_shape_mode*/);
} }
} }
...@@ -333,14 +333,14 @@ TEST(RecurrentOp, LinkMemories) { ...@@ -333,14 +333,14 @@ TEST(RecurrentOp, LinkMemories) {
using namespace paddle::operators; using namespace paddle::operators;
// create and init step scopes // create and init step scopes
int len = 10; size_t len = 10;
std::vector<Scope*> step_scopes; std::vector<Scope*> step_scopes;
for (int i = 0; i < len; ++i) { for (size_t i = 0; i < len; ++i) {
auto scope = new Scope(); auto scope = new Scope();
scope->NewVar("pre_h"); scope->NewVar("pre_h");
auto tensor = scope->NewVar("h")->GetMutable<Tensor>(); auto tensor = scope->NewVar("h")->GetMutable<Tensor>();
float* data = tensor->mutable_data<float>({15, 20}, CPUPlace()); float* data = tensor->mutable_data<float>({15, 20}, CPUPlace());
for (int j = 0; j < 15 * 20; ++j) { for (size_t j = 0; j < 15 * 20; ++j) {
data[j] = rand() * (1. / (double)RAND_MAX); data[j] = rand() * (1. / (double)RAND_MAX);
} }
step_scopes.push_back(scope); step_scopes.push_back(scope);
...@@ -354,24 +354,24 @@ TEST(RecurrentOp, LinkMemories) { ...@@ -354,24 +354,24 @@ TEST(RecurrentOp, LinkMemories) {
std::vector<rnn::MemoryAttr> memories; std::vector<rnn::MemoryAttr> memories;
memories.push_back(mem_attr); memories.push_back(mem_attr);
for (int i = 1; i < len; ++i) { for (size_t i = 1; i < len; ++i) {
rnn::LinkMemories(step_scopes, memories, i, -1); rnn::LinkMemories(step_scopes, memories, i, -1, false /*infer_shape_mode*/);
} }
// check // check
for (int i = 0; i < len - 1; ++i) { for (size_t i = 0; i < len - 1; ++i) {
const float* a = const float* a =
step_scopes[i]->FindVar("h")->GetMutable<Tensor>()->data<float>(); step_scopes[i]->FindVar("h")->GetMutable<Tensor>()->data<float>();
const float* b = step_scopes[i + 1] const float* b = step_scopes[i + 1]
->FindVar("pre_h") ->FindVar("pre_h")
->GetMutable<Tensor>() ->GetMutable<Tensor>()
->data<float>(); ->data<float>();
for (size_t i = 0; i < 15 * 20; ++i) { for (size_t j = 0; j < 15 * 20; ++j) {
ASSERT_FLOAT_EQ(a[i], b[i]); ASSERT_FLOAT_EQ(a[j], b[j]);
} }
} }
for (int i = len - 2; i >= 0; --i) { for (int i = len - 2; i >= 0; --i) {
rnn::LinkMemories(step_scopes, memories, i, 1); rnn::LinkMemories(step_scopes, memories, i, 1, false /*infer_shape_mode*/);
} }
// check // check
for (int i = len - 2; i >= 0; --i) { for (int i = len - 2; i >= 0; --i) {
...@@ -379,8 +379,8 @@ TEST(RecurrentOp, LinkMemories) { ...@@ -379,8 +379,8 @@ TEST(RecurrentOp, LinkMemories) {
step_scopes[i]->FindVar("pre_h")->GetMutable<Tensor>()->data<float>(); step_scopes[i]->FindVar("pre_h")->GetMutable<Tensor>()->data<float>();
const float* b = const float* b =
step_scopes[i + 1]->FindVar("h")->GetMutable<Tensor>()->data<float>(); step_scopes[i + 1]->FindVar("h")->GetMutable<Tensor>()->data<float>();
for (size_t i = 0; i < 15 * 20; ++i) { for (size_t j = 0; j < 15 * 20; ++j) {
ASSERT_FLOAT_EQ(a[i], b[i]); ASSERT_FLOAT_EQ(a[j], b[j]);
} }
} }
...@@ -391,9 +391,3 @@ TEST(RecurrentOp, LinkMemories) { ...@@ -391,9 +391,3 @@ TEST(RecurrentOp, LinkMemories) {
USE_OP(add_two); USE_OP(add_two);
USE_OP(mul); USE_OP(mul);
// int main() {
// //! TODO(yuyang18): Temporary disable this unit-test because implementation
// //! error.
// return 0;
//}
\ No newline at end of file
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/softmax_op.h" #include "paddle/operators/softmax_op.h"
namespace paddle { namespace paddle {
...@@ -19,12 +20,13 @@ namespace operators { ...@@ -19,12 +20,13 @@ namespace operators {
class SoftmaxOp : public OperatorWithKernel { class SoftmaxOp : public OperatorWithKernel {
protected: protected:
void InferShape(const InferShapeContext &ctx) const override { void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1, "Only one input is need for softmax"); PADDLE_ENFORCE(ctx.InputSize() == 1UL,
PADDLE_ENFORCE(ctx.Input<Tensor>(0)->dims().size() == 2, "Only one input is need for softmax");
PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL,
"The input of softmax op must be matrix"); "The input of softmax op must be matrix");
PADDLE_ENFORCE(ctx.OutputSize() == 1, PADDLE_ENFORCE(ctx.OutputSize() == 1UL,
"Only one output is need for softmax"); "Only one output is need for softmax");
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims()); ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims());
} }
}; };
...@@ -40,10 +42,19 @@ public: ...@@ -40,10 +42,19 @@ public:
class SoftmaxOpGrad : public OperatorWithKernel { class SoftmaxOpGrad : public OperatorWithKernel {
protected: protected:
void InferShape(const InferShapeContext &ctx) const override {} void InferShape(const InferShapeContext &ctx) const override {
std::string DebugString() const override { PADDLE_ENFORCE(ctx.InputSize() == 3UL,
LOG(INFO) << "SoftmaxOpGrad"; "Input of SoftmaxOpGrad should be 3, X, Y, YG");
return ""; PADDLE_ENFORCE(ctx.OutputSize() == 1UL,
"Output of SoftmaxOpGrad should be 1");
PADDLE_ENFORCE(ctx.InputVar("Y") != nullptr, "Input(Y) should not be null");
PADDLE_ENFORCE(ctx.InputVar(GRAD_VAR_NAME("Y")) != nullptr,
"Input(Y@GRAD) should not be null");
PADDLE_ENFORCE(ctx.Input<Tensor>("Y")->dims() ==
ctx.Input<Tensor>(GRAD_VAR_NAME("Y"))->dims(),
"the shape of Input(0) and Input(1) should be the same");
ctx.Output<Tensor>(GRAD_VAR_NAME("X"))
->Resize(ctx.Input<Tensor>("Y")->dims());
} }
}; };
...@@ -51,5 +62,7 @@ protected: ...@@ -51,5 +62,7 @@ protected:
} // namespace paddle } // namespace paddle
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker); REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker);
REGISTER_GRADIENT_OP(softmax, softmax_grad, ops::SoftmaxOpGrad);
REGISTER_OP_CPU_KERNEL(softmax, ops::SoftmaxKernel<ops::CPUPlace, float>); REGISTER_OP_CPU_KERNEL(softmax, ops::SoftmaxKernel<ops::CPUPlace, float>);
REGISTER_GRADIENT_OP(softmax, softmax_grad, ops::SoftmaxOpGrad);
REGISTER_OP_CPU_KERNEL(softmax_grad,
ops::SoftmaxGradKernel<ops::CPUPlace, float>);
...@@ -3,3 +3,4 @@ ...@@ -3,3 +3,4 @@
#include "paddle/operators/softmax_op.h" #include "paddle/operators/softmax_op.h"
REGISTER_OP_GPU_KERNEL(softmax, ops::SoftmaxKernel<ops::GPUPlace, float>); REGISTER_OP_GPU_KERNEL(softmax, ops::SoftmaxKernel<ops::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(softmax_grad, ops::SoftmaxGradKernel<ops::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/ddim.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/type_alias.h" #include "paddle/operators/type_alias.h"
namespace paddle { namespace paddle {
...@@ -23,8 +26,8 @@ template <typename Place, typename T> ...@@ -23,8 +26,8 @@ template <typename Place, typename T>
class SoftmaxKernel : public OpKernel { class SoftmaxKernel : public OpKernel {
public: public:
void Compute(const ExecutionContext& context) const override { void Compute(const ExecutionContext& context) const override {
auto input = context.Input<Tensor>(0); auto input = context.Input<Tensor>("X");
auto output = context.Output<Tensor>(0); auto output = context.Output<Tensor>("Y");
output->mutable_data<T>(context.GetPlace()); output->mutable_data<T>(context.GetPlace());
auto logits = EigenMatrix<T>::From(*input); auto logits = EigenMatrix<T>::From(*input);
...@@ -57,5 +60,38 @@ public: ...@@ -57,5 +60,38 @@ public:
.broadcast(one_by_class)); .broadcast(one_by_class));
} }
}; };
template <typename Place, typename T>
class SoftmaxGradKernel : public OpKernel {
public:
void Compute(const ExecutionContext& context) const override {
std::shared_ptr<Tensor> scale_ = std::make_shared<Tensor>();
auto Y = context.Input<Tensor>("Y");
auto dY = context.Input<Tensor>(OperatorBase::GRAD_VAR_NAME("Y"));
auto dX = context.Output<Tensor>(OperatorBase::GRAD_VAR_NAME("X"));
dX->mutable_data<T>(context.GetPlace());
const int batch_size = Y->dims()[0];
const int class_num = Y->dims()[1];
Eigen::DSizes<int, 1> along_class(1);
Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
Eigen::DSizes<int, 2> one_by_class(1, class_num);
auto Y_eigen = EigenMatrix<T>::From(*Y);
auto dY_eigen = EigenMatrix<T>::From(*dY);
auto dX_eigen = EigenMatrix<T>::From(*dX);
auto place = context.GetEigenDevice<Place>();
auto dot = (Y_eigen * dY_eigen)
.sum(along_class)
.eval()
.reshape(batch_by_one)
.broadcast(one_by_class);
dX_eigen.device(place) = (dY_eigen - dot) * Y_eigen;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -15,13 +15,14 @@ ...@@ -15,13 +15,14 @@
#pragma once #pragma once
#include "paddle/framework/eigen.h" #include "paddle/framework/eigen.h"
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
using OpKernel = framework::OpKernel; using OpKernel = framework::OpKernel;
using OperatorBase = framework::OperatorBase;
using InferShapeContext = framework::InferShapeContext; using InferShapeContext = framework::InferShapeContext;
using ExecutionContext = framework::ExecutionContext; using ExecutionContext = framework::ExecutionContext;
using Variable = framework::Variable; using Variable = framework::Variable;
...@@ -43,14 +44,16 @@ template <typename T, ...@@ -43,14 +44,16 @@ template <typename T,
typename IndexType = Eigen::DenseIndex> typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>; using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using Scope = framework::Scope;
using OperatorWithKernel = framework::OperatorWithKernel; using OperatorWithKernel = framework::OperatorWithKernel;
using OperatorBase = framework::OperatorBase;
using OpProtoAndCheckerMaker = framework::OpProtoAndCheckerMaker; using OpProtoAndCheckerMaker = framework::OpProtoAndCheckerMaker;
using OpProto = framework::OpProto; using OpProto = framework::OpProto;
using OpAttrChecker = framework::OpAttrChecker; using OpAttrChecker = framework::OpAttrChecker;
using CPUPlace = platform::CPUPlace; using CPUPlace = platform::CPUPlace;
using GPUPlace = platform::GPUPlace; using GPUPlace = platform::GPUPlace;
using NetOp = framework::NetOp;
using OpRegistry = framework::OpRegistry; using OpRegistry = framework::OpRegistry;
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
......
...@@ -6,4 +6,4 @@ cc_library(paddle_pybind SHARED ...@@ -6,4 +6,4 @@ cc_library(paddle_pybind SHARED
add_op add_op
mean_op mean_op
cross_entropy_op cross_entropy_op
recurrent_network_op) recurrent_op)
...@@ -69,7 +69,7 @@ cat <<EOF ...@@ -69,7 +69,7 @@ cat <<EOF
Installing ... Installing ...
======================================== ========================================
EOF EOF
make install make install -j `nproc`
pip install /usr/local/opt/paddle/share/wheels/*.whl pip install /usr/local/opt/paddle/share/wheels/*.whl
paddle version paddle version
...@@ -122,7 +122,7 @@ cat <<EOF ...@@ -122,7 +122,7 @@ cat <<EOF
Generating .deb package ... Generating .deb package ...
======================================== ========================================
EOF EOF
cpack -D CPACK_GENERATOR='DEB' .. cpack -D CPACK_GENERATOR='DEB' -j `nproc` ..
cat <<EOF cat <<EOF
......
...@@ -6,14 +6,14 @@ mkdir -p $TRAVIS_BUILD_DIR/build ...@@ -6,14 +6,14 @@ mkdir -p $TRAVIS_BUILD_DIR/build
cd $TRAVIS_BUILD_DIR/build cd $TRAVIS_BUILD_DIR/build
# Compile paddle binaries first # Compile paddle binaries first
cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_DOC=OFF -DWITH_GOLANG=ON -DWITH_STYLE_CHECK=OFF cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_DOC=OFF -DWITH_MKLDNN=OFF -DWITH_MKLML=OFF -DWITH_GOLANG=ON -DWITH_STYLE_CHECK=OFF
mkdir output mkdir output
make -j `nproc` make -j `nproc`
find .. -name '*whl' | xargs pip install # install all wheels. find .. -name '*whl' | xargs pip install # install all wheels.
rm -rf * rm -rf *
# Compile Documentation only. # Compile Documentation only.
cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_DOC=ON cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKLDNN=OFF -DWITH_MKLML=OFF -DWITH_DOC=ON
make -j `nproc` paddle_docs paddle_docs_cn make -j `nproc` paddle_docs paddle_docs_cn
# check websites for broken links # check websites for broken links
......
import unittest import unittest
from op_test_util import OpTestMeta
import numpy as np import numpy as np
import paddle.v2.framework.core as core
import paddle.v2.framework.create_op_creation_methods as creation
from op_test_util import OpTestMeta
def stable_softmax(x): def stable_softmax(x):
...@@ -19,5 +23,63 @@ class TestSoftmaxOp(unittest.TestCase): ...@@ -19,5 +23,63 @@ class TestSoftmaxOp(unittest.TestCase):
self.Y = np.apply_along_axis(stable_softmax, 1, self.X) self.Y = np.apply_along_axis(stable_softmax, 1, self.X)
class TestSoftmaxGradOp(unittest.TestCase):
def test_softmax_grad(self):
op = creation.op_creations.softmax(X="X", Y="Y")
backward_op = core.Operator.backward(op, set())
self.assertEqual(backward_op.type(), "softmax_grad")
expected = '''Op(softmax_grad), inputs:(X, Y, Y@GRAD), outputs:(X@GRAD).'''
self.assertEqual(expected, str(backward_op))
batch_size = 3
class_num = 5
# Initialize X and add 1e-2 for numerical stability
Y = np.random.rand(batch_size, class_num).astype(np.float32)
Y = Y + 1e-2
dY = np.random.rand(batch_size, class_num).astype(np.float32)
# Reference implementation of cross entropy with soft labels
def label_softmax_grad(Y, dY):
dX = Y * 0.0
for i in range(batch_size):
d = np.dot(Y[i, :], dY[i, :])
dX[i, :] = Y[i, :] * (dY[i, :] - d)
return dX
expected = label_softmax_grad(Y, dY)
scope = core.Scope()
places = []
places.append(core.CPUPlace())
if core.is_compile_gpu():
places.append(core.GPUPlace(0))
for place in places:
y = scope.new_var("Y")
y_tensor = y.get_tensor()
y_tensor.set_dims([batch_size, class_num])
y_tensor.alloc_float(place)
y_tensor.set(Y, place)
dy = scope.new_var("Y@GRAD")
dy_tensor = dy.get_tensor()
dy_tensor.set_dims([batch_size, class_num])
dy_tensor.alloc_float(place)
dy_tensor.set(dY, place)
x = scope.new_var("X")
dx = scope.new_var("X@GRAD")
tensor = scope.find_var("X@GRAD").get_tensor()
backward_op.infer_shape(scope)
self.assertEqual([batch_size, class_num], tensor.shape())
ctx = core.DeviceContext.create(place)
backward_op.run(scope, ctx)
actual = np.array(tensor)
np.testing.assert_almost_equal(actual, expected, decimal=3)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册