提交 aae53d83 编写于 作者: L liaogang

Merge conflicts

......@@ -13,7 +13,6 @@
# limitations under the License
cmake_minimum_required(VERSION 3.0)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/cmake")
set(PROJ_ROOT ${CMAKE_CURRENT_SOURCE_DIR})
set(PROJ_BINARY_ROOT ${CMAKE_CURRENT_BINARY_DIR})
......
......@@ -5,6 +5,7 @@ nv_test(dim_test SRCS dim_test.cu DEPS ddim)
cc_library(tensor SRCS tensor.cc DEPS ddim place paddle_memory)
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
cc_test(eigen_test SRCS eigen_test.cc DEPS tensor)
cc_test(variable_test SRCS variable_test.cc)
cc_test(scope_test SRCS scope_test.cc)
......
......@@ -4,6 +4,7 @@
#include <functional>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/platform/enforce.h"
......@@ -41,6 +42,35 @@ class DefaultValueSetter {
T default_value_;
};
template <typename T>
class EnumInContainer {
public:
explicit EnumInContainer(const std::unordered_set<T>& c) : container_(c) {}
void operator()(T& val) const {
PADDLE_ENFORCE(container_.find(val) != container_.end(),
"Value %s is not in enum container %s", val,
ContainerDebugString());
}
private:
std::string ContainerDebugString() const {
std::ostringstream sout;
sout << "[";
size_t cnt = 0;
for (auto& v : container_) {
sout << v;
++cnt;
if (cnt != container_.size()) {
sout << " ,";
}
}
sout << "]";
return sout.str();
}
std::unordered_set<T> container_;
};
// check whether a certain attribute fit its limits
// an attribute can have more than one limits
template <typename T>
......@@ -50,6 +80,11 @@ class TypedAttrChecker {
public:
TypedAttrChecker(const std::string& attr_name) : attr_name_(attr_name) {}
TypedAttrChecker& InEnum(const std::unordered_set<T>& range) {
value_checkers_.push_back(EnumInContainer<T>(range));
return *this;
}
TypedAttrChecker& LargerThan(const T& lower_bound) {
value_checkers_.push_back(LargerThanChecker<T>(lower_bound));
return *this;
......
......@@ -119,17 +119,6 @@ int arity(const DDim& ddim);
std::ostream& operator<<(std::ostream&, const DDim&);
template <int NDIMS>
Eigen::DSizes<Eigen::DenseIndex, NDIMS> ToEigenDSizes(const DDim& dims) {
int rank = arity(dims);
PADDLE_ENFORCE(rank == NDIMS, "DDim and NDIMS must be same");
Eigen::DSizes<Eigen::DenseIndex, NDIMS> dsizes;
for (int d = 0; d < rank; d++) {
dsizes[d] = dims[d];
}
return dsizes;
}
} // namespace framework
} // namespace paddle
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/tensor.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle {
namespace framework {
// EigenDim converts paddle::platform::DDim into Eigen::DSizes.
template <int D>
struct EigenDim {
using Type = Eigen::DSizes<Eigen::DenseIndex, D>;
static Type From(const DDim& dims) {
PADDLE_ENFORCE(arity(dims) == D, "D must match arity(DDim)");
Type ret;
for (int d = 0; d < arity(dims); d++) {
ret[d] = dims[d];
}
return ret;
}
};
// Interpret paddle::platform::Tensor as EigenTensor and EigenConstTensor.
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenTensor {
// TODO(qijun) Now, default type in unaligned, and we will make a benchmark on
// the speed of aligned and unaligned version in future.
using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>;
using ConstType =
Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>;
static Type From(Tensor& tensor, DDim dims) {
return Type(tensor.data<T>(), EigenDim<D>::From(dims));
}
static Type From(Tensor& tensor) { return From(tensor, tensor.dims_); }
static ConstType From(const Tensor& tensor, DDim dims) {
return ConstType(tensor.data<T>(), EigenDim<D>::From(dims));
}
static ConstType From(const Tensor& tensor) {
return From(tensor, tensor.dims_);
}
};
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
// Flatten is to reshape a Tensor into a one dimension EigenVector
static typename EigenTensor<T, 1>::Type Flatten(Tensor& tensor) {
return EigenTensor<T, 1>::From(
tensor, make_ddim({static_cast<int>(product(tensor.dims_))}));
}
static typename EigenTensor<T, 1>::ConstType Flatten(const Tensor& tensor) {
return EigenTensor<T, 1>::From(
tensor, make_ddim({static_cast<int>(product(tensor.dims_))}));
}
};
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = EigenTensor<T, 2, MajorType, IndexType>;
} // namespace framework
} // namespace paddle
/*
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "paddle/framework/eigen.h"
#include <gtest/gtest.h>
namespace paddle {
namespace framework {
TEST(EigenDim, From) {
EigenDim<3>::Type ed = EigenDim<3>::From(make_ddim({1, 2, 3}));
ASSERT_EQ(1, ed[0]);
ASSERT_EQ(2, ed[1]);
ASSERT_EQ(3, ed[2]);
}
TEST(Eigen, Tensor) {
Tensor t;
float* p = t.mutable_data<float>(make_ddim({1, 2, 3}), platform::CPUPlace());
for (int i = 0; i < 1 * 2 * 3; i++) {
p[i] = static_cast<float>(i);
}
EigenTensor<float, 3>::Type et = EigenTensor<float, 3>::From(t);
ASSERT_EQ(1, et.dimension(0));
ASSERT_EQ(2, et.dimension(1));
ASSERT_EQ(3, et.dimension(2));
for (int i = 0; i < 1; i++) {
for (int j = 0; j < 2; j++) {
for (int k = 0; k < 3; k++) {
ASSERT_NEAR((i * 2 + j) * 3 + k, et(i, j, k), 1e-6f);
}
}
}
}
TEST(Eigen, VectorFrom) {
Tensor t;
float* p = t.mutable_data<float>(make_ddim({6}), platform::CPUPlace());
for (int i = 0; i < 6; i++) {
p[i] = static_cast<float>(i);
}
EigenVector<float>::Type ev = EigenVector<float>::From(t);
ASSERT_EQ(6, ev.dimension(0));
for (int i = 0; i < 6; i++) {
ASSERT_NEAR(i, ev(i), 1e-6f);
}
}
TEST(Eigen, VectorFlatten) {
Tensor t;
float* p = t.mutable_data<float>(make_ddim({1, 2, 3}), platform::CPUPlace());
for (int i = 0; i < 1 * 2 * 3; i++) {
p[i] = static_cast<float>(i);
}
EigenVector<float>::Type ev = EigenVector<float>::Flatten(t);
ASSERT_EQ(1 * 2 * 3, ev.dimension(0));
for (int i = 0; i < 1 * 2 * 3; i++) {
ASSERT_NEAR(i, ev(i), 1e-6f);
}
}
TEST(Eigen, Matrix) {
Tensor t;
float* p = t.mutable_data<float>(make_ddim({2, 3}), platform::CPUPlace());
for (int i = 0; i < 2 * 3; i++) {
p[i] = static_cast<float>(i);
}
EigenMatrix<float>::Type em = EigenMatrix<float>::From(t);
ASSERT_EQ(2, em.dimension(0));
ASSERT_EQ(3, em.dimension(1));
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 3; j++) {
ASSERT_NEAR(i * 3 + j, em(i, j), 1e-6f);
}
}
}
} // namespace framework
} // namespace paddle
......@@ -19,7 +19,10 @@
namespace paddle {
namespace framework {
void PlainNet::CompleteAddOp() {
void PlainNet::CompleteAddOp(bool calc) {
add_op_done_ = true;
if (!calc) return;
std::unordered_set<std::string> input_set;
std::unordered_set<std::string> output_set;
std::unordered_set<std::string> temp_output;
......@@ -52,7 +55,6 @@ void PlainNet::CompleteAddOp() {
}
attrs_["temporary_index"] = tmp_index;
add_op_done_ = true;
}
std::string PlainNet::DebugString() const {
......
......@@ -16,7 +16,6 @@ limitations under the License. */
#include <paddle/framework/op_desc.pb.h>
#include <paddle/framework/operator.h>
#include "paddle/framework/net_proto.pb.h"
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/scope.h"
......@@ -41,7 +40,7 @@ namespace framework {
class Net : public OperatorBase {
public:
virtual void AddOp(const OperatorPtr& op) = 0;
virtual void CompleteAddOp() = 0;
virtual void CompleteAddOp(bool calc) = 0;
};
using NetPtr = std::shared_ptr<Net>;
......@@ -86,7 +85,7 @@ class PlainNet : public Net {
ops_.push_back(op);
}
void CompleteAddOp() override;
void CompleteAddOp(bool calculate = true) override;
std::string DebugString() const override;
......
......@@ -35,6 +35,15 @@ struct CastToPyBufferImpl;
namespace framework {
class Tensor {
template <bool less, size_t i, typename... args>
friend struct paddle::pybind::details::CastToPyBufferImpl;
template <typename T, size_t D, int MajorType, typename IndexType>
friend struct EigenTensor;
template <typename T, int MajorType, typename IndexType>
friend struct EigenVector;
public:
Tensor() : offset_(0) {}
......@@ -46,7 +55,7 @@ class Tensor {
}
template <typename T>
T* raw_data() const {
T* data() {
CheckDims<T>();
return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
offset_);
......@@ -86,66 +95,6 @@ class Tensor {
offset_);
}
template <typename T, size_t NDIMS>
typename TTypes<T, NDIMS>::Tensor shaped(DDim new_dims) {
Eigen::array<Eigen::DenseIndex, NDIMS> dims =
paddle::framework::ToEigenDSizes<NDIMS>(new_dims);
return typename TTypes<T, NDIMS>::Tensor(raw_data<T>(), dims);
}
template <typename T, size_t NDIMS>
typename TTypes<T, NDIMS>::Tensor tensor() {
return typename TTypes<T, NDIMS>::Tensor(
raw_data<T>(), paddle::framework::ToEigenDSizes<NDIMS>(dims_));
}
// flat to rank = 1
template <typename T>
typename TTypes<T>::Flat flat() {
return shaped<T, 1>(make_ddim({static_cast<int>(product(dims_))}));
}
// to TensorType Vec
template <typename T>
typename TTypes<T>::Vec vec() {
return tensor<T, 1>();
}
// to TensorType Matrix
template <typename T>
typename TTypes<T>::Matrix matrix() {
return tensor<T, 2>();
}
// const versions of all the methods above.
template <typename T, size_t NDIMS>
typename TTypes<T, NDIMS>::Tensor shaped(DDim new_dims) const {
Eigen::array<Eigen::DenseIndex, NDIMS> dims =
paddle::framework::ToEigenDSizes<NDIMS>(new_dims);
return typename TTypes<T, NDIMS>::Tensor(data<T>(), dims);
}
template <typename T, size_t NDIMS>
typename TTypes<T, NDIMS>::ConstantTensor tensor() const {
return typename TTypes<T, NDIMS>::Tensor(
data<T>(), paddle::framework::ToEigenDSizes<NDIMS>(dims_));
}
template <typename T>
typename TTypes<T>::ConstFlat flat() const {
return shaped<T, 1>(make_ddim({static_cast<int>(product(dims_))}));
}
template <typename T>
typename TTypes<T>::ConstVec vec() const {
return tensor<T, 1>();
}
template <typename T>
typename TTypes<T>::ConstMatrix matrix() const {
return tensor<T, 2>();
}
template <typename T>
void ShareDataFrom(const Tensor& src) {
src.CheckDims<T>();
......@@ -251,8 +200,6 @@ class Tensor {
std::shared_ptr<Placeholder> holder_; // holds the memory block if allocated.
DDim dims_;
size_t offset_; // marks the begin of tensor data area.
template <bool less, size_t i, typename... args>
friend struct paddle::pybind::details::CastToPyBufferImpl;
};
} // namespace framework
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle {
namespace framework {
// Helper to define Tensor types given that the scalar is of type T.
template <typename T, int NDIMS = 1, typename IndexType = Eigen::DenseIndex>
struct TTypes {
// Rank-<NDIMS> tensor of scalar type T.
typedef Eigen::TensorMap<Eigen::Tensor<T, NDIMS, Eigen::RowMajor, IndexType>,
Eigen::Aligned>
Tensor;
typedef Eigen::TensorMap<
Eigen::Tensor<const T, NDIMS, Eigen::RowMajor, IndexType>, Eigen::Aligned>
ConstTensor;
// Scalar tensor (implemented as a rank-0 tensor) of scalar type T.
typedef Eigen::TensorMap<
Eigen::TensorFixedSize<T, Eigen::Sizes<>, Eigen::RowMajor, IndexType>,
Eigen::Aligned>
Scalar;
typedef Eigen::TensorMap<Eigen::TensorFixedSize<const T, Eigen::Sizes<>,
Eigen::RowMajor, IndexType>,
Eigen::Aligned>
ConstScalar;
// Rank-1 tensor (vector) of scalar type T.
typedef Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, IndexType>,
Eigen::Aligned>
Flat;
typedef Eigen::TensorMap<
Eigen::Tensor<const T, 1, Eigen::RowMajor, IndexType>, Eigen::Aligned>
ConstFlat;
typedef Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, IndexType>,
Eigen::Aligned>
Vec;
typedef Eigen::TensorMap<
Eigen::Tensor<const T, 1, Eigen::RowMajor, IndexType>, Eigen::Aligned>
ConstVec;
// Rank-2 tensor (matrix) of scalar type T.
typedef Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor, IndexType>,
Eigen::Aligned>
Matrix;
typedef Eigen::TensorMap<
Eigen::Tensor<const T, 2, Eigen::RowMajor, IndexType>, Eigen::Aligned>
ConstMatrix;
};
} // namespace framework
} // namespace paddle
......@@ -36,6 +36,7 @@ if(WITH_GPU)
add_simple_unittest(MulOpTest)
add_simple_unittest(CosSimOpTest)
add_simple_unittest(RowConvOpTest)
add_simple_unittest(CropOpTest)
endif()
add_simple_unittest(ConvOpTest)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "CropOp.h"
#include "paddle/function/TensorShape.h"
#include "paddle/math/Vector.h"
namespace paddle {
template <>
void Crop<DEVICE_TYPE_CPU>(real* outputs,
const real* inputs,
const TensorShape inShape,
const TensorShape outShape,
const FuncConfig& conf) {
std::vector<uint32_t> crop_corner =
conf.get<std::vector<uint32_t>>("crop_corner");
int cCrop = crop_corner[1];
int hCrop = crop_corner[2];
int wCrop = crop_corner[3];
int num = inShape[0];
int inC = inShape[1];
int inH = inShape[2];
int inW = inShape[3];
int outC = outShape[1];
int outH = outShape[2];
int outW = outShape[3];
for (int n = 0; n < num; n++) {
for (int c = 0; c < outC; c++) {
for (int h = 0; h < outH; h++) {
int outoff = ((n * outC + c) * outH + h) * outW;
int inoff = ((n * inC + c + cCrop) * inH + h + hCrop) * inW + wCrop;
memcpy(outputs + outoff, inputs + inoff, outW * sizeof(real));
}
}
}
}
template <>
void CropGrad<DEVICE_TYPE_CPU>(const real* inGrad,
real* outGrad,
const TensorShape inShape,
const TensorShape outShape,
const FuncConfig& conf) {
std::vector<uint32_t> crop_corner =
conf.get<std::vector<uint32_t>>("crop_corner");
int cCrop = crop_corner[1];
int hCrop = crop_corner[2];
int wCrop = crop_corner[3];
int num = outShape[0];
int outC = outShape[1];
int outH = outShape[2];
int outW = outShape[3];
int inC = inShape[1];
int inH = inShape[2];
int inW = inShape[3];
for (int n = 0; n < num; n++) {
for (int c = 0; c < inC; c++) {
for (int h = 0; h < inH; h++) {
int outoff = ((n * outC + c + cCrop) * outH + h + hCrop) * outW + wCrop;
int inoff = ((n * inC + c) * inH + h) * inW;
CpuVector inG = CpuVector(inW, const_cast<real*>(inGrad + inoff));
CpuVector outG = CpuVector(inW, outGrad + outoff);
outG += inG;
}
}
}
}
/**
* \brief Crop input according to the specify corner and shape.
* The input and output is a 4D tensor. In CropFunc, we only
* crop the 2nd to 4th dimension.
*
* Argument in this Function:
* \param pad_ A struct object contains the cropping corner and shape.
* \param inputs A 4D tensor, only one input.
* \param outputs A 4D tensor, the output value after cropping.
*
* For example,
* Input(2,2,2,3) = [
* [ [[1,2,3], [3,4,5]],
* [[2,3,5], [1,6,7]] ],
* [ [[4,3,1], [1,8,7]],
* [[3,8,9], [2,3,5]] ]
* ] # the input shape is (2,2,2,3)
*
* pad_: if corner = (0,1,1) and crop_shape = (2,1,2)
* Output(2,2,1,2) = [
* [ [[4,5]],
* [[6,7]] ],
* [ [[8,7]],
* [[3,5]] ]
* ] # the input shape is (2,2,2,3)
*/
template <DeviceType Device>
class CropFunc : public FunctionBase {
public:
void init(const FuncConfig& config) override { conf_ = config; }
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(1UL, inputs.size());
CHECK_EQ(1UL, outputs.size());
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
TensorShape inShape = inputs[0].shape();
TensorShape outShape = outputs[0].shape();
Crop<Device>(outputs[0].data<real>(),
inputs[0].data<real>(),
inShape,
outShape,
conf_);
}
private:
FuncConfig conf_;
};
/**
* \brief The backward propagation of cropping Function.
*
* Argument in this Function:
* \param crop_ The same meaning as it in CropFunc.
* \param inputs The gradient with respect to the output value of CropFunc.
* \param outputs The gradient with respect to the input value of CropFunc.
*/
template <DeviceType Device>
class CropGradFunc : public FunctionBase {
public:
void init(const FuncConfig& config) override { conf_ = config; }
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(1UL, inputs.size());
CHECK_EQ(1UL, outputs.size());
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
TensorShape outShape = outputs[0].shape();
TensorShape inShape = inputs[0].shape();
CropGrad<Device>(inputs[0].data<real>(),
outputs[0].data<real>(),
inShape,
outShape,
conf_);
}
private:
FuncConfig conf_;
};
REGISTER_TYPED_FUNC(Crop, CPU, CropFunc);
REGISTER_TYPED_FUNC(CropGrad, CPU, CropGradFunc);
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(Crop, GPU, CropFunc);
REGISTER_TYPED_FUNC(CropGrad, GPU, CropGradFunc);
#endif
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Function.h"
namespace paddle {
/**
* \brief This funtion crops inputs according to the specify start point and
*shape.
*
* \param[out] outputs save results.
* \param[in] inputs input data.
* \param[in] inShape the shape of input tensor.
* \param[in] conf the cropping config
*/
template <DeviceType Device>
void Crop(real* outputs,
const real* inputs,
const TensorShape inShape,
const TensorShape outShape,
const FuncConfig& conf);
/**
* \brief Cropping operation backward.
*
* \param[out] inGrad gradients of previous layer
* \param[in] outGrad output gradient
* \param[in] inShape the shape of input tensor.
* \param[in] conf the cropping config
*/
template <DeviceType Device>
void CropGrad(const real* inGrad,
real* outGrad,
const TensorShape inShape,
const TensorShape outShape,
const FuncConfig& conf);
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_base.h"
#include "CropOp.h"
namespace paddle {
__global__ void KeCrop(real* outputs, const real* inputs,
int inC, int inH, int inW,
int cropC, int cropH, int cropW,
int outC, int outH, int outW, int nthreads) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < nthreads) {
const int w = idx % outW;
const int h = (idx / outW) % outH;
const int c = (idx / outW / outH) % outC;
const int n = idx / outW / outH / outC;
const int off = ((n * inC + c + cropC) * inH + h + cropH) * inW + cropW + w;
outputs[idx] = inputs[off];
}
}
template <>
void Crop<DEVICE_TYPE_GPU>(real* outputs,
const real* inputs,
const TensorShape inShape,
const TensorShape outShape,
const FuncConfig& conf) {
std::vector<uint32_t> crop_corner = conf.get<std::vector<uint32_t>>("crop_corner");
int cropC = crop_corner[1];
int cropH = crop_corner[2];
int cropW = crop_corner[3];
int num = inShape[0];
int inC = inShape[1];
int inH = inShape[2];
int inW = inShape[3];
int outC = outShape[1];
int outH = outShape[2];
int outW = outShape[3];
size_t nth = num * outC * outH * outW;
int blockSize = 1024;
int gridSize = (nth + blockSize - 1) / blockSize;
KeCrop<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>
(outputs, inputs, inC, inH, inW, cropC, cropH, cropW,
outC, outH, outW, nth);
CHECK_SYNC("Crop");
}
__global__ void KeCropDiff(const real* inGrad, real* outGrad,
int inC, int inH, int inW,
int cropC, int cropH, int cropW,
int outC, int outH, int outW, int nthreads) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < nthreads) {
const int w = idx % inW;
const int h = (idx / inW) % inH;
const int c = (idx / inW / inH) % inC;
const int n = idx / inW / inH / inC;
const int off = ((n * outC + c + cropC) * outH + h + cropH) * outW + cropW + w;
outGrad[off] += inGrad[idx];
}
}
template <>
void CropGrad<DEVICE_TYPE_GPU>(const real* inGrad,
real* outGrad,
const TensorShape inShape,
const TensorShape outShape,
const FuncConfig& conf) {
std::vector<uint32_t> crop_corner = conf.get<std::vector<uint32_t>>("crop_corner");
int cropC = crop_corner[1];
int cropH = crop_corner[2];
int cropW = crop_corner[3];
int num = outShape[0];
int outC = outShape[1];
int outH = outShape[2];
int outW = outShape[3];
int inC = inShape[1];
int inH = inShape[2];
int inW = inShape[3];
size_t nth = num * inC * inH * inW;
int blockSize = 1024;
int gridSize = (nth + blockSize - 1) / blockSize;
KeCropDiff <<<gridSize, blockSize, 0, STREAM_DEFAULT>>>
(inGrad, outGrad, inC, inH, inW, cropC, cropH, cropW,
outC, outH, outW, nth);
CHECK_SYNC("CropGrad");
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "FunctionTest.h"
namespace paddle {
TEST(Crop, real) {
for (size_t numSamples : {5, 32}) {
for (size_t channels : {5, 5, 32}) {
for (size_t imgSizeH : {5, 33, 100}) {
for (size_t imgSizeW : {5, 32, 96}) {
VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
<< " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW;
for (bool test_grad : {false, true}) {
CpuGpuFuncCompare compare(
test_grad ? "CropGrad" : "Crop",
FuncConfig()
.set<std::vector<uint32_t>>("crop_corner", {0, 1, 1, 1})
.set<std::vector<uint32_t>>("crop_shape", {0, 2, 3, 3}));
TensorShape inDims{numSamples, channels, imgSizeH, imgSizeW};
TensorShape outDims{numSamples, 2, 3, 3};
compare.addInputs(
BufferArg(VALUE_TYPE_FLOAT, test_grad ? outDims : inDims));
compare.addOutputs(BufferArg(VALUE_TYPE_FLOAT,
test_grad ? inDims : outDims,
test_grad ? ADD_TO : ASSIGN_TO),
test_grad ? ADD_TO : ASSIGN_TO);
compare.run();
}
}
}
}
}
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "CropLayer.h"
#include "paddle/utils/Stat.h"
namespace paddle {
REGISTER_LAYER(crop, CropLayer);
bool CropLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
CHECK_LE(static_cast<int>(inputLayers_.size()), 2);
CHECK_GE(static_cast<int>(inputLayers_.size()), 1);
crop_axis_ = config_.axis();
for (int i = 0; i < config_.offset_size(); i++) {
crop_offsets_.push_back(config_.offset(i));
}
// 1. get input_0 shape
auto& input0_img_conf = config_.inputs(0).image_conf();
inDims_ = TensorShape({0,
input0_img_conf.channels(),
input0_img_conf.has_img_size_y()
? input0_img_conf.img_size_y()
: input0_img_conf.img_size(),
input0_img_conf.img_size()});
// 2. get target dims from config
if (config_.inputs_size() == 1) {
targetDims_ = TensorShape({config_.shape(0),
config_.shape(1),
config_.shape(2),
config_.shape(3)});
} else {
// 2. get input_1 shape
auto& input1_img_conf = config_.inputs(1).image_conf();
targetDims_ = TensorShape({0,
input1_img_conf.channels(),
input1_img_conf.has_img_size_y()
? input1_img_conf.img_size_y()
: input1_img_conf.img_size(),
input1_img_conf.img_size()});
}
// 3. get final crop corner
int dimSize = 4;
crop_corner_ = {0, 0, 0, 0};
for (int i = 0; i < dimSize; i++) {
if (i >= crop_axis_) {
if (crop_offsets_.size() > 1) {
crop_corner_[i] = crop_offsets_[i - crop_axis_];
} else {
crop_corner_[i] = crop_offsets_[0];
}
}
}
outDims_ = TensorShape(4);
createFunction(
forward_, "Crop", FuncConfig().set("crop_corner", crop_corner_));
createFunction(
backward_, "CropGrad", FuncConfig().set("crop_corner", crop_corner_));
return true;
}
void CropLayer::setOutDims() {
MatrixPtr input = inputLayers_[1]->getOutputValue();
size_t batchSize = input->getHeight();
// get target dims from input_1
if (config_.inputs_size() == 2) {
targetDims_.setDim(0, batchSize);
int ch = config_.inputs(0).image_conf().channels();
if (ch != 0) targetDims_.setDim(1, ch);
int h = inputLayers_[1]->getOutput().getFrameHeight();
if (h != 0) targetDims_.setDim(2, h);
int w = inputLayers_[1]->getOutput().getFrameWidth();
if (w != 0) targetDims_.setDim(3, w);
}
// get final crop shape from target dims and crop axis
std::vector<uint32_t> crop_shape;
int dimSize = 4;
for (int i = 0; i < dimSize; i++) {
if (i >= crop_axis_) {
crop_shape.push_back(targetDims_[i]);
} else {
crop_shape.push_back(inDims_[i]);
}
}
outDims_.reshape(
{crop_shape[0], crop_shape[1], crop_shape[2], crop_shape[3]});
output_.setFrameHeight(crop_shape[2]);
output_.setFrameWidth(crop_shape[3]);
}
void CropLayer::setInDims() {
MatrixPtr input = inputLayers_[0]->getOutputValue();
size_t batchSize = input->getHeight();
inDims_.setDim(0, batchSize);
int h = inputLayers_[0]->getOutput().getFrameHeight();
if (h != 0) inDims_.setDim(2, h);
int w = inputLayers_[0]->getOutput().getFrameWidth();
if (w != 0) inDims_.setDim(3, w);
}
void CropLayer::forward(PassType passType) {
Layer::forward(passType);
setInDims();
setOutDims();
int size = outDims_[1] * outDims_[2] * outDims_[3];
resetOutput(outDims_[0], size);
MatrixPtr outV = getOutputValue();
REGISTER_TIMER_INFO("CropForward", getName().c_str());
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*getInputValue(0), inDims_);
outputs.addArg(*getOutputValue(), outDims_, ASSIGN_TO);
forward_[0]->calc(inputs, outputs);
}
void CropLayer::backward(const UpdateCallback& callback) {
(void)callback;
REGISTER_TIMER_INFO("CropBackward", getName().c_str());
BufferArgs inputs;
BufferArgs outputs;
inputs.addArg(*getOutputGrad(), outDims_);
outputs.addArg(*getInputGrad(0), inDims_, ADD_TO);
backward_[0]->calc(inputs, outputs);
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Layer.h"
namespace paddle {
/**
* \brief This layer crop input according to the specify conf.
* input_0: input to be cropped
* input_1: optional reference input
* axis: start dimension to be croped
* offset: offset of cropping in each dimension
* shape: if reference input layer was not setted,
* crop input as this shape conf
*/
class CropLayer : public Layer {
public:
explicit CropLayer(const LayerConfig& config) : Layer(config) {}
~CropLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
protected:
void setOutDims();
void setInDims();
int32_t crop_axis_;
std::vector<uint32_t> crop_offsets_;
std::vector<uint32_t> crop_corner_;
TensorShape inDims_;
TensorShape targetDims_;
TensorShape outDims_;
};
} // namespace paddle
......@@ -56,7 +56,7 @@ add_test(NAME test_DetectionOutput
add_unittest_without_exec(test_ConvUnify
test_ConvUnify.cpp
LayerGradUtil.cpp)
add_test(NAME test_ConvUnify
COMMAND test_ConvUnify)
################# test_BatchNorm #######################
......
......@@ -1802,6 +1802,34 @@ TEST(Layer, RowConvLayer) {
}
}
TEST(Layer, CropLayer) {
TestConfig config;
// config input_0
config.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 0});
LayerInputConfig* input = config.layerConfig.add_inputs();
ImageConfig* img = input->mutable_image_conf();
img->set_channels(4);
img->set_img_size(16);
config.layerConfig.set_axis(2);
config.layerConfig.add_offset(0);
config.layerConfig.add_offset(0);
// config input_1
config.inputDefs.push_back({INPUT_DATA, "layer_1", 128, 0});
input = config.layerConfig.add_inputs();
img = input->mutable_image_conf();
img->set_channels(2);
img->set_img_size(8);
// config crop layer
config.layerConfig.set_type("crop");
config.layerConfig.set_name("cropLayer");
for (auto useGpu : {false, true}) {
testLayerGrad(config, "crop", 100, false, useGpu, false);
}
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
initMain(argc, argv);
......
......@@ -27,7 +27,8 @@ function(op_library TARGET)
endif()
list(LENGTH cu_srcs cu_srcs_len)
if (${cu_srcs_len} EQUAL 0)
list(LENGTH op_library_DEPS dep_len)
if (${cu_srcs_len} EQUAL 0 AND ${dep_len} EQUAL 0)
message(WARNING "The op library ${TARGET} not support GPU!")
endif()
......@@ -47,3 +48,6 @@ op_library(mul_op SRCS mul_op.cc mul_op.cu)
op_library(rowwise_add_op SRCS rowwise_add_op.cu rowwise_add_op.cc)
op_library(sigmoid_op SRCS sigmoid_op.cu sigmoid_op.cc)
op_library(softmax_op SRCS softmax_op.cc softmax_op.cu)
op_library(fc_op SRCS fc_op.cc DEPS mul_op rowwise_add_op sigmoid_op
softmax_op net)
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include "glog/logging.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/operator.h"
namespace paddle {
......@@ -29,8 +30,10 @@ public:
output->mutable_data<T>(context.GetPlace());
output->flat<T>().device(*(context.GetEigenDevice<Place>())) =
input0.flat<T>() + input1.flat<T>();
framework::EigenVector<T>::Flatten(*output).device(
*(context.GetEigenDevice<Place>())) =
framework::EigenVector<T>::Flatten(input0) +
framework::EigenVector<T>::Flatten(input1);
}
};
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
namespace paddle {
namespace operators {
class FullyConnectedOp : public framework::PlainNet {
public:
void Init() override {
AddOp(framework::OpRegistry::CreateOp("mul",
{
Input("X"), Input("W"),
},
{Output("before_act")},
{}));
auto b = Input("b");
if (b != framework::OperatorBase::EMPTY_VAR_NAME()) {
AddOp(framework::OpRegistry::CreateOp("rowwise_add",
{Output("before_act"), Input("b")},
{Output("before_act")},
{}));
}
auto activation = GetAttr<std::string>("activation");
AddOp(framework::OpRegistry::CreateOp(
activation, {Output("before_act")}, {Output("Y")}, {}));
CompleteAddOp(false);
}
};
class FullyConnectedOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FullyConnectedOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input of fc operator");
AddInput("W", "the weight of fc operator");
AddInput("b", "the bias of fc operator");
AddOutput("Y", "the output of fc operator");
AddOutput(
"before_act", "the before activation output of fc operator", true);
AddAttr<std::string>("activation", "The activation key for fc layer")
.SetDefault("sigmoid")
.InEnum({"sigmoid", "softmax"});
//! TODO(yuyang18): Complete comment;
AddComment("FullyConnected Operator");
}
};
} // namespace operators
} // namespace paddle
USE_OP(mul);
USE_OP(rowwise_add);
USE_OP(sigmoid);
USE_OP(softmax);
REGISTER_OP(fc,
paddle::operators::FullyConnectedOp,
paddle::operators::FullyConnectedOpMaker);
cc_library(paddle_pybind SHARED SRCS pybind.cc DEPS pybind python
add_op mul_op rowwise_add_op sigmoid_op softmax_op)
add_op fc_op)
......@@ -14,6 +14,7 @@ limitations under the License. */
#include <Python.h>
#include <paddle/framework/op_registry.h>
#include <paddle/framework/operator.h>
#include <paddle/framework/scope.h>
#include <paddle/pybind/tensor_bind.h>
#include <pybind11/numpy.h>
......@@ -26,10 +27,7 @@ namespace py = pybind11;
namespace pd = paddle::framework;
USE_OP(add_two);
USE_OP(softmax);
USE_OP(mul);
USE_OP(rowwise_add);
USE_OP(sigmoid);
USE_OP_WITHOUT_KERNEL(fc);
PYBIND11_PLUGIN(core) {
py::module m("core", "C++ core of Paddle Paddle");
......@@ -53,7 +51,9 @@ PYBIND11_PLUGIN(core) {
self.mutable_data<int>(paddle::platform::CPUPlace());
})
.def("set", paddle::pybind::PyTensorSetFromArray<float>)
.def("set", paddle::pybind::PyTensorSetFromArray<int>);
.def("set", paddle::pybind::PyTensorSetFromArray<int>)
.def("shape",
[](pd::Tensor& self) { return pd::vectorize(self.dims()); });
py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class.
......@@ -83,15 +83,16 @@ All parameter, weight, gradient are variables in Paddle.
//! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python.
m.def("get_all_op_protos", []() -> std::vector<std::string> {
m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
auto& protos = pd::OpRegistry::protos();
std::vector<std::string> ret_values;
std::vector<py::bytes> ret_values;
for (auto it = protos.begin(); it != protos.end(); ++it) {
PADDLE_ENFORCE(it->second.IsInitialized(),
"OpProto must all be initialized");
ret_values.emplace_back();
PADDLE_ENFORCE(it->second.SerializeToString(&ret_values.back()),
std::string str;
PADDLE_ENFORCE(it->second.SerializeToString(&str),
"Serialize OpProto Error. This could be a bug of Paddle.");
ret_values.push_back(py::bytes(str));
}
return ret_values;
});
......@@ -101,17 +102,26 @@ All parameter, weight, gradient are variables in Paddle.
.def("empty", pd::OperatorBase::EMPTY_VAR_NAME)
.def("temp", pd::OperatorBase::TMP_VAR_NAME);
py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
.def_static("cpu_context", []() -> paddle::platform::DeviceContext* {
return new paddle::platform::CPUDeviceContext();
});
py::class_<pd::OperatorBase, pd::OperatorPtr>(m, "Operator")
.def("__str__", &pd::OperatorBase::DebugString)
.def_static("create", [](const std::string& protobin) {
pd::OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
return pd::OpRegistry::CreateOp(desc);
});
.def_static("create",
[](py::bytes protobin) {
pd::OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
return pd::OpRegistry::CreateOp(desc);
})
.def("infer_shape", &pd::OperatorBase::InferShape)
.def("run", &pd::OperatorBase::Run)
.def("outputs", [](const pd::OperatorPtr& op) { return op->outputs_; });
return m.ptr();
}
......@@ -472,10 +472,16 @@ message LayerConfig {
// blank label used in ctc loss
optional uint32 blank = 52 [default = 0];
// stride parameter for seqlastins layer, AverageLayer, MaxLayer, which
// stride parameter for seqlastins layer, AverageLayer, MaxLayer, which
// controls the scope of pooling operation. can be set > 0.
// leave empty or set to -1 to disable this stride pooling.
optional int32 seq_pool_stride = 53 [default = -1];
// for crop layer
optional int32 axis = 54 [default = 2];
repeated uint32 offset = 55;
repeated uint32 shape = 56;
}
message EvaluatorConfig {
......
......@@ -1998,6 +1998,23 @@ class PadLayer(LayerBase):
self.config.size = out_ch * out_h * out_w
@config_layer('crop')
class CropLayer(LayerBase):
def __init__(self, name, inputs, axis, offset, shape, **xargs):
super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
self.config.axis = axis
self.config.offset.extend(offset)
self.config.shape.extend(shape)
# get channel, width and height from input_0 layer
input_layer = self.get_input_layer(0)
image_conf = self.config.inputs[0].image_conf
image_conf.img_size = input_layer.width
image_conf.img_size_y = input_layer.height
image_conf.channels = input_layer.size / (input_layer.width *
input_layer.height)
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
layer_type = 'batch_norm'
......
......@@ -127,6 +127,7 @@ __all__ = [
'dropout_layer',
'prelu_layer',
'gated_unit_layer',
'crop_layer',
]
......@@ -218,6 +219,7 @@ class LayerType(object):
SMOOTH_L1 = 'smooth_l1'
PRELU = 'prelu'
CROP_LAYER = 'crop'
@staticmethod
def is_layer_type(type_name):
......@@ -5970,3 +5972,52 @@ def gated_unit_layer(input,
name="%s_gated_act" % name,
input=dotmul_operator(input_proj, gate),
layer_attr=layer_attr)
@wrap_name_default()
@layer_support()
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
"""
The crop layer crops images by offset and shape. User can set crop shape by
args 'shape' explicitly or by reference input layer.
The example usage is:
.. code-block:: python
crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
:param input: The input layer.If two inputs were setted,
the second input will be regarded as reference input
:type input: LayerOutput or Sequence
:param offset: The crop offset
:type offset: Sequence
:param axis: start axis to be cropped. To image input layer:
- 0: batch size
- 1: channels
- 2: height
- 3: width
:type partial_sum: int
:param shape: The shape to be cropped. Default is None.
:type shape: Sequence | None
:param name: Name of this layer.
:type name: basestring
:return: LayerOutput object.
:rtype: LayerOutput
"""
if isinstance(input, LayerOutput):
input = [input]
else:
assert isinstance(input, collections.Sequence)
l = Layer(
inputs=[x.name for x in input],
axis=axis,
offset=offset,
shape=shape,
name=name,
type=LayerType.CROP_LAYER,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name=name,
layer_type=LayerType.CROP_LAYER,
parents=input,
size=l.config.size)
from paddle.trainer_config_helpers import *
settings(batch_size=1000, learning_rate=1e-5)
data = data_layer(name='data', size=2016, height=48, width=42)
refernce_data = data_layer(name='data', size=768, height=16, width=16)
conv = img_conv_layer(
input=data,
filter_size=3,
num_channels=1,
num_filters=16,
padding=1,
act=LinearActivation(),
bias_attr=True)
pool = img_pool_layer(input=conv, pool_size=2, stride=2, pool_type=MaxPooling())
crop = crop_layer(input=[pool, refernce_data], axis=2)
outputs(pad)
......@@ -217,6 +217,10 @@ def create_op_creation_method(op_proto):
return core.Operator.create(opdesc.SerializeToString())
__impl__.__doc__ = get_docstring_from_op_proto(op_proto)
__impl__.all_input_args = [var.name for var in op_proto.inputs]
__impl__.all_output_args = [var.name for var in op_proto.outputs]
__impl__.all_attr_args = [attr.name for attr in op_proto.attrs]
return __impl__
......
add_python_test(test_framework test_protobuf.py test_scope.py
test_default_scope_funcs.py test_op_creation_methods.py
test_tensor.py)
test_tensor.py test_fc_op.py test_add_two_op.py)
import paddle.v2.framework.core as core
import unittest
import numpy
import paddle.v2.framework.create_op_creation_methods as creation
class OpTestMeta(type):
def __new__(cls, name, bases, attrs):
obj = super(OpTestMeta, cls).__new__(cls, name, bases, attrs)
def test_all(self):
func = getattr(creation.op_creations, self.type, None)
self.assertIsNotNone(func)
scope = core.Scope(None)
kwargs = dict()
for in_name in func.all_input_args:
if hasattr(self, in_name):
kwargs[in_name] = in_name
var = scope.create_var(in_name).get_tensor()
arr = getattr(self, in_name)
var.set_dims(arr.shape)
var.set(arr)
else:
kwargs[in_name] = "@EMPTY@"
for out_name in func.all_output_args:
if hasattr(self, out_name):
kwargs[out_name] = out_name
scope.create_var(out_name).get_tensor()
for attr_name in func.all_attr_args:
if hasattr(self, attr_name):
kwargs[attr_name] = getattr(self, attr_name)
op = func(**kwargs)
op.infer_shape(scope)
ctx = core.DeviceContext.cpu_context()
op.run(scope, ctx)
for out_name in func.all_output_args:
actual = numpy.array(scope.get_var(out_name).get_tensor())
expect = getattr(self, out_name)
numpy.testing.assert_almost_equal(actual, expect)
obj.test_all = test_all
return obj
import unittest
from op_test_util import OpTestMeta
import numpy
class TestAddOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "add_two"
self.X = numpy.random.random((342, 345)).astype("float32")
self.Y = numpy.random.random((342, 345)).astype("float32")
self.Out = self.X + self.Y
if __name__ == '__main__':
unittest.main()
import paddle.v2.framework.core as core
import unittest
import numpy
import paddle.v2.framework.create_op_creation_methods as creation
class TestFc(unittest.TestCase):
def test_fc(self):
scope = core.Scope(None)
x = scope.create_var("X")
x_tensor = x.get_tensor()
x_tensor.set_dims([1000, 784])
x_tensor.alloc_float()
w = scope.create_var("W")
w_tensor = w.get_tensor()
w_tensor.set_dims([784, 100])
w_tensor.alloc_float()
w_tensor.set(numpy.random.random((784, 100)).astype("float32"))
# Set a real numpy array here.
# x_tensor.set(numpy.array([]))
op = creation.op_creations.fc(X="X", Y="Y", W="W")
for out in op.outputs():
if scope.get_var(out) is None:
scope.create_var(out).get_tensor()
tensor = scope.get_var("Y").get_tensor()
op.infer_shape(scope)
self.assertEqual([1000, 100], tensor.shape())
ctx = core.DeviceContext.cpu_context()
op.run(scope, ctx)
# After complete all ops, check Y is expect or not.
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册