提交 a96ac4f5 编写于 作者: Y Yang Yu

Refine code

上级 0311fd15
...@@ -12,76 +12,104 @@ ...@@ -12,76 +12,104 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import numpy as np
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.fluid as fluid import paddle.v2.fluid as fluid
import unittest
PASS_NUM = 100
EMBED_SIZE = 32 def main_impl(use_cuda):
HIDDEN_SIZE = 256 if use_cuda and not fluid.core.is_compiled_with_cuda():
N = 5 return
BATCH_SIZE = 32
IS_SPARSE = True PASS_NUM = 100
EMBED_SIZE = 32
word_dict = paddle.dataset.imikolov.build_dict() HIDDEN_SIZE = 256
dict_size = len(word_dict) N = 5
BATCH_SIZE = 32
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64') IS_SPARSE = True
second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64') word_dict = paddle.dataset.imikolov.build_dict()
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64') dict_size = len(word_dict)
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
embed_first = fluid.layers.embedding( second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
input=first_word, third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
size=[dict_size, EMBED_SIZE], forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
dtype='float32', next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
is_sparse=IS_SPARSE,
param_attr='shared_w') embed_first = fluid.layers.embedding(
embed_second = fluid.layers.embedding( input=first_word,
input=second_word, size=[dict_size, EMBED_SIZE],
size=[dict_size, EMBED_SIZE], dtype='float32',
dtype='float32', is_sparse=IS_SPARSE,
is_sparse=IS_SPARSE, param_attr='shared_w')
param_attr='shared_w') embed_second = fluid.layers.embedding(
embed_third = fluid.layers.embedding( input=second_word,
input=third_word, size=[dict_size, EMBED_SIZE],
size=[dict_size, EMBED_SIZE], dtype='float32',
dtype='float32', is_sparse=IS_SPARSE,
is_sparse=IS_SPARSE, param_attr='shared_w')
param_attr='shared_w') embed_third = fluid.layers.embedding(
embed_forth = fluid.layers.embedding( input=third_word,
input=forth_word, size=[dict_size, EMBED_SIZE],
size=[dict_size, EMBED_SIZE], dtype='float32',
dtype='float32', is_sparse=IS_SPARSE,
is_sparse=IS_SPARSE, param_attr='shared_w')
param_attr='shared_w') embed_forth = fluid.layers.embedding(
input=forth_word,
concat_embed = fluid.layers.concat( size=[dict_size, EMBED_SIZE],
input=[embed_first, embed_second, embed_third, embed_forth], axis=1) dtype='float32',
hidden1 = fluid.layers.fc(input=concat_embed, size=HIDDEN_SIZE, act='sigmoid') is_sparse=IS_SPARSE,
predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax') param_attr='shared_w')
cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
avg_cost = fluid.layers.mean(x=cost) concat_embed = fluid.layers.concat(
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
sgd_optimizer.minimize(avg_cost) hidden1 = fluid.layers.fc(input=concat_embed,
size=HIDDEN_SIZE,
train_reader = paddle.batch( act='sigmoid')
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE) predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
place = fluid.CPUPlace() avg_cost = fluid.layers.mean(x=cost)
exe = fluid.Executor(place) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
feeder = fluid.DataFeeder( sgd_optimizer.minimize(avg_cost)
feed_list=[first_word, second_word, third_word, forth_word, next_word],
place=place) train_reader = paddle.batch(
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
exe.run(fluid.default_startup_program())
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
for pass_id in range(PASS_NUM): exe = fluid.Executor(place)
for data in train_reader(): feeder = fluid.DataFeeder(
avg_cost_np = exe.run(fluid.default_main_program(), feed_list=[first_word, second_word, third_word, forth_word, next_word],
feed=feeder.feed(data), place=place)
fetch_list=[avg_cost])
if avg_cost_np[0] < 5.0: exe.run(fluid.default_startup_program())
exit(0) # if avg cost less than 10.0, we think our code is good.
exit(1) for pass_id in range(PASS_NUM):
for data in train_reader():
avg_cost_np = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost])
if avg_cost_np[0] < 5.0:
return
raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))
def main(*args, **kwargs):
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
main_impl(*args, **kwargs)
class W2VTest(unittest.TestCase):
def test_cpu_normal(self):
main(use_cuda=False)
def test_gpu_normal(self):
main(use_cuda=True)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册