Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
a5c95cd5
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a5c95cd5
编写于
10月 19, 2020
作者:
T
TeslaZhao
提交者:
GitHub
10月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add xpu transpose2 op.test=kunlun (#28086)
上级
a5f65d51
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
422 addition
and
0 deletion
+422
-0
paddle/fluid/operators/transpose_op_xpu.cc
paddle/fluid/operators/transpose_op_xpu.cc
+192
-0
python/paddle/fluid/tests/unittests/xpu/test_transpose_op_xpu.py
...paddle/fluid/tests/unittests/xpu/test_transpose_op_xpu.py
+230
-0
未找到文件。
paddle/fluid/operators/transpose_op_xpu.cc
0 → 100644
浏览文件 @
a5c95cd5
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/transpose_op.h"
#include <memory>
#include <string>
#include <vector>
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
bool
XPUSupported
(
int
ndims
,
const
std
::
vector
<
int
>&
axis
)
{
/*
* XPU currently support:
* permute = {0, 2, 1}, permute = {1, 0},
* permute = {0, 2, 1, 3}, permute = {1, 0, 2},
* permute = {0, 2, 3, 1}
*/
bool
is_supported
=
false
;
std
::
vector
<
int
>
permute_10
(
2
,
0
);
std
::
vector
<
int
>
permute_102
(
3
,
0
);
std
::
vector
<
int
>
permute_021
(
3
,
0
);
std
::
vector
<
int
>
permute_210
(
3
,
0
);
std
::
vector
<
int
>
permute_0213
(
4
,
0
);
std
::
vector
<
int
>
permute_0231
(
4
,
0
);
std
::
vector
<
int
>
permute_0312
(
4
,
0
);
std
::
vector
<
int
>
permute_3201
(
4
,
0
);
permute_10
[
0
]
=
1
;
permute_102
[
0
]
=
1
;
permute_102
[
2
]
=
2
;
permute_021
[
1
]
=
2
;
permute_021
[
2
]
=
1
;
permute_210
[
0
]
=
2
;
permute_210
[
1
]
=
1
;
permute_0213
[
1
]
=
2
;
permute_0213
[
2
]
=
1
;
permute_0213
[
3
]
=
3
;
permute_0231
[
1
]
=
2
;
permute_0231
[
2
]
=
3
;
permute_0231
[
3
]
=
1
;
permute_0312
[
1
]
=
3
;
permute_0312
[
2
]
=
1
;
permute_0312
[
3
]
=
2
;
permute_3201
[
0
]
=
3
;
permute_3201
[
1
]
=
2
;
permute_3201
[
3
]
=
1
;
switch
(
ndims
)
{
case
2
:
if
(
axis
==
permute_10
)
{
is_supported
=
true
;
}
break
;
case
3
:
if
((
axis
==
permute_021
)
||
(
axis
==
permute_102
)
||
(
axis
==
permute_210
))
{
is_supported
=
true
;
}
break
;
case
4
:
if
((
axis
==
permute_0213
)
||
(
axis
==
permute_0231
)
||
(
axis
==
permute_0312
)
||
(
axis
==
permute_3201
))
{
is_supported
=
true
;
}
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Tensors with rank only 2, 3 and 4 are supported on XPU"
));
}
return
is_supported
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
TransposeXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
// axis is permute
auto
axis
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
int
ndims
=
axis
.
size
();
const
auto
x_dims
=
x
->
dims
();
const
T
*
x_data
=
x
->
data
<
T
>
();
T
*
y_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
if
(
!
XPUSupported
(
ndims
,
axis
))
{
VLOG
(
0
)
<<
"XPU does not support the permute, try to do on cpu"
;
framework
::
Tensor
x_cpu
;
framework
::
Tensor
out_cpu
;
auto
x_cpu_data
=
x_cpu
.
mutable_data
<
T
>
(
x
->
dims
(),
platform
::
CPUPlace
());
auto
out_cpu_data
=
out_cpu
.
mutable_data
<
T
>
(
out
->
dims
(),
platform
::
CPUPlace
());
memory
::
Copy
(
platform
::
CPUPlace
(),
reinterpret_cast
<
void
*>
(
x_cpu_data
),
BOOST_GET_CONST
(
platform
::
XPUPlace
,
context
.
GetPlace
()),
(
const
void
*
)
x_data
,
x
->
numel
()
*
sizeof
(
T
));
const
platform
::
CPUDeviceContext
*
cpu_dev_ctx
=
static_cast
<
const
platform
::
CPUDeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
CPUPlace
()));
TransCompute
<
platform
::
CPUDeviceContext
,
T
>
(
ndims
,
*
cpu_dev_ctx
,
x_cpu
,
&
out_cpu
,
axis
);
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
XPUPlace
,
context
.
GetPlace
()),
reinterpret_cast
<
void
*>
(
y_data
),
platform
::
CPUPlace
(),
(
const
void
*
)
out_cpu_data
,
out
->
numel
()
*
sizeof
(
T
));
return
;
}
std
::
vector
<
int
>
x_shape_host
(
ndims
,
0
);
for
(
int
i
=
0
;
i
<
ndims
;
++
i
)
{
x_shape_host
[
i
]
=
x_dims
[
i
];
}
int
*
permute_host
=
axis
.
data
();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
transpose
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
x_shape_host
.
data
(),
permute_host
,
ndims
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error! error code=%d"
,
r
));
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
TransposeGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out_grad
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
!
x_grad
)
return
;
x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
axis
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
std
::
vector
<
int
>
reversed_axis
(
axis
);
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
reversed_axis
[
axis
[
i
]]
=
i
;
}
int
ndims
=
axis
.
size
();
if
(
!
XPUSupported
(
ndims
,
reversed_axis
))
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"XPU does not support the permute"
));
}
std
::
vector
<
int
>
out_shape_host
(
ndims
,
0
);
for
(
int
i
=
0
;
i
<
ndims
;
++
i
)
{
out_shape_host
[
i
]
=
out_grad
->
dims
()[
i
];
}
int
*
permute_host
=
reversed_axis
.
data
();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
transpose
(
dev_ctx
.
x_context
(),
out_grad
->
data
<
T
>
(),
x_grad
->
data
<
T
>
(),
out_shape_host
.
data
(),
permute_host
,
ndims
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error! error code=%d"
,
r
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
transpose
,
ops
::
TransposeXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
transpose_grad
,
ops
::
TransposeGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
transpose2
,
ops
::
TransposeXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
transpose2_grad
,
ops
::
TransposeGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif // PADDLE_WITH_XPU
python/paddle/fluid/tests/unittests/xpu/test_transpose_op_xpu.py
0 → 100644
浏览文件 @
a5c95cd5
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
class
TestXPUTransposeOp
(
OpTest
):
def
setUp
(
self
):
self
.
init_op_type
()
self
.
initTestCase
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"float64"
)}
self
.
attrs
=
{
'axis'
:
list
(
self
.
axis
),
'use_mkldnn'
:
False
,
'use_xpu'
:
True
}
self
.
outputs
=
{
'XShape'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"float64"
),
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)
}
def
init_op_type
(
self
):
self
.
op_type
=
"transpose2"
self
.
use_mkldnn
=
False
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
=
place
,
no_check_set
=
[
'XShape'
])
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
)
def
initTestCase
(
self
):
self
.
shape
=
(
3
,
40
)
self
.
axis
=
(
1
,
0
)
class
TestCase0
(
TestXPUTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
100
,
)
self
.
axis
=
(
0
,
)
class
TestCase1
(
TestXPUTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
3
,
4
,
10
)
self
.
axis
=
(
0
,
2
,
1
)
class
TestCase2
(
TestXPUTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
)
self
.
axis
=
(
0
,
2
,
3
,
1
)
class
TestCase3
(
TestXPUTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
)
self
.
axis
=
(
4
,
2
,
3
,
1
,
0
)
class
TestCase4
(
TestXPUTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
,
1
)
self
.
axis
=
(
4
,
2
,
3
,
1
,
0
,
5
)
class
TestCase5
(
TestXPUTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
16
,
96
)
self
.
axis
=
(
0
,
2
,
1
)
class
TestCase6
(
TestXPUTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
10
,
12
,
16
)
self
.
axis
=
(
3
,
1
,
2
,
0
)
class
TestCase7
(
TestXPUTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
10
,
2
,
16
)
self
.
axis
=
(
0
,
1
,
3
,
2
)
class
TestCase8
(
TestXPUTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
2
,
3
,
2
,
4
,
3
,
3
)
self
.
axis
=
(
0
,
1
,
3
,
2
,
4
,
5
,
6
,
7
)
class
TestCase9
(
TestXPUTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
2
,
3
,
2
,
4
,
3
,
3
)
self
.
axis
=
(
6
,
1
,
3
,
5
,
0
,
2
,
4
,
7
)
class
TestTransposeOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
10
,
5
,
3
],
dtype
=
'float64'
)
def
test_x_Variable_check
():
# the Input(x)'s type must be Variable
fluid
.
layers
.
transpose
(
"not_variable"
,
perm
=
[
1
,
0
,
2
])
self
.
assertRaises
(
TypeError
,
test_x_Variable_check
)
def
test_x_dtype_check
():
# the Input(x)'s dtype must be one of [float16, float32, float64, int32, int64]
x1
=
fluid
.
layers
.
data
(
name
=
'x1'
,
shape
=
[
10
,
5
,
3
],
dtype
=
'bool'
)
fluid
.
layers
.
transpose
(
x1
,
perm
=
[
1
,
0
,
2
])
self
.
assertRaises
(
TypeError
,
test_x_dtype_check
)
def
test_perm_list_check
():
# Input(perm)'s type must be list
fluid
.
layers
.
transpose
(
x
,
perm
=
"[1, 0, 2]"
)
self
.
assertRaises
(
TypeError
,
test_perm_list_check
)
def
test_perm_length_and_x_dim_check
():
# Input(perm) is the permutation of dimensions of Input(input)
# its length should be equal to dimensions of Input(input)
fluid
.
layers
.
transpose
(
x
,
perm
=
[
1
,
0
,
2
,
3
,
4
])
self
.
assertRaises
(
ValueError
,
test_perm_length_and_x_dim_check
)
def
test_each_elem_value_check
():
# Each element in Input(perm) should be less than Input(x)'s dimension
fluid
.
layers
.
transpose
(
x
,
perm
=
[
3
,
5
,
7
])
self
.
assertRaises
(
ValueError
,
test_each_elem_value_check
)
class
TestTAPI
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
shape
=
[
10
],
dtype
=
"float64"
,
name
=
"data"
)
data_t
=
paddle
.
t
(
data
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
data_np
=
np
.
random
.
random
([
10
]).
astype
(
"float64"
)
result
,
=
exe
.
run
(
feed
=
{
"data"
:
data_np
},
fetch_list
=
[
data_t
])
expected_result
=
np
.
transpose
(
data_np
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
shape
=
[
10
,
5
],
dtype
=
"float64"
,
name
=
"data"
)
data_t
=
paddle
.
t
(
data
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
data_np
=
np
.
random
.
random
([
10
,
5
]).
astype
(
"float64"
)
result
,
=
exe
.
run
(
feed
=
{
"data"
:
data_np
},
fetch_list
=
[
data_t
])
expected_result
=
np
.
transpose
(
data_np
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
shape
=
[
1
,
5
],
dtype
=
"float64"
,
name
=
"data"
)
data_t
=
paddle
.
t
(
data
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
data_np
=
np
.
random
.
random
([
1
,
5
]).
astype
(
"float64"
)
result
,
=
exe
.
run
(
feed
=
{
"data"
:
data_np
},
fetch_list
=
[
data_t
])
expected_result
=
np
.
transpose
(
data_np
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
random
([
10
]).
astype
(
"float64"
)
data
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
t
(
data
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
transpose
(
np_x
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
random
([
10
,
5
]).
astype
(
"float64"
)
data
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
t
(
data
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
transpose
(
np_x
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
random
([
1
,
5
]).
astype
(
"float64"
)
data
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
t
(
data
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
transpose
(
np_x
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
def
test_errors
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
10
,
5
,
3
],
dtype
=
'float64'
)
def
test_x_dimension_check
():
paddle
.
t
(
x
)
self
.
assertRaises
(
ValueError
,
test_x_dimension_check
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录