Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
a43594fa
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a43594fa
编写于
2月 02, 2018
作者:
W
Wang Hao
提交者:
GitHub
2月 02, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7679 from wanghaox/hard_example
add mine_hard_examples operator
上级
b7db3531
8137dd9b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
430 addition
and
0 deletion
+430
-0
paddle/operators/mine_hard_examples_op.cc
paddle/operators/mine_hard_examples_op.cc
+330
-0
python/paddle/v2/fluid/tests/test_mine_hard_examples_op.py
python/paddle/v2/fluid/tests/test_mine_hard_examples_op.py
+100
-0
未找到文件。
paddle/operators/mine_hard_examples_op.cc
0 → 100644
浏览文件 @
a43594fa
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
enum
MiningType
{
kNone
=
0
,
kMaxNegative
,
kHardExample
};
template
<
typename
T
>
bool
SortScoreDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
inline
bool
IsEligibleMining
(
const
MiningType
mining_type
,
const
int
match_idx
,
const
float
match_dist
,
const
float
neg_dist_threshold
)
{
if
(
mining_type
==
MiningType
::
kMaxNegative
)
{
return
match_idx
==
-
1
&&
match_dist
<
neg_dist_threshold
;
}
else
if
(
mining_type
==
MiningType
::
kHardExample
)
{
return
true
;
}
else
{
return
false
;
}
}
inline
MiningType
GetMiningType
(
std
::
string
str
)
{
if
(
str
==
"max_negative"
)
{
return
MiningType
::
kMaxNegative
;
}
else
if
(
str
==
"hard_example"
)
{
return
MiningType
::
kHardExample
;
}
else
{
return
MiningType
::
kNone
;
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
MineHardExamplesKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_cls_loss
=
ctx
.
Input
<
framework
::
Tensor
>
(
"ClsLoss"
);
auto
*
in_loc_loss
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LocLoss"
);
auto
*
in_matched_indices
=
ctx
.
Input
<
framework
::
Tensor
>
(
"MatchIndices"
);
auto
*
in_match_dist
=
ctx
.
Input
<
framework
::
Tensor
>
(
"MatchDist"
);
float
neg_pos_ratio
=
ctx
.
Attr
<
float
>
(
"neg_pos_ratio"
);
T
neg_dist_threshold
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"neg_dist_threshold"
));
int
sample_size
=
ctx
.
Attr
<
int
>
(
"sample_size"
);
MiningType
mining_type
=
GetMiningType
(
ctx
.
Attr
<
std
::
string
>
(
"mining_type"
));
auto
out_neg_indices
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"NegIndices"
);
auto
out_match_indices
=
ctx
.
Output
<
framework
::
Tensor
>
(
"UpdatedMatchIndices"
);
framework
::
Copy
(
*
in_matched_indices
,
ctx
.
GetPlace
(),
out_match_indices
);
int
batch_size
=
in_matched_indices
->
dims
()[
0
];
int
prior_num
=
in_matched_indices
->
dims
()[
1
];
auto
match_indices
=
framework
::
EigenMatrix
<
int
>::
From
(
*
in_matched_indices
);
auto
match_indices_et
=
framework
::
EigenMatrix
<
int
>::
From
(
*
out_match_indices
);
auto
match_dist
=
framework
::
EigenMatrix
<
T
>::
From
(
*
in_match_dist
);
const
T
*
cls_loss
=
in_cls_loss
->
data
<
T
>
();
const
T
*
loc_loss
=
nullptr
;
if
(
in_loc_loss
)
{
loc_loss
=
in_loc_loss
->
data
<
T
>
();
}
std
::
vector
<
std
::
vector
<
int
>>
all_neg_indices
;
std
::
vector
<
size_t
>
batch_starts
=
{
0
};
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
std
::
vector
<
std
::
pair
<
T
,
size_t
>>
loss_idx
;
int
neg_sel
=
0
;
for
(
int
m
=
0
;
m
<
prior_num
;
++
m
)
{
if
(
IsEligibleMining
(
mining_type
,
match_indices
(
n
,
m
),
match_dist
(
n
,
m
),
neg_dist_threshold
))
{
T
loss
=
cls_loss
[
n
*
prior_num
+
m
];
if
(
mining_type
==
MiningType
::
kHardExample
&&
loc_loss
!=
nullptr
)
{
loss
=
cls_loss
[
n
*
prior_num
+
m
]
+
loc_loss
[
n
*
prior_num
+
m
];
}
loss_idx
.
push_back
(
std
::
make_pair
(
loss
,
m
));
++
neg_sel
;
}
}
if
(
mining_type
==
MiningType
::
kMaxNegative
)
{
int
num_pos
=
0
;
for
(
int
m
=
0
;
m
<
prior_num
;
++
m
)
{
if
(
match_indices
(
n
,
m
)
!=
-
1
)
++
num_pos
;
}
neg_sel
=
std
::
min
(
static_cast
<
int
>
(
num_pos
*
neg_pos_ratio
),
neg_sel
);
}
else
if
(
mining_type
==
MiningType
::
kHardExample
)
{
neg_sel
=
std
::
min
(
sample_size
,
neg_sel
);
}
std
::
sort
(
loss_idx
.
begin
(),
loss_idx
.
end
(),
SortScoreDescend
<
size_t
>
);
std
::
set
<
int
>
sel_indices
;
std
::
vector
<
int
>
neg_indices
;
std
::
transform
(
loss_idx
.
begin
(),
loss_idx
.
begin
()
+
neg_sel
,
std
::
inserter
(
sel_indices
,
sel_indices
.
begin
()),
[](
std
::
pair
<
T
,
size_t
>&
l
)
->
int
{
return
static_cast
<
int
>
(
l
.
second
);
});
if
(
mining_type
==
MiningType
::
kHardExample
)
{
for
(
int
m
=
0
;
m
<
prior_num
;
++
m
)
{
if
(
match_indices
(
n
,
m
)
>
-
1
)
{
if
(
sel_indices
.
find
(
m
)
==
sel_indices
.
end
())
{
match_indices_et
(
n
,
m
)
=
-
1
;
}
}
else
{
if
(
sel_indices
.
find
(
m
)
!=
sel_indices
.
end
())
{
neg_indices
.
push_back
(
m
);
}
}
}
}
else
{
neg_indices
.
resize
(
sel_indices
.
size
());
std
::
copy
(
sel_indices
.
begin
(),
sel_indices
.
end
(),
neg_indices
.
begin
());
}
all_neg_indices
.
push_back
(
neg_indices
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
neg_indices
.
size
());
}
framework
::
LoD
out_neg_indices_lod
;
out_neg_indices_lod
.
emplace_back
(
batch_starts
);
int
neg_offset
=
0
;
auto
neg_data
=
out_neg_indices
->
mutable_data
<
int
>
(
framework
::
make_ddim
({
static_cast
<
int
>
(
batch_starts
.
back
()),
1
}),
ctx
.
GetPlace
());
for
(
auto
neg_indices
:
all_neg_indices
)
{
std
::
copy
(
neg_indices
.
begin
(),
neg_indices
.
end
(),
neg_data
+
neg_offset
);
neg_offset
+=
neg_indices
.
size
();
}
out_neg_indices
->
set_lod
(
out_neg_indices_lod
);
return
;
}
};
class
MineHardExamplesOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ClsLoss"
),
"Input(ClsLoss) of MineHardExamplesOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"MatchIndices"
),
"Input(MatchIndices) of MineHardExamplesOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"MatchDist"
),
"Input(MatchDist) of MineHardExamplesOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"NegIndices"
),
"Output(NegIndices) of MineHardExamplesOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"UpdatedMatchIndices"
),
"Output(UpdatedMatchIndices) of MineHardExamplesOp should "
"not be null."
);
auto
cls_loss_dims
=
ctx
->
GetInputDim
(
"ClsLoss"
);
auto
idx_dims
=
ctx
->
GetInputDim
(
"MatchIndices"
);
auto
dis_dims
=
ctx
->
GetInputDim
(
"MatchDist"
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
.
size
(),
2UL
,
"The shape of ClsLoss is [N, Np]."
);
PADDLE_ENFORCE_EQ
(
idx_dims
.
size
(),
2UL
,
"The shape of MatchIndices is [N, Np]."
);
PADDLE_ENFORCE_EQ
(
dis_dims
.
size
(),
2UL
,
"The shape of MatchDist is [N, Np]."
);
if
(
ctx
->
HasInput
(
"LocLoss"
))
{
auto
loc_loss_dims
=
ctx
->
GetInputDim
(
"LocLoss"
);
PADDLE_ENFORCE_EQ
(
loc_loss_dims
.
size
(),
2UL
,
"The shape of LocLoss is [N, Np]."
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
0
],
loc_loss_dims
[
0
],
"Batch size of ClsLoss and LocLoss must be the same."
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
1
],
loc_loss_dims
[
1
],
"Prior box number of ClsLoss and LocLoss must be the same."
);
}
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
0
],
idx_dims
[
0
],
"Batch size of ClsLoss and MatchIndices must be the same."
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
1
],
idx_dims
[
1
],
"Prior box number of ClsLoss and MatchIndices must be the same."
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
0
],
dis_dims
[
0
],
"Batch size of ClsLoss and MatchDist must be the same."
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
1
],
idx_dims
[
1
],
"Prior box number of ClsLoss and MatchDist must be the same."
);
auto
mining_type
=
GetMiningType
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"mining_type"
));
PADDLE_ENFORCE_NE
(
mining_type
,
MiningType
::
kNone
,
"mining_type must be hard_example or max_negative"
);
if
(
mining_type
==
MiningType
::
kMaxNegative
)
{
auto
neg_pos_ratio
=
ctx
->
Attrs
().
Get
<
float
>
(
"neg_pos_ratio"
);
auto
neg_dist_threshold
=
ctx
->
Attrs
().
Get
<
float
>
(
"neg_dist_threshold"
);
PADDLE_ENFORCE_GT
(
neg_pos_ratio
,
0.0
f
,
"neg_pos_ratio must greater than zero in max_negative mode"
);
PADDLE_ENFORCE_GT
(
neg_dist_threshold
,
0.0
f
,
"neg_dist_threshold must greater than zero in max_negative mode"
);
}
else
if
(
mining_type
==
MiningType
::
kHardExample
)
{
auto
sample_size
=
ctx
->
Attrs
().
Get
<
int
>
(
"sample_size"
);
PADDLE_ENFORCE_GT
(
sample_size
,
0
,
"sample_size must greater than zero in hard_example mode"
);
}
ctx
->
SetOutputDim
(
"UpdatedMatchIndices"
,
idx_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"ClsLoss"
)
->
type
()),
ctx
.
device_context
());
}
};
class
MineHardExamplesOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
MineHardExamplesOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"ClsLoss"
,
"(Tensor, default Tensor<float>), The classification loss with shape "
"[N, Np], N is the batch size and Np is the number of prior box."
);
AddInput
(
"LocLoss"
,
"(Tensor, optional, default Tensor<float>), The localization loss "
"with shape [N, Np], N is the batch size and Np is the number of "
"prior box."
)
.
AsDispensable
();
AddInput
(
"MatchIndices"
,
"(Tensor, Tensor<int>), Matched indices with shape [N, Np], N is "
"the batch size and Np is the number of prior box. "
"MatchIndices[i][j] equal -1 means the j-th prior box in i-th "
"instance does not match any entity, otherwise means it is "
"matched to row."
);
AddInput
(
"MatchDist"
,
"(Tensor, default Tensor<float>) Matched indices with shape [N, "
"Np], N is the batch size and Np is the number of prior box."
);
AddAttr
<
float
>
(
"neg_pos_ratio"
,
"(float) The ratio of the negative box to the positive "
"box. Use only when mining_type is max_negative."
)
.
SetDefault
(
1.0
);
AddAttr
<
float
>
(
"neg_dist_threshold"
,
"(float) The negative overlap upper bound for the unmatched "
"predictions. Use only when mining_type is max_negative."
)
.
SetDefault
(
0.5
);
AddAttr
<
int
>
(
"sample_size"
,
"(float) The max sample size of negative box. Use only when "
"mining_type is hard_example."
)
.
SetDefault
(
0
);
AddAttr
<
std
::
string
>
(
"mining_type"
,
"(float) The mining algorithm name, the value is "
"hard_example or max_negative."
)
.
SetDefault
(
"max_negative"
)
.
InEnum
({
"hard_example"
,
"max_negative"
});
AddOutput
(
"NegIndices"
,
"(LoDTensor<int>) The output of negative example indices. a LoDTensor "
"with shape [Neg, 1]. The size of lod[0] minus 1 is batch size, "
"and each element is the prior box index. "
"For example, the batch size is 2, the lod is [[0, 1, 2]], "
"the sample 0's box 1(MatchIndices[0][1]) is selected, "
"and sample 1's box 0 is selected. The output NegIndices is "
"[[1], [0]]."
);
AddOutput
(
"UpdatedMatchIndices"
,
"(Tensor<int>) The output of updated MatchIndices, a tensor with "
"shape [N, Np]. Only update when mining_type is "
"hard_example. The input MatchIndices elements will be update to "
"-1 when it is not in the candidate high loss list of negative "
"examples."
);
AddComment
(
R"DOC(
Mine hard examples Operator.
This operator implements hard example mining to select a subset of negative box indices.
For each image, selects the box with highest losses. subject to the condition that the
box cannot have an Matcht > neg_dist_threshold when mining_type is max_negative.
The selected number is min(sample_size, max_negative_box_number) when mining_type is
hard_example, or min(neg_pos_ratio * positive_box_number, max_negative_box_number)
when mining_type is max_negative, where the max_negative_box_number is the count of
MatchIndices elements with value -1.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
mine_hard_examples
,
ops
::
MineHardExamplesOp
,
ops
::
MineHardExamplesOpMaker
);
REGISTER_OP_CPU_KERNEL
(
mine_hard_examples
,
ops
::
MineHardExamplesKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MineHardExamplesKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
python/paddle/v2/fluid/tests/test_mine_hard_examples_op.py
0 → 100755
浏览文件 @
a43594fa
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
sys
import
math
from
op_test
import
OpTest
class
TestMineHardExamplesOp
(
OpTest
):
def
set_data
(
self
):
self
.
init_test_data
()
self
.
inputs
=
{
'ClsLoss'
:
self
.
cls_loss
,
'LocLoss'
:
self
.
loc_loss
,
'MatchIndices'
:
self
.
match_indices
,
'MatchDist'
:
self
.
match_dis
}
self
.
attrs
=
{
'neg_pos_ratio'
:
self
.
neg_pos_ratio
,
'neg_overlap'
:
self
.
neg_overlap
,
'sample_size'
:
self
.
sample_size
,
'mining_type'
:
self
.
mining_type
}
self
.
outputs
=
{
'NegIndices'
:
(
self
.
neg_indices
,
self
.
neg_indices_lod
),
'UpdatedMatchIndices'
:
self
.
updated_match_indices
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
return
def
setUp
(
self
):
self
.
op_type
=
"mine_hard_examples"
self
.
set_data
()
def
init_test_data
(
self
):
self
.
neg_pos_ratio
=
1.0
self
.
neg_overlap
=
0.5
self
.
sample_size
=
0
self
.
mining_type
=
"max_negative"
self
.
cls_loss
=
np
.
array
([[
0.1
,
0.1
,
0.3
],
[
0.3
,
0.1
,
0.1
]]).
astype
(
'float32'
)
self
.
loc_loss
=
np
.
array
([[
0.1
,
0.2
,
0.3
],
[
0.3
,
0.4
,
0.1
]]).
astype
(
'float32'
)
self
.
match_dis
=
np
.
array
([[
0.2
,
0.4
,
0.8
],
[
0.1
,
0.9
,
0.3
]]).
astype
(
'float32'
)
self
.
match_indices
=
np
.
array
([[
0
,
-
1
,
-
1
],
[
-
1
,
0
,
-
1
]]).
astype
(
'int32'
)
self
.
updated_match_indices
=
self
.
match_indices
self
.
neg_indices_lod
=
[[
0
,
1
,
2
]]
self
.
neg_indices
=
np
.
array
([[
1
],
[
0
]]).
astype
(
'int32'
)
class
TestMineHardExamplesOpHardExample
(
TestMineHardExamplesOp
):
def
init_test_data
(
self
):
super
(
TestMineHardExamplesOpHardExample
,
self
).
init_test_data
()
self
.
mining_type
=
"hard_example"
self
.
sample_size
=
2
self
.
cls_loss
=
np
.
array
([[
0.5
,
0.1
,
0.3
],
[
0.3
,
0.1
,
0.1
]]).
astype
(
'float32'
)
self
.
loc_loss
=
np
.
array
([[
0.2
,
0.2
,
0.3
],
[
0.3
,
0.1
,
0.2
]]).
astype
(
'float32'
)
self
.
match_indices
=
np
.
array
([[
0
,
-
1
,
-
1
],
[
-
1
,
0
,
-
1
]]).
astype
(
'int32'
)
self
.
updated_match_indices
=
np
.
array
([[
0
,
-
1
,
-
1
],
[
-
1
,
-
1
,
-
1
]]).
astype
(
'int32'
)
self
.
neg_indices_lod
=
[[
0
,
1
,
3
]]
self
.
neg_indices
=
np
.
array
([[
2
],
[
0
],
[
2
]]).
astype
(
'int32'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录