未验证 提交 a359cade 编写于 作者: F FlyingQianMM 提交者: GitHub

rewrite the sigmoid_focal_loss code example (#24889)

* rewrite the sigmoid_focal_loss code example. test=develop

* fix spelling mistake in comments of code example.test=develop
上级 211ef78c
...@@ -510,16 +510,73 @@ def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25): ...@@ -510,16 +510,73 @@ def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25):
Examples: Examples:
.. code-block:: python .. code-block:: python
import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
input = fluid.data(name='data', shape=[10,80], dtype='float32') num_classes = 10 # exclude background
label = fluid.data(name='label', shape=[10,1], dtype='int32') image_width = 16
fg_num = fluid.data(name='fg_num', shape=[1], dtype='int32') image_height = 16
loss = fluid.layers.sigmoid_focal_loss(x=input, batch_size = 32
label=label, max_iter = 20
fg_num=fg_num,
gamma=2.0,
alpha=0.25) def gen_train_data():
x_data = np.random.uniform(0, 255, (batch_size, 3, image_height,
image_width)).astype('float64')
label_data = np.random.randint(0, num_classes,
(batch_size, 1)).astype('int32')
return {"x": x_data, "label": label_data}
def get_focal_loss(pred, label, fg_num, num_classes):
pred = fluid.layers.reshape(pred, [-1, num_classes])
label = fluid.layers.reshape(label, [-1, 1])
label.stop_gradient = True
loss = fluid.layers.sigmoid_focal_loss(
pred, label, fg_num, gamma=2.0, alpha=0.25)
loss = fluid.layers.reduce_sum(loss)
return loss
def build_model(mode='train'):
x = fluid.data(name="x", shape=[-1, 3, -1, -1], dtype='float64')
output = fluid.layers.pool2d(input=x, pool_type='avg', global_pooling=True)
output = fluid.layers.fc(
input=output,
size=num_classes,
# Notice: size is set to be the number of target classes (excluding backgorund)
# because sigmoid activation will be done in the sigmoid_focal_loss op.
act=None)
if mode == 'train':
label = fluid.data(name="label", shape=[-1, 1], dtype='int32')
# Obtain the fg_num needed by the sigmoid_focal_loss op:
# 0 in label represents background, >=1 in label represents foreground,
# find the elements in label which are greater or equal than 1, then
# computed the numbers of these elements.
data = fluid.layers.fill_constant(shape=[1], value=1, dtype='int32')
fg_label = fluid.layers.greater_equal(label, data)
fg_label = fluid.layers.cast(fg_label, dtype='int32')
fg_num = fluid.layers.reduce_sum(fg_label)
fg_num.stop_gradient = True
avg_loss = get_focal_loss(output, label, fg_num, num_classes)
return avg_loss
else:
# During evaluating or testing phase,
# output of the final fc layer should be connected to a sigmoid layer.
pred = fluid.layers.sigmoid(output)
return pred
loss = build_model('train')
moment_optimizer = fluid.optimizer.MomentumOptimizer(
learning_rate=0.001, momentum=0.9)
moment_optimizer.minimize(loss)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for i in range(max_iter):
outs = exe.run(feed=gen_train_data(), fetch_list=[loss.name])
print(outs)
""" """
check_variable_and_dtype(x, 'x', ['float32', 'float64'], check_variable_and_dtype(x, 'x', ['float32', 'float64'],
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册