Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
a275fd6e
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a275fd6e
编写于
3月 18, 2019
作者:
L
luotao1
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into runtime_context
上级
5ecdc49c
2579ade4
变更
40
隐藏空白更改
内联
并排
Showing
40 changed file
with
2149 addition
and
121 deletion
+2149
-121
paddle/fluid/API.spec
paddle/fluid/API.spec
+4
-3
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+5
-1
paddle/fluid/framework/ir/cpu_quantize_pass.cc
paddle/fluid/framework/ir/cpu_quantize_pass.cc
+239
-0
paddle/fluid/framework/ir/cpu_quantize_pass.h
paddle/fluid/framework/ir/cpu_quantize_pass.h
+66
-0
paddle/fluid/framework/ir/cpu_quantize_pass_tester.cc
paddle/fluid/framework/ir/cpu_quantize_pass_tester.cc
+211
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+48
-3
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+29
-0
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+6
-0
paddle/fluid/inference/analysis/ir_pass_manager.cc
paddle/fluid/inference/analysis/ir_pass_manager.cc
+6
-5
paddle/fluid/inference/api/analysis_config.cc
paddle/fluid/inference/api/analysis_config.cc
+8
-1
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+4
-2
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+7
-0
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+1
-0
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+8
-7
paddle/fluid/operators/detection/yolo_box_op.cc
paddle/fluid/operators/detection/yolo_box_op.cc
+167
-0
paddle/fluid/operators/detection/yolo_box_op.cu
paddle/fluid/operators/detection/yolo_box_op.cu
+120
-0
paddle/fluid/operators/detection/yolo_box_op.h
paddle/fluid/operators/detection/yolo_box_op.h
+149
-0
paddle/fluid/operators/detection/yolov3_loss_op.cc
paddle/fluid/operators/detection/yolov3_loss_op.cc
+33
-0
paddle/fluid/operators/detection/yolov3_loss_op.h
paddle/fluid/operators/detection/yolov3_loss_op.h
+79
-26
paddle/fluid/operators/fake_quantize_op.cc
paddle/fluid/operators/fake_quantize_op.cc
+102
-0
paddle/fluid/operators/fake_quantize_op.cu
paddle/fluid/operators/fake_quantize_op.cu
+38
-0
paddle/fluid/operators/fake_quantize_op.h
paddle/fluid/operators/fake_quantize_op.h
+58
-1
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
+1
-0
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+7
-0
paddle/fluid/operators/softmax_with_cross_entropy_op.cu
paddle/fluid/operators/softmax_with_cross_entropy_op.cu
+2
-1
paddle/fluid/operators/squeeze_op.cc
paddle/fluid/operators/squeeze_op.cc
+1
-0
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+2
-0
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+4
-0
python/paddle/fluid/contrib/quantize/quantize_transpiler.py
python/paddle/fluid/contrib/quantize/quantize_transpiler.py
+74
-10
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+81
-5
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
...paddle/fluid/contrib/slim/tests/test_quantization_pass.py
+13
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+5
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+109
-12
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+48
-14
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+20
-2
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
+42
-0
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
+144
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+21
-0
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
+117
-0
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+70
-28
未找到文件。
paddle/fluid/API.spec
浏览文件 @
a275fd6e
...
...
@@ -68,7 +68,7 @@ paddle.fluid.initializer.MSRAInitializer.__init__ (ArgSpec(args=['self', 'unifor
paddle.fluid.initializer.force_init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '6d0f3e22c90d9d500d36ff57daf056ee'))
paddle.fluid.initializer.init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'a6d7011ca3d8c0d454dac3a56eae0c29'))
paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)), ('document', '
1929058262994f212620599c63aea6bd
'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)), ('document', '
424e898365195e3ccbc2e7dc8b63605e
'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', '89c2c55a0b0656b106064048e068e77a'))
paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)), ('document', 'dfbb624f85015df29e994ca6999e8ff6'))
paddle.fluid.layers.dynamic_lstmp (ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name', 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None, None)), ('document', 'b4b608b986eb9617aa0525e1be21d32d'))
...
...
@@ -330,7 +330,8 @@ paddle.fluid.layers.generate_mask_labels (ArgSpec(args=['im_info', 'gt_classes',
paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '587845f60c5d97ffdf2dfd21da52eca1'))
paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0)), ('document', '032d0f4b7d8f6235ee5d91e473344f0e'))
paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0e5ac2507723a0b5adec473f9556799b'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '991e934c3e09abf0edec7c9c978b4691'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gtscore', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', '57fa96922e42db8f064c3fb77f2255e8'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5566169a5ab993d177792c023c7fb340'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '397e9e02b451d99c56e20f268fa03f2e'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7bb011ec26bace2bc23235aa4a17647d'))
...
...
@@ -367,7 +368,7 @@ paddle.fluid.contrib.BeamSearchDecoder.read_array (ArgSpec(args=['self', 'init',
paddle.fluid.contrib.BeamSearchDecoder.update_array (ArgSpec(args=['self', 'array', 'value'], varargs=None, keywords=None, defaults=None), ('document', '5754e9b3212b7c09497151516a0de5a7'))
paddle.fluid.contrib.memory_usage (ArgSpec(args=['program', 'batch_size'], varargs=None, keywords=None, defaults=None), ('document', '8fcb2f93bb743693baa8d4860a5ccc47'))
paddle.fluid.contrib.op_freq_statistic (ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None), ('document', '4d43687113c4bf5b29d15aee2f4e4afa'))
paddle.fluid.contrib.QuantizeTranspiler.__init__ (ArgSpec(args=['self', 'weight_bits', 'activation_bits', 'activation_quantize_type', 'weight_quantize_type', 'window_size'
], varargs=None, keywords=None, defaults=(8, 8, 'abs_max', 'abs_max', 10000
)), ('document', '14b39f1fcd5667ff556b1aad94357d1d'))
paddle.fluid.contrib.QuantizeTranspiler.__init__ (ArgSpec(args=['self', 'weight_bits', 'activation_bits', 'activation_quantize_type', 'weight_quantize_type', 'window_size'
, 'moving_rate'], varargs=None, keywords=None, defaults=(8, 8, 'abs_max', 'abs_max', 10000, 0.9
)), ('document', '14b39f1fcd5667ff556b1aad94357d1d'))
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 (ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program (ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None)), ('document', '909675a1ab055c69b436a7893fcae4fd'))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile (ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6dd9909f10b283ba2892a99058a72884'))
...
...
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
a275fd6e
...
...
@@ -46,6 +46,7 @@ cc_library(fuse_pass_base SRCS fuse_pass_base.cc DEPS pass)
pass_library
(
graph_to_program_pass base
)
pass_library
(
graph_viz_pass base
)
pass_library
(
lock_free_optimize_pass base
)
pass_library
(
cpu_quantize_pass inference
)
pass_library
(
cpu_quantize_squash_pass inference
)
pass_library
(
fc_fuse_pass inference
)
pass_library
(
attention_lstm_fuse_pass inference
)
...
...
@@ -103,8 +104,11 @@ cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS g
cc_test
(
test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto
)
cc_test
(
test_seqpool_concat_fuse_pass SRCS seqpool_concat_fuse_pass_tester.cc DEPS seqpool_concat_fuse_pass framework_proto
)
cc_test
(
test_is_test_pass SRCS is_test_pass_tester.cc DEPS is_test_pass
)
cc_test
(
test_
sync_batch_norm_pass SRCS sync_batch_norm_pass_tester.cc DEPS sync_batch_norm_pass
)
cc_test
(
test_
cpu_quantize_pass SRCS cpu_quantize_pass_tester.cc DEPS cpu_quantize_pass naive_executor
)
cc_test
(
test_cpu_quantize_squash_pass SRCS cpu_quantize_squash_pass_tester.cc DEPS cpu_quantize_squash_pass naive_executor
)
if
(
NOT WIN32
)
cc_test
(
test_sync_batch_norm_pass SRCS sync_batch_norm_pass_tester.cc DEPS sync_batch_norm_pass
)
endif
()
if
(
WITH_MKLDNN
)
cc_test
(
test_depthwise_conv_mkldnn_pass SRCS mkldnn/depthwise_conv_mkldnn_pass_tester.cc DEPS depthwise_conv_mkldnn_pass
)
cc_test
(
test_conv_bias_mkldnn_fuse_pass SRCS mkldnn/conv_bias_mkldnn_fuse_pass_tester.cc DEPS conv_bias_mkldnn_fuse_pass naive_executor
)
...
...
paddle/fluid/framework/ir/cpu_quantize_pass.cc
0 → 100644
浏览文件 @
a275fd6e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/cpu_quantize_pass.h"
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
{
void
UnlinkNodes
(
ir
::
Node
*
a
,
ir
::
Node
*
b
)
{
a
->
outputs
.
erase
(
std
::
remove
(
a
->
outputs
.
begin
(),
a
->
outputs
.
end
(),
b
),
a
->
outputs
.
end
());
b
->
inputs
.
erase
(
std
::
remove
(
b
->
inputs
.
begin
(),
b
->
inputs
.
end
(),
a
),
b
->
inputs
.
end
());
}
}
// namespace
enum
{
U8_MAX
=
255
,
S8_MAX
=
127
};
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
double
,
Eigen
::
Dynamic
,
1
>>
;
using
string
::
PrettyLogDetail
;
void
CPUQuantizePass
::
QuantizeInput
(
Graph
*
g
,
Node
*
op
,
Node
*
input
,
std
::
string
input_name
,
double
scale_to_one
,
bool
is_unsigned
,
std
::
string
scale_attr_name
)
const
{
unsigned
max
=
is_unsigned
?
U8_MAX
:
S8_MAX
;
float
scale
=
scale_to_one
*
max
;
// Create quantize output variable
VarDesc
quantize_out_desc
(
patterns
::
PDNodeName
(
"quantize"
,
"out"
));
auto
*
quantize_out_node
=
g
->
CreateVarNode
(
&
quantize_out_desc
);
// create a quantize op node
OpDesc
q_desc
;
q_desc
.
SetType
(
"quantize"
);
q_desc
.
SetInput
(
"Input"
,
std
::
vector
<
std
::
string
>
({
input
->
Name
()}));
q_desc
.
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
quantize_out_node
->
Name
()}));
q_desc
.
SetAttr
(
"Scale"
,
scale
);
q_desc
.
SetAttr
(
"is_negative_input"
,
!
is_unsigned
);
auto
quantize_op
=
g
->
CreateOpNode
(
&
q_desc
);
// OpDesc will be copied.
// update op's input
op
->
Op
()
->
SetInput
(
input_name
,
std
::
vector
<
std
::
string
>
({
quantize_out_node
->
Name
()}));
// link quantize op
UnlinkNodes
(
input
,
op
);
IR_NODE_LINK_TO
(
input
,
quantize_op
);
IR_NODE_LINK_TO
(
quantize_op
,
quantize_out_node
);
IR_NODE_LINK_TO
(
quantize_out_node
,
op
);
if
(
!
scale_attr_name
.
empty
())
op
->
Op
()
->
SetAttr
(
scale_attr_name
,
scale
);
}
void
CPUQuantizePass
::
DequantizeOutput
(
Graph
*
g
,
Node
*
op
,
Node
*
output
,
std
::
string
output_name
,
double
scale_to_one
,
bool
is_unsigned
,
std
::
string
scale_attr_name
)
const
{
unsigned
max
=
is_unsigned
?
U8_MAX
:
S8_MAX
;
float
scale
=
scale_to_one
*
max
;
// Create dequantize input variable
VarDesc
dequantize_in_desc
(
patterns
::
PDNodeName
(
"dequantize"
,
"in"
));
auto
*
dequantize_in_node
=
g
->
CreateVarNode
(
&
dequantize_in_desc
);
// create a dequantize op node for output.
OpDesc
deq_desc
;
deq_desc
.
SetType
(
"dequantize"
);
deq_desc
.
SetInput
(
"Input"
,
std
::
vector
<
std
::
string
>
({
dequantize_in_node
->
Name
()}));
deq_desc
.
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
output
->
Name
()}));
deq_desc
.
SetAttr
(
"Scale"
,
scale
);
auto
dequantize_op
=
g
->
CreateOpNode
(
&
deq_desc
);
// OpDesc will be copied.
// update op's output
op
->
Op
()
->
SetOutput
(
output_name
,
std
::
vector
<
std
::
string
>
({
dequantize_in_node
->
Name
()}));
// link dequantize op
UnlinkNodes
(
op
,
output
);
IR_NODE_LINK_TO
(
op
,
dequantize_in_node
);
IR_NODE_LINK_TO
(
dequantize_in_node
,
dequantize_op
);
IR_NODE_LINK_TO
(
dequantize_op
,
output
);
if
(
!
scale_attr_name
.
empty
())
op
->
Op
()
->
SetAttr
(
scale_attr_name
,
scale
);
}
void
CPUQuantizePass
::
QuantizeConv
(
Graph
*
graph
,
bool
with_residual_data
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
ConvResidual
conv_pattern
{
pattern
,
name_scope_
};
conv_pattern
(
with_residual_data
);
int
quantize_conv_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"Quantize conv2d op"
;
GET_IR_NODE_FROM_SUBGRAPH
(
conv_op
,
conv_op
,
conv_pattern
);
auto
*
conv_op_desc
=
conv_op
->
Op
();
// skip if should not be quantized
if
(
!
conv_op_desc
->
HasAttr
(
"use_quantizer"
)
||
!
boost
::
get
<
bool
>
(
conv_op_desc
->
GetAttr
(
"use_quantizer"
)))
return
;
GET_IR_NODE_FROM_SUBGRAPH
(
conv_filter
,
conv_filter
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_input
,
conv_input
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_output
,
conv_output
,
conv_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
conv_input
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
conv_input
->
Name
()].
first
;
QuantizeInput
(
g
,
conv_op
,
conv_input
,
"Input"
,
input_scale
,
is_input_unsigned
,
"Scale_in"
);
auto
filter_scale_tensor
=
scales
[
conv_filter
->
Name
()].
second
;
EigenVectorArrayMap
eigen_tensor
{
filter_scale_tensor
.
data
<
double
>
(),
filter_scale_tensor
.
numel
(),
1
};
eigen_tensor
*=
static_cast
<
double
>
(
S8_MAX
);
std
::
vector
<
float
>
filter_scale
{
filter_scale_tensor
.
data
<
double
>
(),
filter_scale_tensor
.
data
<
double
>
()
+
filter_scale_tensor
.
numel
()};
conv_op
->
Op
()
->
SetAttr
(
"Scale_weights"
,
filter_scale
);
if
(
with_residual_data
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
conv_residual_data
,
conv_residual_data
,
conv_pattern
);
auto
residual_scale
=
scales
[
conv_residual_data
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_residual_unsigned
=
scales
[
conv_residual_data
->
Name
()].
first
;
QuantizeInput
(
g
,
conv_op
,
conv_residual_data
,
"ResidualData"
,
residual_scale
,
is_residual_unsigned
,
"Scale_in_eltwise"
);
}
auto
output_scale
=
scales
[
conv_output
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_output_unsigned
=
scales
[
conv_output
->
Name
()].
first
;
DequantizeOutput
(
g
,
conv_op
,
conv_output
,
"Output"
,
output_scale
,
is_output_unsigned
,
"Scale_out"
);
++
quantize_conv_count
;
};
gpd
(
graph
,
handler
);
AddStatis
(
quantize_conv_count
);
std
::
stringstream
msg_ss
;
msg_ss
<<
"--- quantized "
<<
quantize_conv_count
<<
" conv2d ops"
;
if
(
with_residual_data
)
msg_ss
<<
" with residual connection"
;
PrettyLogDetail
(
msg_ss
.
str
().
c_str
());
}
void
CPUQuantizePass
::
QuantizePool
(
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
Pool
pool_pattern
{
pattern
,
name_scope_
};
pool_pattern
();
int
quantize_pool_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"Quantize pool2d op"
;
GET_IR_NODE_FROM_SUBGRAPH
(
pool_op
,
pool_op
,
pool_pattern
);
auto
*
pool_op_desc
=
pool_op
->
Op
();
// skip if should not be quantized
if
(
!
pool_op_desc
->
HasAttr
(
"use_quantizer"
)
||
!
boost
::
get
<
bool
>
(
pool_op_desc
->
GetAttr
(
"use_quantizer"
)))
return
;
GET_IR_NODE_FROM_SUBGRAPH
(
pool_input
,
pool_input
,
pool_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
pool_output
,
pool_output
,
pool_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
pool_input
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
pool_input
->
Name
()].
first
;
QuantizeInput
(
g
,
pool_op
,
pool_input
,
"X"
,
input_scale
,
is_input_unsigned
);
auto
output_scale
=
scales
[
pool_output
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_output_unsigned
=
scales
[
pool_output
->
Name
()].
first
;
DequantizeOutput
(
g
,
pool_op
,
pool_output
,
"Out"
,
output_scale
,
is_output_unsigned
);
++
quantize_pool_count
;
};
gpd
(
graph
,
handler
);
AddStatis
(
quantize_pool_count
);
PrettyLogDetail
(
"--- quantized %d pool2d ops"
,
quantize_pool_count
);
}
std
::
unique_ptr
<
ir
::
Graph
>
CPUQuantizePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
VLOG
(
3
)
<<
"Quantizing the graph."
;
PADDLE_ENFORCE
(
graph
.
get
());
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
PADDLE_ENFORCE
(
param_scope
());
QuantizeConv
(
graph
.
get
(),
true
/* with_residual_data */
);
QuantizeConv
(
graph
.
get
());
QuantizePool
(
graph
.
get
());
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
cpu_quantize_pass
,
paddle
::
framework
::
ir
::
CPUQuantizePass
)
.
RequirePassAttr
(
"quant_var_scales"
);
paddle/fluid/framework/ir/cpu_quantize_pass.h
0 → 100644
浏览文件 @
a275fd6e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
* Map variable name to tensor of scaling factors scaling it to MAX=1.0.
* bool denotes whether quantization of the variable should be done to unsigned
* type.
*/
using
VarQuantScale
=
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
bool
,
LoDTensor
>>
;
/*
* Quantize all supported operators.
*/
class
CPUQuantizePass
:
public
FusePassBase
{
public:
virtual
~
CPUQuantizePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
void
QuantizeConv
(
Graph
*
graph
,
bool
with_residual_data
=
false
)
const
;
void
QuantizePool
(
Graph
*
graph
)
const
;
void
QuantizeInput
(
Graph
*
g
,
Node
*
op
,
Node
*
input
,
std
::
string
input_name
,
double
scale_to_one
,
bool
is_unsigned
,
std
::
string
scale_attr_name
=
""
)
const
;
void
DequantizeOutput
(
Graph
*
g
,
Node
*
op
,
Node
*
output
,
std
::
string
output_name
,
double
scale_to_one
,
bool
is_unsigned
,
std
::
string
scale_attr_name
=
""
)
const
;
const
std
::
string
name_scope_
{
"quantize"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/cpu_quantize_pass_tester.cc
0 → 100644
浏览文件 @
a275fd6e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/cpu_quantize_pass.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
SetOp
(
ProgramDesc
*
prog
,
const
std
::
string
&
type
,
const
std
::
string
&
name
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
vector
<
std
::
string
>&
outputs
,
bool
use_mkldnn
,
bool
use_quantizer
=
false
)
{
auto
*
op
=
prog
->
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
type
);
op
->
SetAttr
(
"use_mkldnn"
,
use_mkldnn
);
op
->
SetAttr
(
"name"
,
name
);
if
(
type
==
"conv2d"
)
{
op
->
SetInput
(
"Input"
,
{
inputs
[
0
]});
op
->
SetInput
(
"Filter"
,
{
inputs
[
1
]});
if
(
inputs
.
size
()
>
2
)
op
->
SetInput
(
"Bias"
,
{
inputs
[
2
]});
else
op
->
SetInput
(
"Bias"
,
{});
if
(
inputs
.
size
()
>
3
)
{
op
->
SetInput
(
"ResidualData"
,
{
inputs
[
3
]});
op
->
SetAttr
(
"fuse_residual_connection"
,
true
);
}
else
{
op
->
SetInput
(
"ResidualData"
,
{});
op
->
SetAttr
(
"fuse_residual_connection"
,
false
);
}
op
->
SetOutput
(
"Output"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"use_quantizer"
,
use_quantizer
);
op
->
SetAttr
(
"Scale_in"
,
1.0
f
);
op
->
SetAttr
(
"Scale_out"
,
1.0
f
);
op
->
SetAttr
(
"Scale_weights"
,
std
::
vector
<
float
>
{
1.0
f
});
}
else
if
(
type
==
"pool2d"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"use_quantizer"
,
use_quantizer
);
}
else
if
(
type
==
"dropout"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
}
else
if
(
type
==
"fc"
)
{
op
->
SetInput
(
"Input"
,
{
inputs
[
0
]});
if
(
inputs
.
size
()
>
1
)
op
->
SetInput
(
"W"
,
{
inputs
[
1
]});
if
(
inputs
.
size
()
>
2
)
op
->
SetInput
(
"Bias"
,
{
inputs
[
2
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
}
}
static
const
std
::
initializer_list
<
std
::
string
>
variable_names
{
"a"
,
"w1"
,
"c"
,
"d"
,
"w2"
,
"e"
,
"f"
,
"g"
,
"h"
,
"w3"
,
"b1"
,
"i"
,
"j"
,
"w4"
,
"b2"
};
// (a,w1)->Conv1->c and c->Pool1->d
//
// (d,w2)->Conv2->e and e->Pool2->f
//
// d->Dropout1->g and g->Fc1->h and (h,w3,b1,i)->Conv3->j
//
// (d,w4, b2)->Conv4->i
ProgramDesc
BuildProgramDesc
(
bool
use_mkldnn
,
bool
use_quantizer
)
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names
)
{
auto
*
var
=
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
if
(
v
.
find
(
"w"
)
==
0
||
v
.
find
(
"b"
)
==
0
)
{
var
->
SetPersistable
(
true
);
}
}
SetOp
(
&
prog
,
"conv2d"
,
"Conv1"
,
{
"a"
,
"w1"
},
{
"c"
},
use_mkldnn
,
use_quantizer
);
SetOp
(
&
prog
,
"pool2d"
,
"Pool1"
,
{
"c"
},
{
"d"
},
use_mkldnn
,
use_quantizer
);
SetOp
(
&
prog
,
"conv2d"
,
"Conv2"
,
{
"d"
,
"w2"
},
{
"e"
},
use_mkldnn
,
use_quantizer
);
SetOp
(
&
prog
,
"pool2d"
,
"Pool2"
,
{
"e"
},
{
"f"
},
use_mkldnn
,
use_quantizer
);
SetOp
(
&
prog
,
"dropout"
,
"Dropout1"
,
{
"d"
},
{
"g"
},
use_mkldnn
);
SetOp
(
&
prog
,
"fc"
,
"Fc1"
,
{
"g"
},
{
"h"
},
use_mkldnn
);
SetOp
(
&
prog
,
"conv2d"
,
"Conv3"
,
{
"h"
,
"w3"
,
"b1"
,
"i"
},
{
"j"
},
use_mkldnn
,
use_quantizer
);
SetOp
(
&
prog
,
"conv2d"
,
"Conv4"
,
{
"c"
,
"w4"
,
"b2"
},
{
"i"
},
use_mkldnn
,
use_quantizer
);
return
prog
;
}
void
InitTensorHolder
(
Scope
*
scope
,
const
paddle
::
platform
::
Place
&
place
,
const
char
*
var_name
)
{
auto
x
=
scope
->
Var
(
var_name
);
auto
tensor
=
x
->
GetMutable
<
LoDTensor
>
();
tensor
->
mutable_data
(
place
,
proto
::
VarType
::
FP32
,
::
paddle
::
memory
::
Allocator
::
kDefault
,
1
);
}
void
MainTest
(
const
ProgramDesc
&
prog
,
int
conv_count
,
int
pool_count
,
int
quant_count
,
int
dequant_count
,
int
added_nodes_count
,
float
scale
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
// Init scope, as it is used in pass
auto
place
=
paddle
::
platform
::
CPUPlace
();
NaiveExecutor
exe
{
place
};
Scope
scope
;
exe
.
CreateVariables
(
prog
,
0
,
true
,
&
scope
);
auto
*
scales
=
new
VarQuantScale
();
for
(
auto
&
v
:
variable_names
)
{
InitTensorHolder
(
&
scope
,
place
,
v
.
c_str
());
LoDTensor
tensor
;
tensor
.
Resize
({
1
});
auto
*
ptr
=
tensor
.
mutable_data
<
double
>
(
place
);
ptr
[
0
]
=
2.0
;
(
*
scales
)[
v
]
=
std
::
make_pair
(
false
,
std
::
move
(
tensor
));
}
graph
->
Set
(
kParamScopeAttr
,
new
framework
::
Scope
*
(
&
scope
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"cpu_quantize_pass"
);
pass
->
Set
(
"quant_var_scales"
,
scales
);
int
original_nodes_num
=
graph
->
Nodes
().
size
();
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
int
quantize_nodes_count
=
0
;
int
dequantize_nodes_count
=
0
;
int
conv2d_nodes_count
=
0
;
int
pool2d_nodes_count
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
auto
*
op
=
node
->
Op
();
if
(
op
->
Type
()
==
"conv2d"
)
{
conv2d_nodes_count
++
;
auto
op_name
=
boost
::
get
<
std
::
string
>
(
op
->
GetAttr
(
"name"
));
EXPECT_EQ
(
boost
::
get
<
float
>
(
op
->
GetAttr
(
"Scale_in"
)),
scale
)
<<
"Scale_in for node '"
+
op_name
+
"'."
;
EXPECT_EQ
(
boost
::
get
<
float
>
(
op
->
GetAttr
(
"Scale_out"
)),
scale
)
<<
"Scale_out for node '"
+
op_name
+
"'."
;
EXPECT_EQ
(
boost
::
get
<
std
::
vector
<
float
>>
(
op
->
GetAttr
(
"Scale_weights"
))[
0
],
scale
)
<<
"Scale_weights for node '"
+
op_name
+
"'."
;
}
else
if
(
op
->
Type
()
==
"pool2d"
)
{
pool2d_nodes_count
++
;
}
else
if
(
op
->
Type
()
==
"quantize"
)
{
quantize_nodes_count
++
;
}
else
if
(
op
->
Type
()
==
"dequantize"
)
{
dequantize_nodes_count
++
;
}
}
}
EXPECT_EQ
(
conv2d_nodes_count
,
conv_count
);
EXPECT_EQ
(
pool2d_nodes_count
,
pool_count
);
EXPECT_EQ
(
quantize_nodes_count
,
quant_count
);
EXPECT_EQ
(
dequantize_nodes_count
,
dequant_count
);
EXPECT_EQ
(
original_nodes_num
+
added_nodes_count
,
current_nodes_num
);
}
TEST
(
CpuQuantizePass
,
quantize
)
{
bool
use_mkldnn
=
true
;
bool
use_quantizer
=
true
;
// (a->QUANT1->IN1,w1)->Conv1->OUT1->DEQUANT1->c and
// c->QUANT2->IN2->Pool1->OUT2->DEQUANT2->d
//
// (d->QUANT3->IN3,w2)->Conv2->OUT3->DEQUANT3->e and
// e->QUANT4->IN4->Pool2->OUT4->DEQUANT4->f
//
// d->Dropout1->g and g->Fc1->h and
// (h->QUANT5->IN5,w3,b1,i->QUANT6->IN6)->Conv3->OUT5->DEQUANT5->j
//
// (d->QUANT7->IN7,w4, b2)->Conv4->DEQUANT6->OUT6->i
// Insert nodes: 7 Quant + 7 IN + 6 OUT + 6 DEQUANT
int
added_nodes
=
7
+
7
+
6
+
6
;
MainTest
(
BuildProgramDesc
(
use_mkldnn
,
use_quantizer
),
4
,
2
,
7
,
6
,
added_nodes
,
2.0
f
*
127
);
}
TEST
(
CpuQuantizePass
,
do_not_quantize
)
{
bool
use_mkldnn
=
true
;
bool
use_quantizer
=
false
;
int
added_nodes
=
0
;
MainTest
(
BuildProgramDesc
(
use_mkldnn
,
use_quantizer
),
4
,
2
,
0
,
0
,
added_nodes
,
1.0
f
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
cpu_quantize_pass
);
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
a275fd6e
...
...
@@ -90,7 +90,8 @@ void GraphPatternDetector::operator()(Graph *graph,
ValidateByNodeRole
(
&
subgraphs
);
if
(
subgraphs
.
empty
())
return
;
PrettyLogEndl
(
Style
::
detail
(),
"--- detect %d subgraphs"
,
subgraphs
.
size
());
PrettyLogEndl
(
Style
::
detail
(),
"--- detected %d subgraphs"
,
subgraphs
.
size
());
int
id
=
0
;
for
(
auto
&
g
:
subgraphs
)
{
VLOG
(
3
)
<<
"optimizing #"
<<
id
++
<<
" subgraph"
;
...
...
@@ -1074,9 +1075,53 @@ PDNode *patterns::Conv::operator()() {
->
AsOutput
()
->
assert_is_op_output
(
"conv2d"
,
"Output"
);
conv_op
->
LinksFrom
({
input_var
,
filter_var
});
conv_op
->
LinksTo
({
output_var
});
conv_op
->
LinksFrom
({
input_var
,
filter_var
}).
LinksTo
({
output_var
});
return
output_var
;
}
PDNode
*
patterns
::
ConvResidual
::
operator
()(
bool
with_residual_data
)
{
auto
conv_op
=
pattern
->
NewNode
(
conv_op_repr
())
->
assert_is_op
(
"conv2d"
);
if
(
!
with_residual_data
)
conv_op
->
assert_op_attr
(
"fuse_residual_connection"
,
false
);
auto
input_var
=
pattern
->
NewNode
(
conv_input_repr
())
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
auto
filter_var
=
pattern
->
NewNode
(
conv_filter_repr
())
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"Filter"
);
auto
output_var
=
pattern
->
NewNode
(
conv_output_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"conv2d"
,
"Output"
);
std
::
vector
<
PDNode
*>
links_from
{
input_var
,
filter_var
};
if
(
with_residual_data
)
{
auto
res_conn_var
=
pattern
->
NewNode
(
conv_residual_data_repr
())
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"ResidualData"
);
links_from
.
push_back
(
res_conn_var
);
}
conv_op
->
LinksFrom
(
links_from
).
LinksTo
({
output_var
});
return
output_var
;
}
PDNode
*
patterns
::
Pool
::
operator
()()
{
auto
pool_op
=
pattern
->
NewNode
(
pool_op_repr
())
->
assert_is_op
(
"pool2d"
);
auto
input_var
=
pattern
->
NewNode
(
pool_input_repr
())
->
AsInput
()
->
assert_is_op_input
(
"pool2d"
,
"X"
);
auto
output_var
=
pattern
->
NewNode
(
pool_output_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"pool2d"
,
"Out"
);
pool_op
->
LinksFrom
({
input_var
}).
LinksTo
({
output_var
});
return
output_var
;
}
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
a275fd6e
...
...
@@ -659,6 +659,35 @@ struct Conv : public PatternBase {
PATTERN_DECL_NODE
(
conv_output
);
};
// Convolution op with residual data
struct
ConvResidual
:
public
PatternBase
{
ConvResidual
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"conv_residual"
)
{}
PDNode
*
operator
()(
bool
with_residual_data
);
PATTERN_DECL_NODE
(
conv_op
);
PATTERN_DECL_NODE
(
conv_input
);
PATTERN_DECL_NODE
(
conv_filter
);
PATTERN_DECL_NODE
(
conv_residual_data
);
PATTERN_DECL_NODE
(
conv_output
);
};
// Pool op
// Forward pass for pooling.
// pool_input is the input.
// pool_output is a result of the operator.
struct
Pool
:
public
PatternBase
{
Pool
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"pooling"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
pool_op
);
PATTERN_DECL_NODE
(
pool_input
);
PATTERN_DECL_NODE
(
pool_output
);
};
// ElementwiseAdd used in residual connections.
// y_var is used and convolution output.
// The operator is removed, when residual
...
...
paddle/fluid/inference/analysis/argument.h
浏览文件 @
a275fd6e
...
...
@@ -27,6 +27,7 @@
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
...
...
@@ -38,7 +39,10 @@
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
using
framework
::
ir
::
Graph
;
using
VarQuantScale
=
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
bool
,
framework
::
LoDTensor
>>
;
/*
* The argument definition of both Pass and PassManagers.
...
...
@@ -127,6 +131,8 @@ struct Argument {
// Pass a set of op types to enable its mkldnn kernel
DECL_ARGUMENT_FIELD
(
mkldnn_enabled_op_types
,
MKLDNNEnabledOpTypes
,
std
::
unordered_set
<
std
::
string
>
);
// Scales for variables to be quantized
DECL_ARGUMENT_FIELD
(
quant_var_scales
,
QuantVarScales
,
VarQuantScale
);
// Passed from config.
DECL_ARGUMENT_FIELD
(
use_gpu
,
UseGPU
,
bool
);
...
...
paddle/fluid/inference/analysis/ir_pass_manager.cc
浏览文件 @
a275fd6e
...
...
@@ -14,6 +14,7 @@
#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
...
...
@@ -55,14 +56,14 @@ void IRPassManager::CreatePasses(Argument *argument,
".dot"
;
pass
->
Set
(
"graph_viz_path"
,
new
std
::
string
(
std
::
move
(
dot_file_path
)));
pass_num
++
;
}
if
(
pass_name
==
"mkldnn_placement_pass"
)
{
}
else
if
(
pass_name
==
"mkldnn_placement_pass"
)
{
pass
->
Set
(
"mkldnn_enabled_op_types"
,
new
std
::
unordered_set
<
std
::
string
>
(
argument
->
mkldnn_enabled_op_types
()));
}
if
(
pass_name
==
"tensorrt_subgraph_pass"
)
{
}
else
if
(
pass_name
==
"cpu_quantize_pass"
)
{
pass
->
Set
(
"quant_var_scales"
,
new
VarQuantScale
(
argument
->
quant_var_scales
()));
}
else
if
(
pass_name
==
"tensorrt_subgraph_pass"
)
{
pass
->
Set
(
"workspace_size"
,
new
int
(
argument
->
tensorrt_workspace_size
()));
pass
->
Set
(
"max_batch_size"
,
new
int
(
argument
->
tensorrt_max_batch_size
()));
pass
->
Set
(
"min_subgraph_size"
,
...
...
paddle/fluid/inference/api/analysis_config.cc
浏览文件 @
a275fd6e
...
...
@@ -222,7 +222,14 @@ void AnalysisConfig::Update() {
}
if
(
enable_memory_optim_
)
{
pass_builder
()
->
AppendAnalysisPass
(
"memory_optimize_pass"
);
auto
analysis_passes
=
pass_builder
()
->
AnalysisPasses
();
auto
memory_opti_pass_name
=
"memory_optimize_pass"
;
bool
already_exists
=
std
::
find
(
analysis_passes
.
begin
(),
analysis_passes
.
end
(),
memory_opti_pass_name
)
!=
analysis_passes
.
end
();
if
(
!
already_exists
)
{
pass_builder
()
->
AppendAnalysisPass
(
memory_opti_pass_name
);
}
}
if
(
ir_debug_
)
{
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
a275fd6e
...
...
@@ -58,8 +58,10 @@ if (WITH_GPU)
op_library
(
conv_fusion_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(conv2d_fusion);
\n
"
)
endif
()
op_library
(
sync_batch_norm_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(sync_batch_norm);
\n
"
)
if
(
NOT WIN32
)
op_library
(
sync_batch_norm_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(sync_batch_norm);
\n
"
)
endif
()
else
()
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale
)
endif
()
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
a275fd6e
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/conv_op.h"
#include <memory>
#include <string>
#include <vector>
...
...
@@ -194,6 +195,12 @@ void Conv2DOpMaker::Make() {
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_quantizer"
,
"(bool, default false) "
"Set to true for operators that should be quantized and use "
"int8 kernel. "
"Only used on CPU."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_relu"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_residual_connection"
,
...
...
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
a275fd6e
...
...
@@ -33,6 +33,7 @@ detection_library(rpn_target_assign_op SRCS rpn_target_assign_op.cc)
detection_library
(
generate_proposal_labels_op SRCS generate_proposal_labels_op.cc
)
detection_library
(
box_clip_op SRCS box_clip_op.cc box_clip_op.cu
)
detection_library
(
yolov3_loss_op SRCS yolov3_loss_op.cc
)
detection_library
(
yolo_box_op SRCS yolo_box_op.cc yolo_box_op.cu
)
detection_library
(
box_decoder_and_assign_op SRCS box_decoder_and_assign_op.cc box_decoder_and_assign_op.cu
)
if
(
WITH_GPU
)
...
...
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
a275fd6e
...
...
@@ -60,14 +60,15 @@ class BoxCoderOp : public framework::OperatorWithKernel {
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
.
size
(),
3
,
"The rank of Input TargetBox must be 3"
);
if
(
axis
==
0
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
[
1
],
prior_box_dims
[
0
]);
}
else
if
(
axis
==
1
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
[
0
],
prior_box_dims
[
0
]);
}
else
{
PADDLE_THROW
(
"axis must be 0 or 1."
);
PADDLE_ENFORCE
(
axis
==
0
||
axis
==
1
,
"axis must be 0 or 1"
);
if
(
ctx
->
IsRuntime
())
{
if
(
axis
==
0
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
[
1
],
prior_box_dims
[
0
]);
}
else
if
(
axis
==
1
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
[
0
],
prior_box_dims
[
0
]);
}
PADDLE_ENFORCE_EQ
(
target_box_dims
[
2
],
prior_box_dims
[
1
]);
}
PADDLE_ENFORCE_EQ
(
target_box_dims
[
2
],
prior_box_dims
[
1
]);
ctx
->
ShareDim
(
"TargetBox"
,
/*->*/
"OutputBox"
);
}
...
...
paddle/fluid/operators/detection/yolo_box_op.cc
0 → 100644
浏览文件 @
a275fd6e
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/yolo_box_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
YoloBoxOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of YoloBoxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ImgSize"
),
"Input(ImgSize) of YoloBoxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Boxes"
),
"Output(Boxes) of YoloBoxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Scores"
),
"Output(Scores) of YoloBoxOp should not be null."
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_imgsize
=
ctx
->
GetInputDim
(
"ImgSize"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"Input(X) should be a 4-D tensor."
);
PADDLE_ENFORCE_EQ
(
dim_x
[
1
],
anchor_num
*
(
5
+
class_num
),
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num))."
);
PADDLE_ENFORCE_EQ
(
dim_imgsize
.
size
(),
2
,
"Input(ImgSize) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
dim_imgsize
[
0
],
dim_x
[
0
],
"Input(ImgSize) dim[0] and Input(X) dim[0] should be same."
);
PADDLE_ENFORCE_EQ
(
dim_imgsize
[
1
],
2
,
"Input(ImgSize) dim[1] should be 2."
);
PADDLE_ENFORCE_GT
(
anchors
.
size
(),
0
,
"Attr(anchors) length should be greater than 0."
);
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
"Attr(anchors) length should be even integer."
);
PADDLE_ENFORCE_GT
(
class_num
,
0
,
"Attr(class_num) should be an integer greater than 0."
);
int
box_num
=
dim_x
[
2
]
*
dim_x
[
3
]
*
anchor_num
;
std
::
vector
<
int64_t
>
dim_boxes
({
dim_x
[
0
],
box_num
,
4
});
ctx
->
SetOutputDim
(
"Boxes"
,
framework
::
make_ddim
(
dim_boxes
));
std
::
vector
<
int64_t
>
dim_scores
({
dim_x
[
0
],
box_num
,
class_num
});
ctx
->
SetOutputDim
(
"Scores"
,
framework
::
make_ddim
(
dim_scores
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
GetPlace
());
}
};
class
YoloBoxOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input tensor of YoloBox operator is a 4-D tensor with "
"shape of [N, C, H, W]. The second dimension(C) stores "
"box locations, confidence score and classification one-hot "
"keys of each anchor box. Generally, X should be the output "
"of YOLOv3 network."
);
AddInput
(
"ImgSize"
,
"The image size tensor of YoloBox operator, "
"This is a 2-D tensor with shape of [N, 2]. This tensor holds "
"height and width of each input image used for resizing output "
"box in input image scale."
);
AddOutput
(
"Boxes"
,
"The output tensor of detection boxes of YoloBox operator, "
"This is a 3-D tensor with shape of [N, M, 4], N is the "
"batch num, M is output box number, and the 3rd dimension "
"stores [xmin, ymin, xmax, ymax] coordinates of boxes."
);
AddOutput
(
"Scores"
,
"The output tensor of detection boxes scores of YoloBox "
"operator, This is a 3-D tensor with shape of "
"[N, M, :attr:`class_num`], N is the batch num, M is "
"output box number."
);
AddAttr
<
int
>
(
"class_num"
,
"The number of classes to predict."
);
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
"The anchor width and height, "
"it will be parsed pair by pair."
)
.
SetDefault
(
std
::
vector
<
int
>
{});
AddAttr
<
int
>
(
"downsample_ratio"
,
"The downsample ratio from network input to YoloBox operator "
"input, so 32, 16, 8 should be set for the first, second, "
"and thrid YoloBox operators."
)
.
SetDefault
(
32
);
AddAttr
<
float
>
(
"conf_thresh"
,
"The confidence scores threshold of detection boxes. "
"Boxes with confidence scores under threshold should "
"be ignored."
)
.
SetDefault
(
0.01
);
AddComment
(
R"DOC(
This operator generates YOLO detection boxes from output of YOLOv3 network.
The output of previous network is in shape [N, C, H, W], while H and W
should be the same, H and W specify the grid size, each grid point predict
given number boxes, this given number, which following will be represented as S,
is specified by the number of anchors. In the second dimension(the channel
dimension), C should be equal to S * (5 + class_num), class_num is the object
category number of source dataset(such as 80 in coco dataset), so the
second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
also includes confidence score of the box and class one-hot key of each anchor
box.
Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box
predictions should be as follows:
$$
b_x = \\sigma(t_x) + c_x
$$
$$
b_y = \\sigma(t_y) + c_y
$$
$$
b_w = p_w e^{t_w}
$$
$$
b_h = p_h e^{t_h}
$$
in the equation above, :math:`c_x, c_y` is the left top corner of current grid
and :math:`p_w, p_h` is specified by anchors.
The logistic regression value of the 5th channel of each anchor prediction boxes
represents the confidence score of each prediction box, and the logistic
regression value of the last :attr:`class_num` channels of each anchor prediction
boxes represents the classifcation scores. Boxes with confidence scores less than
:attr:`conf_thresh` should be ignored, and box final scores is the product of
confidence scores and classification scores.
$$
score_{pred} = score_{conf} * score_{class}
$$
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
yolo_box
,
ops
::
YoloBoxOp
,
ops
::
YoloBoxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
yolo_box
,
ops
::
YoloBoxKernel
<
float
>
,
ops
::
YoloBoxKernel
<
double
>
);
paddle/fluid/operators/detection/yolo_box_op.cu
0 → 100644
浏览文件 @
a275fd6e
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/yolo_box_op.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
__global__
void
KeYoloBoxFw
(
const
T
*
input
,
const
int
*
imgsize
,
T
*
boxes
,
T
*
scores
,
const
float
conf_thresh
,
const
int
*
anchors
,
const
int
n
,
const
int
h
,
const
int
w
,
const
int
an_num
,
const
int
class_num
,
const
int
box_num
,
int
input_size
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
T
box
[
4
];
for
(;
tid
<
n
*
box_num
;
tid
+=
stride
)
{
int
grid_num
=
h
*
w
;
int
i
=
tid
/
box_num
;
int
j
=
(
tid
%
box_num
)
/
grid_num
;
int
k
=
(
tid
%
grid_num
)
/
w
;
int
l
=
tid
%
w
;
int
an_stride
=
(
5
+
class_num
)
*
grid_num
;
int
img_height
=
imgsize
[
2
*
i
];
int
img_width
=
imgsize
[
2
*
i
+
1
];
int
obj_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
4
);
T
conf
=
sigmoid
<
T
>
(
input
[
obj_idx
]);
if
(
conf
<
conf_thresh
)
{
continue
;
}
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
0
);
GetYoloBox
<
T
>
(
box
,
input
,
anchors
,
l
,
k
,
j
,
h
,
input_size
,
box_idx
,
grid_num
,
img_height
,
img_width
);
box_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes
,
box
,
box_idx
,
img_height
,
img_width
);
int
label_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
5
);
int
score_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
class_num
;
CalcLabelScore
<
T
>
(
scores
,
input
,
label_idx
,
score_idx
,
class_num
,
conf
,
grid_num
);
}
}
template
<
typename
T
>
class
YoloBoxOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
img_size
=
ctx
.
Input
<
Tensor
>
(
"ImgSize"
);
auto
*
boxes
=
ctx
.
Output
<
Tensor
>
(
"Boxes"
);
auto
*
scores
=
ctx
.
Output
<
Tensor
>
(
"Scores"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
conf_thresh
=
ctx
.
Attr
<
float
>
(
"conf_thresh"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size
=
downsample_ratio
*
h
;
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
int
bytes
=
sizeof
(
int
)
*
anchors
.
size
();
auto
anchors_ptr
=
allocator
.
Allocate
(
sizeof
(
int
)
*
anchors
.
size
());
int
*
anchors_data
=
reinterpret_cast
<
int
*>
(
anchors_ptr
->
ptr
());
const
auto
gplace
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
const
auto
cplace
=
platform
::
CPUPlace
();
memory
::
Copy
(
gplace
,
anchors_data
,
cplace
,
anchors
.
data
(),
bytes
,
dev_ctx
.
stream
());
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
img_size
->
data
<
int
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
ctx
.
GetPlace
());
T
*
scores_data
=
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
boxes
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
scores
,
static_cast
<
T
>
(
0
));
int
grid_dim
=
(
n
*
box_num
+
512
-
1
)
/
512
;
grid_dim
=
grid_dim
>
8
?
8
:
grid_dim
;
KeYoloBoxFw
<
T
><<<
grid_dim
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
imgsize_data
,
boxes_data
,
scores_data
,
conf_thresh
,
anchors_data
,
n
,
h
,
w
,
an_num
,
class_num
,
box_num
,
input_size
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
yolo_box
,
ops
::
YoloBoxOpCUDAKernel
<
float
>
,
ops
::
YoloBoxOpCUDAKernel
<
double
>
);
paddle/fluid/operators/detection/yolo_box_op.h
0 → 100644
浏览文件 @
a275fd6e
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
HOSTDEVICE
inline
T
sigmoid
(
T
x
)
{
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
));
}
template
<
typename
T
>
HOSTDEVICE
inline
void
GetYoloBox
(
T
*
box
,
const
T
*
x
,
const
int
*
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size
,
int
input_size
,
int
index
,
int
stride
,
int
img_height
,
int
img_width
)
{
box
[
0
]
=
(
i
+
sigmoid
<
T
>
(
x
[
index
]))
*
img_width
/
grid_size
;
box
[
1
]
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
]))
*
img_height
/
grid_size
;
box
[
2
]
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
*
img_width
/
input_size
;
box
[
3
]
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
*
img_height
/
input_size
;
}
HOSTDEVICE
inline
int
GetEntryIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
,
int
entry
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
}
template
<
typename
T
>
HOSTDEVICE
inline
void
CalcDetectionBox
(
T
*
boxes
,
T
*
box
,
const
int
box_idx
,
const
int
img_height
,
const
int
img_width
)
{
boxes
[
box_idx
]
=
box
[
0
]
-
box
[
2
]
/
2
;
boxes
[
box_idx
+
1
]
=
box
[
1
]
-
box
[
3
]
/
2
;
boxes
[
box_idx
+
2
]
=
box
[
0
]
+
box
[
2
]
/
2
;
boxes
[
box_idx
+
3
]
=
box
[
1
]
+
box
[
3
]
/
2
;
boxes
[
box_idx
]
=
boxes
[
box_idx
]
>
0
?
boxes
[
box_idx
]
:
static_cast
<
T
>
(
0
);
boxes
[
box_idx
+
1
]
=
boxes
[
box_idx
+
1
]
>
0
?
boxes
[
box_idx
+
1
]
:
static_cast
<
T
>
(
0
);
boxes
[
box_idx
+
2
]
=
boxes
[
box_idx
+
2
]
<
img_width
-
1
?
boxes
[
box_idx
+
2
]
:
static_cast
<
T
>
(
img_width
-
1
);
boxes
[
box_idx
+
3
]
=
boxes
[
box_idx
+
3
]
<
img_height
-
1
?
boxes
[
box_idx
+
3
]
:
static_cast
<
T
>
(
img_height
-
1
);
}
template
<
typename
T
>
HOSTDEVICE
inline
void
CalcLabelScore
(
T
*
scores
,
const
T
*
input
,
const
int
label_idx
,
const
int
score_idx
,
const
int
class_num
,
const
T
conf
,
const
int
stride
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
scores
[
score_idx
+
i
]
=
conf
*
sigmoid
<
T
>
(
input
[
label_idx
+
i
*
stride
]);
}
}
template
<
typename
T
>
class
YoloBoxKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
imgsize
=
ctx
.
Input
<
Tensor
>
(
"ImgSize"
);
auto
*
boxes
=
ctx
.
Output
<
Tensor
>
(
"Boxes"
);
auto
*
scores
=
ctx
.
Output
<
Tensor
>
(
"Scores"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
conf_thresh
=
ctx
.
Attr
<
float
>
(
"conf_thresh"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size
=
downsample_ratio
*
h
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
Tensor
anchors_
;
auto
anchors_data
=
anchors_
.
mutable_data
<
int
>
({
an_num
*
2
},
ctx
.
GetPlace
());
std
::
copy
(
anchors
.
begin
(),
anchors
.
end
(),
anchors_data
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
imgsize
->
data
<
int
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
ctx
.
GetPlace
());
memset
(
boxes_data
,
0
,
boxes
->
numel
()
*
sizeof
(
T
));
T
*
scores_data
=
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
ctx
.
GetPlace
());
memset
(
scores_data
,
0
,
scores
->
numel
()
*
sizeof
(
T
));
T
box
[
4
];
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
int
img_height
=
imgsize_data
[
2
*
i
];
int
img_width
=
imgsize_data
[
2
*
i
+
1
];
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
obj_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
4
);
T
conf
=
sigmoid
<
T
>
(
input_data
[
obj_idx
]);
if
(
conf
<
conf_thresh
)
{
continue
;
}
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
0
);
GetYoloBox
<
T
>
(
box
,
input_data
,
anchors_data
,
l
,
k
,
j
,
h
,
input_size
,
box_idx
,
stride
,
img_height
,
img_width
);
box_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes_data
,
box
,
box_idx
,
img_height
,
img_width
);
int
label_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
5
);
int
score_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
class_num
;
CalcLabelScore
<
T
>
(
scores_data
,
input_data
,
label_idx
,
score_idx
,
class_num
,
conf
,
stride
);
}
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/detection/yolov3_loss_op.cc
浏览文件 @
a275fd6e
...
...
@@ -10,6 +10,7 @@
limitations under the License. */
#include "paddle/fluid/operators/detection/yolov3_loss_op.h"
#include <memory>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
...
...
@@ -72,6 +73,18 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GT
(
class_num
,
0
,
"Attr(class_num) should be an integer greater then 0."
);
if
(
ctx
->
HasInput
(
"GTScore"
))
{
auto
dim_gtscore
=
ctx
->
GetInputDim
(
"GTScore"
);
PADDLE_ENFORCE_EQ
(
dim_gtscore
.
size
(),
2
,
"Input(GTScore) should be a 2-D tensor"
);
PADDLE_ENFORCE_EQ
(
dim_gtscore
[
0
],
dim_gtbox
[
0
],
"Input(GTBox) and Input(GTScore) dim[0] should be same"
);
PADDLE_ENFORCE_EQ
(
dim_gtscore
[
1
],
dim_gtbox
[
1
],
"Input(GTBox) and Input(GTScore) dim[1] should be same"
);
}
std
::
vector
<
int64_t
>
dim_out
({
dim_x
[
0
]});
ctx
->
SetOutputDim
(
"Loss"
,
framework
::
make_ddim
(
dim_out
));
...
...
@@ -112,6 +125,12 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
"This is a 2-D tensor with shape of [N, max_box_num], "
"and each element should be an integer to indicate the "
"box class id."
);
AddInput
(
"GTScore"
,
"The score of GTLabel, This is a 2-D tensor in same shape "
"GTLabel, and score values should in range (0, 1). This "
"input is for GTLabel score can be not 1.0 in image mixup "
"augmentation."
)
.
AsDispensable
();
AddOutput
(
"Loss"
,
"The output yolov3 loss tensor, "
"This is a 1-D tensor with shape of [N]"
);
...
...
@@ -143,6 +162,9 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
float
>
(
"ignore_thresh"
,
"The ignore threshold to ignore confidence loss."
)
.
SetDefault
(
0.7
);
AddAttr
<
bool
>
(
"use_label_smooth"
,
"Whether to use label smooth. Default True."
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
This operator generates yolov3 loss based on given predict result and ground
truth boxes.
...
...
@@ -204,6 +226,15 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
loss = (loss_{xy} + loss_{wh}) * weight_{box}
+ loss_{conf} + loss_{class}
$$
While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
target will be smoothed when calculating classification loss, target of
positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
negetive samples will be smoothed to :math:`1.0 / class\_num`.
While :attr:`GTScore` is given, which means the mixup score of ground truth
boxes, all losses incured by a ground truth box will be multiplied by its
mixup score.
)DOC"
);
}
};
...
...
@@ -240,6 +271,7 @@ class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"GTBox"
,
Input
(
"GTBox"
));
op
->
SetInput
(
"GTLabel"
,
Input
(
"GTLabel"
));
op
->
SetInput
(
"GTScore"
,
Input
(
"GTScore"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
OutputGrad
(
"Loss"
));
op
->
SetInput
(
"ObjectnessMask"
,
Output
(
"ObjectnessMask"
));
op
->
SetInput
(
"GTMatchMask"
,
Output
(
"GTMatchMask"
));
...
...
@@ -249,6 +281,7 @@ class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"GTBox"
),
{});
op
->
SetOutput
(
framework
::
GradVarName
(
"GTLabel"
),
{});
op
->
SetOutput
(
framework
::
GradVarName
(
"GTScore"
),
{});
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
...
...
paddle/fluid/operators/detection/yolov3_loss_op.h
浏览文件 @
a275fd6e
...
...
@@ -37,8 +37,8 @@ static T SigmoidCrossEntropy(T x, T label) {
}
template
<
typename
T
>
static
T
L
2
Loss
(
T
x
,
T
y
)
{
return
0.5
*
(
y
-
x
)
*
(
y
-
x
);
static
T
L
1
Loss
(
T
x
,
T
y
)
{
return
std
::
abs
(
y
-
x
);
}
template
<
typename
T
>
...
...
@@ -47,8 +47,8 @@ static T SigmoidCrossEntropyGrad(T x, T label) {
}
template
<
typename
T
>
static
T
L
2
LossGrad
(
T
x
,
T
y
)
{
return
x
-
y
;
static
T
L
1
LossGrad
(
T
x
,
T
y
)
{
return
x
>
y
?
1.0
:
-
1.0
;
}
static
int
GetMaskIndex
(
std
::
vector
<
int
>
mask
,
int
val
)
{
...
...
@@ -121,47 +121,49 @@ template <typename T>
static
void
CalcBoxLocationLoss
(
T
*
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
)
{
int
input_size
,
int
stride
,
T
score
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
;
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
;
loss
[
0
]
+=
L
2
Loss
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
;
loss
[
0
]
+=
L
2
Loss
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
;
loss
[
0
]
+=
L
1
Loss
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
;
loss
[
0
]
+=
L
1
Loss
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
;
}
template
<
typename
T
>
static
void
CalcBoxLocationLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
)
{
int
grid_size
,
int
input_size
,
int
stride
,
T
score
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
input_grad
[
box_idx
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
*
loss
;
input_grad
[
box_idx
+
stride
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
*
loss
;
input_grad
[
box_idx
+
2
*
stride
]
=
L
2
LossGrad
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
*
loss
;
L
1
LossGrad
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
*
loss
;
input_grad
[
box_idx
+
3
*
stride
]
=
L
2
LossGrad
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
*
loss
;
L
1
LossGrad
<
T
>
(
input
[
box_idx
+
3
*
stride
],
th
)
*
scale
*
loss
;
}
template
<
typename
T
>
static
inline
void
CalcLabelLoss
(
T
*
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
)
{
const
int
stride
,
const
T
pos
,
const
T
neg
,
T
score
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
pred
,
(
i
==
label
)
?
1.0
:
0.0
)
;
loss
[
0
]
+=
SigmoidCrossEntropy
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
;
}
}
...
...
@@ -169,11 +171,13 @@ template <typename T>
static
inline
void
CalcLabelLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
)
{
const
int
stride
,
const
T
pos
,
const
T
neg
,
T
score
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
input_grad
[
index
+
i
*
stride
]
=
SigmoidCrossEntropyGrad
<
T
>
(
pred
,
(
i
==
label
)
?
1.0
:
0.0
)
*
loss
;
SigmoidCrossEntropyGrad
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
*
loss
;
}
}
...
...
@@ -188,8 +192,8 @@ static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
1e-5
)
{
// positive sample: obj =
1
loss
[
i
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
k
*
w
+
l
],
1.0
);
// positive sample: obj =
mixup score
loss
[
i
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
;
}
else
if
(
obj
>
-
0.5
)
{
// negetive sample: obj = 0
loss
[
i
]
+=
SigmoidCrossEntropy
<
T
>
(
input
[
k
*
w
+
l
],
0.0
);
...
...
@@ -215,7 +219,8 @@ static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
1e-5
)
{
input_grad
[
k
*
w
+
l
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
loss
[
i
];
SigmoidCrossEntropyGrad
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
*
loss
[
i
];
}
else
if
(
obj
>
-
0.5
)
{
input_grad
[
k
*
w
+
l
]
=
SigmoidCrossEntropyGrad
<
T
>
(
input
[
k
*
w
+
l
],
0.0
)
*
loss
[
i
];
...
...
@@ -252,6 +257,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_score
=
ctx
.
Input
<
Tensor
>
(
"GTScore"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
*
objness_mask
=
ctx
.
Output
<
Tensor
>
(
"ObjectnessMask"
);
auto
*
gt_match_mask
=
ctx
.
Output
<
Tensor
>
(
"GTMatchMask"
);
...
...
@@ -260,6 +266,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
bool
use_label_smooth
=
ctx
.
Attr
<
bool
>
(
"use_label_smooth"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
...
...
@@ -272,6 +279,13 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
label_pos
=
1.0
-
1.0
/
static_cast
<
T
>
(
class_num
);
label_neg
=
1.0
/
static_cast
<
T
>
(
class_num
);
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
...
...
@@ -283,6 +297,19 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
int
*
gt_match_mask_data
=
gt_match_mask
->
mutable_data
<
int
>
({
n
,
b
},
ctx
.
GetPlace
());
const
T
*
gt_score_data
;
if
(
!
gt_score
)
{
Tensor
gtscore
;
gtscore
.
mutable_data
<
T
>
({
n
,
b
},
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
()(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
gtscore
,
static_cast
<
T
>
(
1.0
));
gt_score
=
&
gtscore
;
gt_score_data
=
gtscore
.
data
<
T
>
();
}
else
{
gt_score_data
=
gt_score
->
data
<
T
>
();
}
// calc valid gt box mask, avoid calc duplicately in following code
Tensor
gt_valid_mask
;
bool
*
gt_valid_mask_data
=
...
...
@@ -355,19 +382,20 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
int
mask_idx
=
GetMaskIndex
(
anchor_mask
,
best_n
);
gt_match_mask_data
[
i
*
b
+
t
]
=
mask_idx
;
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLoss
<
T
>
(
loss_data
+
i
,
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
obj_mask_data
[
obj_idx
]
=
1.0
;
obj_mask_data
[
obj_idx
]
=
score
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLoss
<
T
>
(
loss_data
+
i
,
input_data
,
label_idx
,
label
,
class_num
,
stride
);
class_num
,
stride
,
label_pos
,
label_neg
,
score
);
}
}
}
...
...
@@ -384,6 +412,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_score
=
ctx
.
Input
<
Tensor
>
(
"GTScore"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
objness_mask
=
ctx
.
Input
<
Tensor
>
(
"ObjectnessMask"
);
...
...
@@ -392,6 +421,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
anchor_mask
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
bool
use_label_smooth
=
ctx
.
Attr
<
bool
>
(
"use_label_smooth"
);
const
int
n
=
input_grad
->
dims
()[
0
];
const
int
c
=
input_grad
->
dims
()[
1
];
...
...
@@ -404,6 +434,13 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
label_pos
=
1.0
-
1.0
/
static_cast
<
T
>
(
class_num
);
label_neg
=
1.0
/
static_cast
<
T
>
(
class_num
);
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
...
...
@@ -414,25 +451,41 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
memset
(
input_grad_data
,
0
,
input_grad
->
numel
()
*
sizeof
(
T
));
const
T
*
gt_score_data
;
if
(
!
gt_score
)
{
Tensor
gtscore
;
gtscore
.
mutable_data
<
T
>
({
n
,
b
},
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
()(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
&
gtscore
,
static_cast
<
T
>
(
1.0
));
gt_score
=
&
gtscore
;
gt_score_data
=
gtscore
.
data
<
T
>
();
}
else
{
gt_score_data
=
gt_score
->
data
<
T
>
();
}
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
int
mask_idx
=
gt_match_mask_data
[
i
*
b
+
t
];
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
label_idx
,
label
,
class_num
,
stride
);
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
,
score
);
}
}
}
...
...
paddle/fluid/operators/fake_quantize_op.cc
浏览文件 @
a275fd6e
...
...
@@ -81,6 +81,30 @@ struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
template
struct
FindRangeAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
<
typename
T
>
struct
FindMovingAverageAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
framework
::
Tensor
&
in_accum
,
const
framework
::
Tensor
&
in_state
,
const
T
*
cur_scale
,
const
float
rate
,
framework
::
Tensor
*
out_state
,
framework
::
Tensor
*
out_accum
,
framework
::
Tensor
*
out_scale
)
{
T
accum
=
in_accum
.
data
<
T
>
()[
0
];
T
state
=
in_state
.
data
<
T
>
()[
0
];
T
scale
=
cur_scale
[
0
];
state
=
rate
*
state
+
1
;
accum
=
rate
*
accum
+
scale
;
scale
=
accum
/
state
;
out_state
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())[
0
]
=
state
;
out_accum
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())[
0
]
=
accum
;
out_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())[
0
]
=
scale
;
}
};
template
struct
FindMovingAverageAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
float
>;
class
FakeQuantizeAbsMaxOp
:
public
framework
::
OperatorWithKernel
{
public:
FakeQuantizeAbsMaxOp
(
const
std
::
string
&
type
,
...
...
@@ -255,6 +279,78 @@ $$Out = round(X/scale * range)$$
}
};
class
FakeQuantizeMovingAverageAbsMaxOp
:
public
framework
::
OperatorWithKernel
{
public:
FakeQuantizeMovingAverageAbsMaxOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of FakeQuantizeMovingAverageAbsMaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of FakeQuantizeMovingAverageAbsMaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"OutScale"
),
"Output(OutScale) of FakeQuantizeMovingAverageAbsMaxOp "
"should not be null"
);
if
(
ctx
->
HasOutput
(
"OutState"
))
{
ctx
->
SetOutputDim
(
"OutState"
,
{
1
});
}
if
(
ctx
->
HasOutput
(
"OutAccum"
))
{
ctx
->
SetOutputDim
(
"OutAccum"
,
{
1
});
}
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
"OutScale"
,
{
1
});
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
(),
ctx
.
device_context
());
}
};
class
FakeQuantizeMovingAverageAbsMaxOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) Input is float data type."
);
AddInput
(
"InScale"
,
"Last scale."
);
AddInput
(
"InAccum"
,
"Last accum."
).
AsDispensable
();
AddInput
(
"InState"
,
"Last state."
).
AsDispensable
();
AddOutput
(
"Out"
,
"(Tensor) Output of quantized low level tensor."
);
AddOutput
(
"OutScale"
,
" Current scale"
);
AddOutput
(
"OutState"
,
"(Tensor) state buffer."
).
AsDispensable
();
AddOutput
(
"OutAccum"
,
"(Tensor) accum buffer."
).
AsDispensable
();
AddAttr
<
float
>
(
"moving_rate"
,
"(float, default 0.9) moving rate."
)
.
SetDefault
(
0.9
);
AddAttr
<
int
>
(
"bit_length"
,
"(int, default 8), quantization bit number."
)
.
SetDefault
(
8
)
.
AddCustomChecker
([](
const
int
&
bit_length
)
{
PADDLE_ENFORCE
(
bit_length
>=
1
&&
bit_length
<=
16
,
"'bit_length' should be between 1 and 16."
);
});
AddAttr
<
bool
>
(
"is_test"
,
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
FakeQuantize operator is used in static quantization.
$$scale = (0.9*max(abs(x))+accum)/(0.9*state+1)$$
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -273,6 +369,12 @@ REGISTER_OPERATOR(fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp,
REGISTER_OP_CPU_KERNEL
(
fake_quantize_range_abs_max
,
ops
::
FakeQuantizeRangeAbsMaxKernel
<
CPU
,
float
>
);
REGISTER_OPERATOR
(
fake_quantize_moving_average_abs_max
,
ops
::
FakeQuantizeMovingAverageAbsMaxOp
,
ops
::
FakeQuantizeMovingAverageAbsMaxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
fake_quantize_moving_average_abs_max
,
ops
::
FakeQuantizeMovingAverageAbsMaxKernel
<
CPU
,
float
>
);
REGISTER_OPERATOR
(
fake_channel_wise_quantize_abs_max
,
ops
::
FakeChannelWiseQuantizeAbsMaxOp
,
ops
::
FakeChannelWiseQuantizeAbsMaxOpMaker
,
...
...
paddle/fluid/operators/fake_quantize_op.cu
浏览文件 @
a275fd6e
...
...
@@ -147,6 +147,41 @@ struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, T> {
template
struct
FindRangeAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
struct
FindMovingAverageAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in_accum
,
const
framework
::
Tensor
&
in_state
,
const
T
*
cur_scale
,
const
float
rate
,
framework
::
Tensor
*
out_state
,
framework
::
Tensor
*
out_accum
,
framework
::
Tensor
*
out_scale
)
{
const
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
T
accum
;
memory
::
Copy
(
platform
::
CPUPlace
(),
&
accum
,
gpu_place
,
in_accum
.
data
<
T
>
(),
sizeof
(
T
),
0
);
T
state
;
memory
::
Copy
(
platform
::
CPUPlace
(),
&
state
,
gpu_place
,
in_state
.
data
<
T
>
(),
sizeof
(
T
),
0
);
T
scale
;
memory
::
Copy
(
platform
::
CPUPlace
(),
&
scale
,
gpu_place
,
cur_scale
,
sizeof
(
T
),
0
);
state
=
rate
*
state
+
1
;
accum
=
rate
*
accum
+
scale
;
scale
=
accum
/
state
;
memory
::
Copy
(
gpu_place
,
out_accum
->
mutable_data
<
T
>
(
gpu_place
),
platform
::
CPUPlace
(),
&
accum
,
sizeof
(
T
),
0
);
memory
::
Copy
(
gpu_place
,
out_state
->
mutable_data
<
T
>
(
gpu_place
),
platform
::
CPUPlace
(),
&
state
,
sizeof
(
T
),
0
);
memory
::
Copy
(
gpu_place
,
out_scale
->
mutable_data
<
T
>
(
gpu_place
),
platform
::
CPUPlace
(),
&
scale
,
sizeof
(
T
),
0
);
}
};
template
struct
FindMovingAverageAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
...
...
@@ -178,3 +213,6 @@ REGISTER_OP_CUDA_KERNEL(fake_channel_wise_quantize_abs_max,
ops
::
FakeChannelWiseQuantizeAbsMaxKernel
<
CUDA
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_range_abs_max
,
ops
::
FakeQuantizeRangeAbsMaxKernel
<
CUDA
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
fake_quantize_moving_average_abs_max
,
ops
::
FakeQuantizeMovingAverageAbsMaxKernel
<
CUDA
,
float
>
);
paddle/fluid/operators/fake_quantize_op.h
浏览文件 @
a275fd6e
...
...
@@ -42,12 +42,20 @@ struct FindRangeAbsMaxFunctor {
framework
::
Tensor
*
scales_arr
,
framework
::
Tensor
*
out_scale
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
FindMovingAverageAbsMaxFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in_accum
,
const
framework
::
Tensor
&
in_state
,
const
framework
::
Tensor
&
cur_scale
,
framework
::
Tensor
*
out_state
,
framework
::
Tensor
*
out_accum
,
framework
::
Tensor
*
out_scale
);
};
template
<
typename
DeviceContext
,
typename
T
>
class
FakeQuantizeAbsMaxKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out_scale
=
context
.
Output
<
framework
::
Tensor
>
(
"OutScale"
);
T
*
out_s
=
out_scale
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
@@ -138,5 +146,54 @@ class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
FakeQuantizeMovingAverageAbsMaxKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in_scale
=
context
.
Input
<
framework
::
Tensor
>
(
"InScale"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
// testing
if
(
is_test
)
{
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
in_scale
,
bin_cnt
,
out
);
return
;
}
// training
auto
*
in_accum
=
context
.
Input
<
framework
::
Tensor
>
(
"InAccum"
);
auto
*
in_state
=
context
.
Input
<
framework
::
Tensor
>
(
"InState"
);
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
auto
cur_scale
=
allocator
.
Allocate
(
1
*
sizeof
(
T
));
T
*
cur_scale_data
=
static_cast
<
T
*>
(
cur_scale
->
ptr
());
FindAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
->
data
<
T
>
(),
in
->
numel
(),
cur_scale_data
);
auto
*
out_state
=
context
.
Output
<
framework
::
Tensor
>
(
"OutState"
);
auto
*
out_accum
=
context
.
Output
<
framework
::
Tensor
>
(
"OutAccum"
);
auto
*
out_scale
=
context
.
Output
<
framework
::
Tensor
>
(
"OutScale"
);
out_state
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out_accum
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out_scale
->
mutable_data
<
T
>
(
context
.
GetPlace
());
float
moving_rate
=
context
.
Attr
<
float
>
(
"moving_rate"
);
FindMovingAverageAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in_accum
,
*
in_state
,
cur_scale_data
,
moving_rate
,
out_state
,
out_accum
,
out_scale
);
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
out
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
浏览文件 @
a275fd6e
...
...
@@ -592,6 +592,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
platform
::
SetDstMemoryHandler
<
uint8_t
>
(
ctx
,
output
,
handler
,
&
dst_memory_p
);
}
else
{
need_s8_to_u8
=
fuse_relu
;
platform
::
SetDstMemoryHandler
<
int8_t
>
(
ctx
,
output
,
handler
,
&
dst_memory_p
);
}
...
...
paddle/fluid/operators/pool_op.cc
浏览文件 @
a275fd6e
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/pool_op.h"
#include <unordered_map>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
...
...
@@ -212,6 +213,12 @@ void Pool2dOpMaker::Make() {
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_quantizer"
,
"(bool, default false) "
"Set to true for operators that should be quantized and use "
"int8 kernel. "
"Only used on CPU."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCHW) Only used in "
...
...
paddle/fluid/operators/softmax_with_cross_entropy_op.cu
浏览文件 @
a275fd6e
...
...
@@ -439,7 +439,8 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel<T> {
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
))
->
data
<
T
>
();
Tensor
*
logit_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
logit_grad
->
ShareDataWith
(
*
context
.
Input
<
Tensor
>
(
"Softmax"
));
framework
::
TensorCopy
(
*
context
.
Input
<
Tensor
>
(
"Softmax"
),
context
.
GetPlace
(),
context
.
device_context
(),
logit_grad
);
T
*
logit_grad_data
=
logit_grad
->
data
<
T
>
();
const
int
batch_size
=
logit_grad
->
dims
()[
0
];
...
...
paddle/fluid/operators/squeeze_op.cc
浏览文件 @
a275fd6e
...
...
@@ -94,6 +94,7 @@ class SqueezeOpInferShape : public framework::InferShapeBase {
}
};
// TODO(paddle-dev): Should use OpKernel.
class
SqueezeOp
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
a275fd6e
...
...
@@ -316,7 +316,9 @@ CUDADeviceContext::~CUDADeviceContext() {
eigen_stream_
.
reset
();
eigen_device_
.
reset
();
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
#if !defined(_WIN32)
PADDLE_ENFORCE
(
dynload
::
ncclCommDestroy
(
nccl_comm_
));
#endif
}
Place
CUDADeviceContext
::
GetPlace
()
const
{
return
place_
;
}
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
a275fd6e
...
...
@@ -265,11 +265,13 @@ class CUDADeviceContext : public DeviceContext {
/*! \brief Return cuda stream in the device context. */
cudaStream_t
stream
()
const
;
#if !defined(_WIN32)
/*! \brief Return nccl communicators. */
ncclComm_t
nccl_comm
()
const
{
return
nccl_comm_
;
}
/*! \brief Set nccl communicators. */
void
set_nccl_comm
(
ncclComm_t
comm
)
{
nccl_comm_
=
comm
;
}
#endif
template
<
typename
Callback
>
void
RecordEvent
(
cudaEvent_t
ev
,
Callback
callback
)
{
...
...
@@ -295,12 +297,14 @@ class CUDADeviceContext : public DeviceContext {
std
::
unique_ptr
<
CublasHandleHolder
>
cublas_handle_
;
std
::
unique_ptr
<
CublasHandleHolder
>
cublas_tensor_core_handle_
;
#if !defined(_WIN32)
// NCCL communicator (single process version) for NCCL collective operations.
// NCCL collective operations provides fast collectives over multiple GPUs
// both within and across nodes.
// But, this collectives is used for collectives over multiple GPUs within
// nodes.
ncclComm_t
nccl_comm_
{
nullptr
};
#endif
int
compute_capability_
;
int
runtime_version_
;
...
...
python/paddle/fluid/contrib/quantize/quantize_transpiler.py
浏览文件 @
a275fd6e
...
...
@@ -84,7 +84,8 @@ class QuantizeTranspiler(object):
activation_bits
=
8
,
activation_quantize_type
=
'abs_max'
,
weight_quantize_type
=
'abs_max'
,
window_size
=
10000
):
window_size
=
10000
,
moving_rate
=
0.9
):
"""
Convert and rewrite the fluid Program according to weight and
activation quantization type.
...
...
@@ -117,23 +118,27 @@ class QuantizeTranspiler(object):
"""
self
.
weight_bits
=
weight_bits
self
.
activation_bits
=
activation_bits
quant_type
=
[
'abs_max'
,
'range_abs_max'
]
quant_type
=
[
'abs_max'
,
'range_abs_max'
,
'moving_average_abs_max'
]
if
weight_quantize_type
not
in
quant_type
:
raise
ValueError
(
"Unknown weight_quantize_type: '%s'. It can only be "
,
"'abs_max' or 'range_abs_max'."
,
str
(
weight_quantize_type
))
"'abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
,
str
(
weight_quantize_type
))
if
activation_quantize_type
not
in
quant_type
:
raise
ValueError
(
"Unknown activation_quantize_type : '%s'. It can only be "
,
"'abs_max' or 'range_abs_max'."
,
str
(
activation_quantize_type
))
"'abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
,
str
(
activation_quantize_type
))
self
.
weight_quantize_type
=
weight_quantize_type
self
.
activation_quantize_type
=
activation_quantize_type
self
.
window_size
=
window_size
self
.
moving_rate
=
moving_rate
self
.
helper
=
LayerHelper
(
self
.
__class__
.
__name__
)
self
.
fake_quant_op_types
=
[
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
,
'fake_quantize_moving_average_abs_max'
]
self
.
fake_dequant_op_types
=
[
'fake_dequantize_max_abs'
]
self
.
is_test
=
None
...
...
@@ -168,6 +173,7 @@ class QuantizeTranspiler(object):
block_id
=
block
.
idx
# insert quant op and dequant op
for
name
in
op
.
input_arg_names
:
#if share input between ops
if
name
in
dequanted_vars
[
block_id
]:
dequant_var
=
dequanted_vars
[
block_id
][
name
]
else
:
...
...
@@ -261,6 +267,7 @@ class QuantizeTranspiler(object):
max_range
=
None
scale_var
=
None
for
name
in
op
.
input_arg_names
:
#rename input name of the op to the input name of last op which has be removed
if
name
in
op_in_rename_map
[
block_id
]:
op
.
_rename_input
(
name
,
op_in_rename_map
[
block_id
][
name
])
...
...
@@ -272,8 +279,7 @@ class QuantizeTranspiler(object):
max_range
=
param_range
*
act_range
/
scale_v
else
:
assert
isinstance
(
scale_v
,
Variable
)
scale_var
=
var_scale_map
[
block_id
][
_original_var_name
(
name
)]
scale_var
=
scale_v
if
len
(
op
.
output_arg_names
)
!=
1
:
raise
ValueError
(
"Only support one output, but op %s has"
...
...
@@ -309,7 +315,7 @@ class QuantizeTranspiler(object):
op_type
=
op
.
type
# insert dequant_op after fc/conv, need to rename
# input of the followed ops
# input of the followed ops
(of fc/conv) to the dquant_op
for
name
in
op
.
input_arg_names
:
if
name
in
op_out_rename_map
[
block_id
]:
op
.
_rename_input
(
name
,
...
...
@@ -389,8 +395,8 @@ class QuantizeTranspiler(object):
for
op
in
block
.
ops
:
args
+=
op
.
input_arg_names
args
+=
op
.
output_arg_names
args
=
list
(
set
(
args
))
var_names
=
block
.
vars
.
keys
()
args
=
list
(
set
(
args
))
#vals of all left ops
var_names
=
block
.
vars
.
keys
()
# all vals
sub_block_remove_vars
=
[]
for
var
in
var_names
:
if
var
not
in
args
:
...
...
@@ -471,6 +477,61 @@ class QuantizeTranspiler(object):
return
quant_var
,
scale
def
_insert_quant_moving_average_abs_max_op
(
self
,
block
,
idx
,
var
,
quant_bits
):
"""Insert fake_quantize_moving_average_abs_max
"""
quant_var
=
block
.
create_var
(
name
=
_quantized_var_name
(
var
.
name
),
type
=
var
.
type
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
)
state
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
.
generate
(
'state'
),
persistable
=
True
,
dtype
=
var
.
dtype
,
shape
=
[
1
])
self
.
helper
.
set_variable_initializer
(
state
,
initializer
=
Constant
(
value
=
1
))
accum
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
.
generate
(
'accum'
),
persistable
=
True
,
dtype
=
var
.
dtype
,
shape
=
[
1
])
self
.
helper
.
set_variable_initializer
(
accum
,
initializer
=
Constant
(
value
=
1
))
scale
=
self
.
helper
.
create_parameter
(
attr
=
ParamAttr
(
name
=
_quantized_scale_name
(
var
.
name
),
initializer
=
Constant
(
0.001
),
trainable
=
False
),
shape
=
[
1
],
dtype
=
var
.
dtype
)
scale
.
stop_gradient
=
True
ins
=
{
'X'
:
var
,
'InScale'
:
scale
}
outs
=
{
'Out'
:
quant_var
,
'OutScale'
:
scale
}
if
not
self
.
is_test
:
ins
[
'InState'
]
=
state
ins
[
'InAccum'
]
=
accum
outs
[
'OutState'
]
=
state
outs
[
'OutAccum'
]
=
accum
attrs
=
{
'bit_length'
:
quant_bits
,
'moving_rate'
:
self
.
moving_rate
,
'is_test'
:
self
.
is_test
}
quant_op
=
block
.
_insert_op
(
idx
,
type
=
'fake_quantize_moving_average_abs_max'
,
attrs
=
attrs
,
inputs
=
ins
,
outputs
=
outs
)
return
quant_var
,
scale
def
_insert_quant_op
(
self
,
block
,
idx
,
var
,
quant_bits
,
quant_type
):
"""
Insert fake_quantize_op
...
...
@@ -480,6 +541,9 @@ class QuantizeTranspiler(object):
elif
quant_type
==
'range_abs_max'
:
return
self
.
_insert_quant_range_abs_max_op
(
block
,
idx
,
var
,
quant_bits
)
elif
quant_type
==
'moving_average_abs_max'
:
return
self
.
_insert_quant_moving_average_abs_max_op
(
block
,
idx
,
var
,
quant_bits
)
def
_insert_dequant_op
(
self
,
block
,
idx
,
var
,
scale
,
quant_bits
):
"""
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
a275fd6e
...
...
@@ -38,7 +38,8 @@ class QuantizationTransformPass(object):
activation_bits
=
8
,
activation_quantize_type
=
'abs_max'
,
weight_quantize_type
=
'abs_max'
,
window_size
=
10000
):
window_size
=
10000
,
moving_rate
=
0.9
):
"""
Convert and rewrite the IrGraph according to weight and
activation quantization type.
...
...
@@ -83,19 +84,22 @@ class QuantizationTransformPass(object):
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
quant_type
=
[
'abs_max'
,
'range_abs_max'
]
quant_type
=
[
'abs_max'
,
'range_abs_max'
,
'moving_average_abs_max'
]
if
activation_quantize_type
not
in
quant_type
:
raise
ValueError
(
"Unknown activation_quantize_type : '%s'. It can only be "
,
"'abs_max' or 'range_abs_max'."
,
str
(
activation_quantize_type
))
"'abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
,
str
(
activation_quantize_type
))
if
weight_quantize_type
not
in
quant_type
:
raise
ValueError
(
"Unknown weight_quantize_type: '%s'. It can only be "
,
"'abs_max' or 'range_abs_max'."
,
str
(
weight_quantize_type
))
"'abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
,
str
(
weight_quantize_type
))
self
.
_activation_quantize_type
=
activation_quantize_type
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_window_size
=
window_size
self
.
_moving_rate
=
moving_rate
self
.
_need_initialized
=
collections
.
OrderedDict
()
self
.
_quantizable_ops
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
...
...
@@ -222,6 +226,9 @@ class QuantizationTransformPass(object):
elif
quant_type
==
'range_abs_max'
:
return
self
.
_insert_quant_range_abs_max_op
(
graph
,
var_node
,
quant_bits
)
elif
quant_type
==
'moving_average_abs_max'
:
return
self
.
_insert_quant_moving_average_abs_max_op
(
graph
,
var_node
,
quant_bits
)
def
_insert_quant_abs_max_op
(
self
,
graph
,
var_node
,
quant_bits
):
"""
...
...
@@ -309,6 +316,74 @@ class QuantizationTransformPass(object):
return
quant_var_node
,
scale_out_node
def
_insert_quant_moving_average_abs_max_op
(
self
,
graph
,
var_node
,
quant_bits
):
"""Insert fake_quantize_moving_average_abs_max
"""
quant_var_node
=
graph
.
create_var_node
(
name
=
self
.
_quantized_var_name
(
var_node
.
name
()),
var_type
=
var_node
.
type
(),
shape
=
var_node
.
shape
(),
var_dtype
=
var_node
.
dtype
())
scale_in_node
=
graph
.
create_persistable_node
(
name
=
self
.
_quantized_scale_name
(
var_node
.
name
()),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
var_dtype
=
var_node
.
dtype
())
self
.
_need_initialized
[
scale_in_node
.
var
()]
=
Constant
(
value
=
0.001
)
scale_out_node
=
graph
.
create_var_node_from_desc
(
scale_in_node
.
var
())
ins
=
{
'X'
:
var_node
,
'InScale'
:
scale_in_node
}
outs
=
{
'Out'
:
quant_var_node
,
'OutScale'
:
scale_out_node
}
if
not
self
.
_is_test
:
state_in_node
=
graph
.
create_persistable_node
(
name
=
unique_name
.
generate
(
'state'
),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_dtype
=
var_node
.
dtype
(),
shape
=
[
1
])
self
.
_need_initialized
[
state_in_node
.
var
()]
=
Constant
(
value
=
1
)
accum_in_node
=
graph
.
create_persistable_node
(
name
=
unique_name
.
generate
(
'accum'
),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_dtype
=
var_node
.
dtype
(),
shape
=
[
1
])
self
.
_need_initialized
[
accum_in_node
.
var
()]
=
Constant
(
value
=
1
)
state_out_node
=
graph
.
create_var_node_from_desc
(
state_in_node
.
var
(
))
accum_out_node
=
graph
.
create_var_node_from_desc
(
accum_in_node
.
var
(
))
ins
[
'InState'
]
=
state_in_node
ins
[
'InAccum'
]
=
accum_in_node
outs
[
'OutState'
]
=
state_out_node
outs
[
'OutAccum'
]
=
accum_out_node
attrs
=
{
'bit_length'
:
quant_bits
,
'moving_rate'
:
self
.
_moving_rate
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
}
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_quantize_moving_average_abs_max'
,
attrs
=
attrs
,
inputs
=
ins
,
outputs
=
outs
)
graph
.
link_to
(
var_node
,
quant_op_node
)
graph
.
link_to
(
scale_in_node
,
quant_op_node
)
graph
.
link_to
(
quant_op_node
,
quant_var_node
)
graph
.
link_to
(
quant_op_node
,
scale_out_node
)
if
not
self
.
_is_test
:
graph
.
link_to
(
state_in_node
,
quant_op_node
)
graph
.
link_to
(
accum_in_node
,
quant_op_node
)
graph
.
link_to
(
quant_op_node
,
state_out_node
)
graph
.
link_to
(
quant_op_node
,
accum_out_node
)
return
quant_var_node
,
scale_out_node
def
_insert_dequant_op
(
self
,
graph
,
var_node
,
scale_var_node
,
quant_bits
):
"""
Insert fake_dequantize_op in the graph.
...
...
@@ -389,7 +464,8 @@ class QuantizationFreezePass(object):
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_quantizable_ops
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
self
.
_fake_quant_op_names
=
[
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
,
'fake_quantize_moving_average_abs_max'
]
self
.
_fake_dequant_op_names
=
[
'fake_dequantize_max_abs'
]
self
.
_op_input_rename_map
=
collections
.
OrderedDict
()
...
...
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
浏览文件 @
a275fd6e
...
...
@@ -164,6 +164,9 @@ class TestQuantizationTransformPass(unittest.TestCase):
def
test_linear_fc_quant_range_abs_max
(
self
):
self
.
linear_fc_quant
(
'range_abs_max'
,
for_ci
=
True
)
def
test_linear_fc_quant_moving_average_abs_max
(
self
):
self
.
linear_fc_quant
(
'moving_average_abs_max'
,
for_ci
=
True
)
def
residual_block_quant
(
self
,
quant_type
,
for_ci
=
False
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
...
...
@@ -201,6 +204,9 @@ class TestQuantizationTransformPass(unittest.TestCase):
def
test_residual_block_range_abs_max
(
self
):
self
.
residual_block_quant
(
'range_abs_max'
,
for_ci
=
True
)
def
test_residual_block_moving_average_abs_max
(
self
):
self
.
residual_block_quant
(
'moving_average_abs_max'
,
for_ci
=
True
)
class
TestQuantizationFreezePass
(
unittest
.
TestCase
):
def
freeze_graph
(
self
,
use_cuda
,
seed
,
quant_type
,
for_ci
=
False
):
...
...
@@ -380,11 +386,18 @@ class TestQuantizationFreezePass(unittest.TestCase):
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
True
,
seed
=
1
,
quant_type
=
'range_abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
True
,
seed
=
1
,
quant_type
=
'moving_average_abs_max'
,
for_ci
=
True
)
def
test_freeze_graph_cpu_static
(
self
):
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
False
,
seed
=
2
,
quant_type
=
'range_abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
False
,
seed
=
2
,
quant_type
=
'moving_average_abs_max'
,
for_ci
=
True
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/framework.py
浏览文件 @
a275fd6e
...
...
@@ -430,6 +430,11 @@ class Variable(object):
Returns:
str: The debug string.
"""
if
_in_imperative_mode
():
# TODO(panyx0718): add more imperative debug info.
return
'name %s, dtype: %s shape: %s'
%
(
self
.
name
,
self
.
dtype
,
self
.
shape
)
assert
isinstance
(
throw_on_error
,
bool
)
and
isinstance
(
with_details
,
bool
)
protostr
=
self
.
desc
.
serialize_to_string
()
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
a275fd6e
...
...
@@ -49,6 +49,7 @@ __all__ = [
'box_coder'
,
'polygon_box_transform'
,
'yolov3_loss'
,
'yolo_box'
,
'box_clip'
,
'multiclass_nms'
,
'distribute_fpn_proposals'
,
...
...
@@ -515,6 +516,8 @@ def yolov3_loss(x,
class_num
,
ignore_thresh
,
downsample_ratio
,
gtscore
=
None
,
use_label_smooth
=
True
,
name
=
None
):
"""
${comment}
...
...
@@ -533,28 +536,35 @@ def yolov3_loss(x,
class_num (int): ${class_num_comment}
ignore_thresh (float): ${ignore_thresh_comment}
downsample_ratio (int): ${downsample_ratio_comment}
name (string): the name of yolov3 loss
name (string): the name of yolov3 loss. Default None.
gtscore (Variable): mixup score of ground truth boxes, shoud be in shape
of [N, B]. Default None.
use_label_smooth (bool): ${use_label_smooth_comment}
Returns:
Variable: A 1-D tensor with shape [
1
], the value of yolov3 loss
Variable: A 1-D tensor with shape [
N
], the value of yolov3 loss
Raises:
TypeError: Input x of yolov3_loss must be Variable
TypeError: Input gtbox of yolov3_loss must be Variable"
TypeError: Input gtlabel of yolov3_loss must be Variable"
TypeError: Input gtbox of yolov3_loss must be Variable
TypeError: Input gtlabel of yolov3_loss must be Variable
TypeError: Input gtscore of yolov3_loss must be None or Variable
TypeError: Attr anchors of yolov3_loss must be list or tuple
TypeError: Attr class_num of yolov3_loss must be an integer
TypeError: Attr ignore_thresh of yolov3_loss must be a float number
TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32')
gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32')
gtbox = fluid.layers.data(name='gtbox', shape=[6, 4], dtype='float32')
gtlabel = fluid.layers.data(name='gtlabel', shape=[6], dtype='int32')
gtscore = fluid.layers.data(name='gtscore', shape=[6], dtype='float32')
anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
anchor_mask = [0, 1, 2]
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, gtlabel=gtlabel, anchors=anchors,
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, gtlabel=gtlabel,
gtscore=gtscore, anchors=anchors,
anchor_mask=anchor_mask, class_num=80,
ignore_thresh=0.7, downsample_ratio=32)
"""
...
...
@@ -566,6 +576,8 @@ def yolov3_loss(x,
raise
TypeError
(
"Input gtbox of yolov3_loss must be Variable"
)
if
not
isinstance
(
gtlabel
,
Variable
):
raise
TypeError
(
"Input gtlabel of yolov3_loss must be Variable"
)
if
gtscore
is
not
None
and
not
isinstance
(
gtscore
,
Variable
):
raise
TypeError
(
"Input gtscore of yolov3_loss must be Variable"
)
if
not
isinstance
(
anchors
,
list
)
and
not
isinstance
(
anchors
,
tuple
):
raise
TypeError
(
"Attr anchors of yolov3_loss must be list or tuple"
)
if
not
isinstance
(
anchor_mask
,
list
)
and
not
isinstance
(
anchor_mask
,
tuple
):
...
...
@@ -575,6 +587,9 @@ def yolov3_loss(x,
if
not
isinstance
(
ignore_thresh
,
float
):
raise
TypeError
(
"Attr ignore_thresh of yolov3_loss must be a float number"
)
if
not
isinstance
(
use_label_smooth
,
bool
):
raise
TypeError
(
"Attr use_label_smooth of yolov3_loss must be a bool value"
)
if
name
is
None
:
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -585,21 +600,26 @@ def yolov3_loss(x,
objectness_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
gt_match_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
inputs
=
{
"X"
:
x
,
"GTBox"
:
gtbox
,
"GTLabel"
:
gtlabel
,
}
if
gtscore
:
inputs
[
"GTScore"
]
=
gtscore
attrs
=
{
"anchors"
:
anchors
,
"anchor_mask"
:
anchor_mask
,
"class_num"
:
class_num
,
"ignore_thresh"
:
ignore_thresh
,
"downsample_ratio"
:
downsample_ratio
,
"use_label_smooth"
:
use_label_smooth
,
}
helper
.
append_op
(
type
=
'yolov3_loss'
,
inputs
=
{
"X"
:
x
,
"GTBox"
:
gtbox
,
"GTLabel"
:
gtlabel
,
},
inputs
=
inputs
,
outputs
=
{
'Loss'
:
loss
,
'ObjectnessMask'
:
objectness_mask
,
...
...
@@ -609,6 +629,83 @@ def yolov3_loss(x,
return
loss
@
templatedoc
(
op_type
=
"yolo_box"
)
def
yolo_box
(
x
,
img_size
,
anchors
,
class_num
,
conf_thresh
,
downsample_ratio
,
name
=
None
):
"""
${comment}
Args:
x (Variable): ${x_comment}
img_size (Variable): ${img_size_comment}
anchors (list|tuple): ${anchors_comment}
class_num (int): ${class_num_comment}
conf_thresh (float): ${conf_thresh_comment}
downsample_ratio (int): ${downsample_ratio_comment}
name (string): the name of yolo box layer. Default None.
Returns:
Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification
scores of boxes.
Raises:
TypeError: Input x of yolov_box must be Variable
TypeError: Attr anchors of yolo box must be list or tuple
TypeError: Attr class_num of yolo box must be an integer
TypeError: Attr conf_thresh of yolo box must be a float number
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
anchors = [10, 13, 16, 30, 33, 23]
loss = fluid.layers.yolo_box(x=x, class_num=80, anchors=anchors,
conf_thresh=0.01, downsample_ratio=32)
"""
helper
=
LayerHelper
(
'yolo_box'
,
**
locals
())
if
not
isinstance
(
x
,
Variable
):
raise
TypeError
(
"Input x of yolo_box must be Variable"
)
if
not
isinstance
(
img_size
,
Variable
):
raise
TypeError
(
"Input img_size of yolo_box must be Variable"
)
if
not
isinstance
(
anchors
,
list
)
and
not
isinstance
(
anchors
,
tuple
):
raise
TypeError
(
"Attr anchors of yolo_box must be list or tuple"
)
if
not
isinstance
(
class_num
,
int
):
raise
TypeError
(
"Attr class_num of yolo_box must be an integer"
)
if
not
isinstance
(
conf_thresh
,
float
):
raise
TypeError
(
"Attr ignore_thresh of yolo_box must be a float number"
)
boxes
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
scores
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
attrs
=
{
"anchors"
:
anchors
,
"class_num"
:
class_num
,
"conf_thresh"
:
conf_thresh
,
"downsample_ratio"
:
downsample_ratio
,
}
helper
.
append_op
(
type
=
'yolo_box'
,
inputs
=
{
"X"
:
x
,
"ImgSize"
:
img_size
,
},
outputs
=
{
'Boxes'
:
boxes
,
'Scores'
:
scores
,
},
attrs
=
attrs
)
return
boxes
,
scores
@
templatedoc
()
def
detection_map
(
detect_res
,
label
,
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
a275fd6e
...
...
@@ -23,7 +23,7 @@ import os
import
inspect
from
..layer_helper
import
LayerHelper
from
..initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
from
..framework
import
Variable
,
OpProtoHolder
from
..framework
import
Variable
,
OpProtoHolder
,
_in_imperative_mode
from
..param_attr
import
ParamAttr
from
.layer_function_generator
import
autodoc
,
templatedoc
,
_generate_doc_string_
from
.tensor
import
concat
,
assign
...
...
@@ -205,16 +205,23 @@ def fc(input,
**Fully Connected Layer**
This function creates a fully connected layer in the network. It can take
multiple tensors as its inputs. It creates a variable called weights for
each input tensor, which represents a fully connected weight matrix from
each input unit to each output unit. The fully connected layer multiplies
each input tensor with its coresponding weight to produce an output Tensor.
If multiple input tensors are given, the results of multiple multiplications
will be sumed up. If bias_attr is not None, a bias variable will be created
and added to the output. Finally, if activation is not None, it will be applied
to the output as well.
one or multiple tensors as its inputs(input can be a list of Variable, see
Args in detail). It creates a variable called weights for each input tensor,
which represents a fully connected weight matrix from each input unit to
each output unit. The fully connected layer multiplies each input tensor
with its corresponding weight to produce an output Tensor with shape [M, `size`],
where M is batch size. If multiple input tensors are given, the results of
multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
is not None, a bias variable will be created and added to the output.
Finally, if activation is not None, it will be applied to the output as well.
When the input is single tensor:
This process can be formulated as follows:
.. math::
Out = Act({XW + b})
When the input are multiple tensors:
.. math::
...
...
@@ -222,13 +229,31 @@ def fc(input,
In the above equation:
* :math:`N`: Number of the input.
* :math:`X_i`: The input tensor.
* :math:`W
`: The weights created by this laye
r.
* :math:`N`: Number of the input.
N equals to len(input) if input is list of Variable.
* :math:`X_i`: The i
-th i
nput tensor.
* :math:`W
_i`: The i-th weights matrix corresponding i-th input tenso
r.
* :math:`b`: The bias parameter created by this layer (if needed).
* :math:`Act`: The activation function.
* :math:`Out`: The output tensor.
See below for an example.
.. code-block:: text
Given:
data_1.data = [[[0.1, 0.2],
[0.3, 0.4]]]
data_1.shape = (1, 2, 2) # 1 is batch_size
data_2 = [[[0.1, 0.2, 0.3]]]
data_2.shape = (1, 1, 3)
out = fluid.layers.fc(input=[data_1, data_2], size=2)
Then:
out.data = [[0.18669507, 0.1893476]]
out.shape = (1, 2)
Args:
input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
the input tensor(s) is at least 2.
...
...
@@ -260,8 +285,14 @@ def fc(input,
Examples:
.. code-block:: python
# when input is single tensor
data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=data, size=1000, act="tanh")
# when input are multiple tensors
data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
"""
helper
=
LayerHelper
(
"fc"
,
**
locals
())
...
...
@@ -4864,7 +4895,8 @@ def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
if
transpose_y
:
y_shape
[
-
2
],
y_shape
[
-
1
]
=
y_shape
[
-
1
],
y_shape
[
-
2
]
if
x_shape
[
-
1
]
!=
y_shape
[
-
2
]:
raise
ValueError
(
"Invalid inputs for matmul."
)
raise
ValueError
(
"Invalid inputs for matmul. x: %s, y: %s
\n
"
%
(
x_shape
,
y_shape
))
if
len
(
y_shape
)
>
2
and
len
(
x_shape
)
>
2
:
for
i
,
dim_x
in
enumerate
(
x_shape
[:
-
2
]):
...
...
@@ -6367,6 +6399,8 @@ def squeeze(input, axes, name=None):
x = layers.data(name='x', shape=[5, 1, 10])
y = layers.sequeeze(input=x, axes=[1])
"""
assert
not
_in_imperative_mode
(),
(
"squeeze layer is not supported in imperative mode yet."
)
helper
=
LayerHelper
(
"squeeze"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
x_shape
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
a275fd6e
...
...
@@ -476,11 +476,29 @@ class TestYoloDetection(unittest.TestCase):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
30
,
7
,
7
],
dtype
=
'float32'
)
gtbox
=
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
10
,
4
],
dtype
=
'float32'
)
gtlabel
=
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
10
],
dtype
=
'int32'
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
[
10
,
13
,
30
,
13
],
[
0
,
1
],
10
,
0.7
,
32
)
gtscore
=
layers
.
data
(
name
=
'gtscore'
,
shape
=
[
10
],
dtype
=
'float32'
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
[
10
,
13
,
30
,
13
],
[
0
,
1
],
10
,
0.7
,
32
,
gtscore
=
gtscore
,
use_label_smooth
=
False
)
self
.
assertIsNotNone
(
loss
)
def
test_yolo_box
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
30
,
7
,
7
],
dtype
=
'float32'
)
img_size
=
layers
.
data
(
name
=
'img_size'
,
shape
=
[
2
],
dtype
=
'int32'
)
boxes
,
scores
=
layers
.
yolo_box
(
x
,
img_size
,
[
10
,
13
,
30
,
13
],
10
,
0.01
,
32
)
self
.
assertIsNotNone
(
boxes
)
self
.
assertIsNotNone
(
scores
)
class
TestBoxClip
(
unittest
.
TestCase
):
def
test_box_clip
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
浏览文件 @
a275fd6e
...
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
class
TestFakeQuantizeOp
(
OpTest
):
...
...
@@ -75,6 +76,7 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
'InScale'
:
np
.
zeros
(
1
).
astype
(
"float32"
)
}
scale
=
np
.
max
(
np
.
abs
(
self
.
inputs
[
'X'
])).
astype
(
"float32"
)
out_scales
=
np
.
zeros
(
self
.
attrs
[
'window_size'
]).
astype
(
"float32"
)
out_scales
[
0
]
=
scale
self
.
outputs
=
{
...
...
@@ -88,6 +90,46 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
self
.
check_output
()
class
TestFakeQuantizeMovingOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"fake_quantize_moving_average_abs_max"
self
.
attrs
=
{
'bit_length'
:
int
(
5
),
'moving_rate'
:
float
(
0.9
),
'is_test'
:
False
}
accum
=
np
.
zeros
(
1
).
astype
(
"float32"
)
accum
[
0
]
=
1
state
=
np
.
zeros
(
1
).
astype
(
"float32"
)
state
[
0
]
=
1
scale
=
np
.
zeros
(
1
).
astype
(
"float32"
)
scale
[
0
]
=
0.001
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
8
,
16
,
7
,
7
)).
astype
(
"float32"
),
'InScale'
:
scale
,
'InAccum'
:
accum
,
'InState'
:
state
,
}
out_accum
=
np
.
zeros
(
1
).
astype
(
"float32"
)
out_state
=
np
.
zeros
(
1
).
astype
(
"float32"
)
out_scale
=
np
.
zeros
(
1
).
astype
(
"float32"
)
out_accum
[
0
]
=
self
.
attrs
[
'moving_rate'
]
*
accum
[
0
]
+
np
.
max
(
np
.
abs
(
self
.
inputs
[
'X'
])).
astype
(
"float32"
)
out_state
[
0
]
=
self
.
attrs
[
'moving_rate'
]
*
state
[
0
]
+
1
out_scale
=
out_accum
/
out_state
self
.
outputs
=
{
'Out'
:
np
.
round
(
self
.
inputs
[
'X'
]
/
out_scale
*
(
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
)),
'OutAccum'
:
out_accum
,
'OutState'
:
out_state
,
'OutScale'
:
out_scale
,
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestFakeQuantizeRangeAbsMaxOp2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"fake_quantize_range_abs_max"
...
...
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
0 → 100644
浏览文件 @
a275fd6e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
contextlib
import
unittest
import
numpy
as
np
import
six
import
sys
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.optimizer
import
AdamOptimizer
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
FC
from
test_imperative_base
import
new_program_scope
from
paddle.fluid.imperative.base
import
to_variable
def
gen_data
():
pass
class
GraphConv
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
,
in_features
,
out_features
):
super
(
GraphConv
,
self
).
__init__
(
name_scope
)
self
.
_in_features
=
in_features
self
.
_out_features
=
out_features
self
.
weight
=
self
.
create_parameter
(
attr
=
None
,
dtype
=
'float32'
,
shape
=
[
self
.
_in_features
,
self
.
_out_features
])
self
.
bias
=
self
.
create_parameter
(
attr
=
None
,
dtype
=
'float32'
,
shape
=
[
self
.
_out_features
])
def
forward
(
self
,
features
,
adj
):
support
=
fluid
.
layers
.
matmul
(
features
,
self
.
weight
)
# TODO(panyx0718): sparse matmul?
return
fluid
.
layers
.
matmul
(
adj
,
support
)
+
self
.
bias
class
GCN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_hidden
):
super
(
GCN
,
self
).
__init__
(
name_scope
)
self
.
gc
=
GraphConv
(
self
.
full_name
(),
num_hidden
,
32
)
self
.
gc2
=
GraphConv
(
self
.
full_name
(),
32
,
10
)
def
forward
(
self
,
x
,
adj
):
x
=
fluid
.
layers
.
relu
(
self
.
gc
(
x
,
adj
))
return
self
.
gc2
(
x
,
adj
)
class
TestImperativeGNN
(
unittest
.
TestCase
):
def
test_gnn_float32
(
self
):
seed
=
90
startup
=
fluid
.
Program
()
startup
.
random_seed
=
seed
main
=
fluid
.
Program
()
main
.
random_seed
=
seed
scope
=
fluid
.
core
.
Scope
()
with
new_program_scope
(
main
=
main
,
startup
=
startup
,
scope
=
scope
):
features
=
fluid
.
layers
.
data
(
name
=
'features'
,
shape
=
[
1
,
100
,
50
],
dtype
=
'float32'
,
append_batch_size
=
False
)
# Use selected rows when it's supported.
adj
=
fluid
.
layers
.
data
(
name
=
'adj'
,
shape
=
[
1
,
100
,
100
],
dtype
=
'float32'
,
append_batch_size
=
False
)
labels
=
fluid
.
layers
.
data
(
name
=
'labels'
,
shape
=
[
100
,
1
],
dtype
=
'int64'
,
append_batch_size
=
False
)
model
=
GCN
(
'test_gcn'
,
50
)
logits
=
model
(
features
,
adj
)
logits
=
fluid
.
layers
.
reshape
(
logits
,
logits
.
shape
[
1
:])
# In other example, it's nll with log_softmax. However, paddle's
# log_loss only supports binary classification now.
loss
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
,
labels
)
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
adam
=
AdamOptimizer
(
learning_rate
=
1e-3
)
adam
.
minimize
(
loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
startup
)
static_loss
=
exe
.
run
(
feed
=
{
'features'
:
np
.
zeros
(
[
1
,
100
,
50
],
dtype
=
np
.
float32
),
'adj'
:
np
.
zeros
(
[
1
,
100
,
100
],
dtype
=
np
.
float32
),
'labels'
:
np
.
zeros
(
[
100
,
1
],
dtype
=
np
.
int64
)
},
fetch_list
=
[
loss
])[
0
]
static_weight
=
np
.
array
(
scope
.
find_var
(
model
.
gc
.
weight
.
name
).
get_tensor
())
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
features
=
np
.
zeros
([
1
,
100
,
50
],
dtype
=
np
.
float32
)
# Use selected rows when it's supported.
adj
=
np
.
zeros
([
1
,
100
,
100
],
dtype
=
np
.
float32
)
labels
=
np
.
zeros
([
100
,
1
],
dtype
=
np
.
int64
)
model
=
GCN
(
'test_gcn'
,
50
)
logits
=
model
(
to_variable
(
features
),
to_variable
(
adj
))
logits
=
fluid
.
layers
.
reshape
(
logits
,
logits
.
shape
[
1
:])
# In other example, it's nll with log_softmax. However, paddle's
# log_loss only supports binary classification now.
loss
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
,
to_variable
(
labels
))
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
adam
=
AdamOptimizer
(
learning_rate
=
1e-3
)
adam
.
minimize
(
loss
)
self
.
assertEqual
(
static_loss
,
loss
.
_numpy
())
self
.
assertTrue
(
np
.
allclose
(
static_weight
,
model
.
gc
.
weight
.
_numpy
()))
sys
.
stderr
.
write
(
'%s %s
\n
'
%
(
static_loss
,
loss
.
_numpy
()))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
a275fd6e
...
...
@@ -84,6 +84,27 @@ class TestLayer(LayerTest):
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
def
test_matmul
(
self
):
with
self
.
static_graph
():
t
=
layers
.
data
(
name
=
't'
,
shape
=
[
3
,
3
],
dtype
=
'float32'
)
t2
=
layers
.
data
(
name
=
't2'
,
shape
=
[
3
,
3
],
dtype
=
'float32'
)
ret
=
layers
.
matmul
(
t
,
t2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
't'
:
np
.
ones
(
[
3
,
3
],
dtype
=
'float32'
),
't2'
:
np
.
ones
(
[
3
,
3
],
dtype
=
'float32'
)
},
fetch_list
=
[
ret
])[
0
]
with
self
.
dynamic_graph
():
t
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
t2
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
dy_ret
=
layers
.
matmul
(
base
.
to_variable
(
t
),
base
.
to_variable
(
t2
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
def
test_conv2d
(
self
):
with
self
.
static_graph
():
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
5
,
5
],
dtype
=
'float32'
)
...
...
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
0 → 100644
浏览文件 @
a275fd6e
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
paddle.fluid
import
core
def
sigmoid
(
x
):
return
1.0
/
(
1.0
+
np
.
exp
(
-
1.0
*
x
))
def
YoloBox
(
x
,
img_size
,
attrs
):
n
,
c
,
h
,
w
=
x
.
shape
anchors
=
attrs
[
'anchors'
]
an_num
=
int
(
len
(
anchors
)
//
2
)
class_num
=
attrs
[
'class_num'
]
conf_thresh
=
attrs
[
'conf_thresh'
]
downsample
=
attrs
[
'downsample'
]
input_size
=
downsample
*
h
x
=
x
.
reshape
((
n
,
an_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
pred_box
=
x
[:,
:,
:,
:,
:
4
].
copy
()
grid_x
=
np
.
tile
(
np
.
arange
(
w
).
reshape
((
1
,
w
)),
(
h
,
1
))
grid_y
=
np
.
tile
(
np
.
arange
(
h
).
reshape
((
h
,
1
)),
(
1
,
w
))
pred_box
[:,
:,
:,
:,
0
]
=
(
grid_x
+
sigmoid
(
pred_box
[:,
:,
:,
:,
0
]))
/
w
pred_box
[:,
:,
:,
:,
1
]
=
(
grid_y
+
sigmoid
(
pred_box
[:,
:,
:,
:,
1
]))
/
h
anchors
=
[(
anchors
[
i
],
anchors
[
i
+
1
])
for
i
in
range
(
0
,
len
(
anchors
),
2
)]
anchors_s
=
np
.
array
(
[(
an_w
/
input_size
,
an_h
/
input_size
)
for
an_w
,
an_h
in
anchors
])
anchor_w
=
anchors_s
[:,
0
:
1
].
reshape
((
1
,
an_num
,
1
,
1
))
anchor_h
=
anchors_s
[:,
1
:
2
].
reshape
((
1
,
an_num
,
1
,
1
))
pred_box
[:,
:,
:,
:,
2
]
=
np
.
exp
(
pred_box
[:,
:,
:,
:,
2
])
*
anchor_w
pred_box
[:,
:,
:,
:,
3
]
=
np
.
exp
(
pred_box
[:,
:,
:,
:,
3
])
*
anchor_h
pred_conf
=
sigmoid
(
x
[:,
:,
:,
:,
4
:
5
])
pred_conf
[
pred_conf
<
conf_thresh
]
=
0.
pred_score
=
sigmoid
(
x
[:,
:,
:,
:,
5
:])
*
pred_conf
pred_box
=
pred_box
*
(
pred_conf
>
0.
).
astype
(
'float32'
)
pred_box
=
pred_box
.
reshape
((
n
,
-
1
,
4
))
pred_box
[:,
:,
:
2
],
pred_box
[:,
:,
2
:
4
]
=
\
pred_box
[:,
:,
:
2
]
-
pred_box
[:,
:,
2
:
4
]
/
2.
,
\
pred_box
[:,
:,
:
2
]
+
pred_box
[:,
:,
2
:
4
]
/
2.0
pred_box
[:,
:,
0
]
=
pred_box
[:,
:,
0
]
*
img_size
[:,
1
][:,
np
.
newaxis
]
pred_box
[:,
:,
1
]
=
pred_box
[:,
:,
1
]
*
img_size
[:,
0
][:,
np
.
newaxis
]
pred_box
[:,
:,
2
]
=
pred_box
[:,
:,
2
]
*
img_size
[:,
1
][:,
np
.
newaxis
]
pred_box
[:,
:,
3
]
=
pred_box
[:,
:,
3
]
*
img_size
[:,
0
][:,
np
.
newaxis
]
for
i
in
range
(
len
(
pred_box
)):
pred_box
[
i
,
:,
0
]
=
np
.
clip
(
pred_box
[
i
,
:,
0
],
0
,
np
.
inf
)
pred_box
[
i
,
:,
1
]
=
np
.
clip
(
pred_box
[
i
,
:,
1
],
0
,
np
.
inf
)
pred_box
[
i
,
:,
2
]
=
np
.
clip
(
pred_box
[
i
,
:,
2
],
-
np
.
inf
,
img_size
[
i
,
1
]
-
1
)
pred_box
[
i
,
:,
3
]
=
np
.
clip
(
pred_box
[
i
,
:,
3
],
-
np
.
inf
,
img_size
[
i
,
0
]
-
1
)
return
pred_box
,
pred_score
.
reshape
((
n
,
-
1
,
class_num
))
class
TestYoloBoxOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
'yolo_box'
x
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
'float32'
)
img_size
=
np
.
random
.
randint
(
10
,
20
,
self
.
imgsize_shape
).
astype
(
'int32'
)
self
.
attrs
=
{
"anchors"
:
self
.
anchors
,
"class_num"
:
self
.
class_num
,
"conf_thresh"
:
self
.
conf_thresh
,
"downsample"
:
self
.
downsample
,
}
self
.
inputs
=
{
'X'
:
x
,
'ImgSize'
:
img_size
,
}
boxes
,
scores
=
YoloBox
(
x
,
img_size
,
self
.
attrs
)
self
.
outputs
=
{
"Boxes"
:
boxes
,
"Scores"
:
scores
,
}
def
test_check_output
(
self
):
self
.
check_output
()
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
(
len
(
self
.
anchors
)
//
2
)
self
.
batch_size
=
32
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
x_shape
=
(
self
.
batch_size
,
an_num
*
(
5
+
self
.
class_num
),
13
,
13
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
a275fd6e
...
...
@@ -23,8 +23,8 @@ from op_test import OpTest
from
paddle.fluid
import
core
def
l
2
loss
(
x
,
y
):
return
0.5
*
(
y
-
x
)
*
(
y
-
x
)
def
l
1
loss
(
x
,
y
):
return
abs
(
x
-
y
)
def
sce
(
x
,
label
):
...
...
@@ -66,7 +66,7 @@ def batch_xywh_box_iou(box1, box2):
return
inter_area
/
union
def
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
def
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
gtscore
,
attrs
):
n
,
c
,
h
,
w
=
x
.
shape
b
=
gtbox
.
shape
[
1
]
anchors
=
attrs
[
'anchors'
]
...
...
@@ -75,21 +75,21 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
mask_num
=
len
(
anchor_mask
)
class_num
=
attrs
[
"class_num"
]
ignore_thresh
=
attrs
[
'ignore_thresh'
]
downsample
=
attrs
[
'downsample'
]
input_size
=
downsample
*
h
downsample_ratio
=
attrs
[
'downsample_ratio'
]
use_label_smooth
=
attrs
[
'use_label_smooth'
]
input_size
=
downsample_ratio
*
h
x
=
x
.
reshape
((
n
,
mask_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
loss
=
np
.
zeros
((
n
)).
astype
(
'float32'
)
label_pos
=
1.0
-
1.0
/
class_num
if
use_label_smooth
else
1.0
label_neg
=
1.0
/
class_num
if
use_label_smooth
else
0.0
pred_box
=
x
[:,
:,
:,
:,
:
4
].
copy
()
grid_x
=
np
.
tile
(
np
.
arange
(
w
).
reshape
((
1
,
w
)),
(
h
,
1
))
grid_y
=
np
.
tile
(
np
.
arange
(
h
).
reshape
((
h
,
1
)),
(
1
,
w
))
pred_box
[:,
:,
:,
:,
0
]
=
(
grid_x
+
sigmoid
(
pred_box
[:,
:,
:,
:,
0
]))
/
w
pred_box
[:,
:,
:,
:,
1
]
=
(
grid_y
+
sigmoid
(
pred_box
[:,
:,
:,
:,
1
]))
/
h
x
[:,
:,
:,
:,
5
:]
=
np
.
where
(
x
[:,
:,
:,
:,
5
:]
<
-
0.5
,
x
[:,
:,
:,
:,
5
:],
np
.
ones_like
(
x
[:,
:,
:,
:,
5
:])
*
1.0
/
class_num
)
mask_anchors
=
[]
for
m
in
anchor_mask
:
mask_anchors
.
append
((
anchors
[
2
*
m
],
anchors
[
2
*
m
+
1
]))
...
...
@@ -138,21 +138,22 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
ty
=
gtbox
[
i
,
j
,
1
]
*
w
-
gj
tw
=
np
.
log
(
gtbox
[
i
,
j
,
2
]
*
input_size
/
mask_anchors
[
an_idx
][
0
])
th
=
np
.
log
(
gtbox
[
i
,
j
,
3
]
*
input_size
/
mask_anchors
[
an_idx
][
1
])
scale
=
(
2.0
-
gtbox
[
i
,
j
,
2
]
*
gtbox
[
i
,
j
,
3
])
scale
=
(
2.0
-
gtbox
[
i
,
j
,
2
]
*
gtbox
[
i
,
j
,
3
])
*
gtscore
[
i
,
j
]
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
0
],
tx
)
*
scale
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
1
],
ty
)
*
scale
loss
[
i
]
+=
l
2
loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
2
],
tw
)
*
scale
loss
[
i
]
+=
l
2
loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
3
],
th
)
*
scale
loss
[
i
]
+=
l
1
loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
2
],
tw
)
*
scale
loss
[
i
]
+=
l
1
loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
3
],
th
)
*
scale
objness
[
i
,
an_idx
*
h
*
w
+
gj
*
w
+
gi
]
=
1.0
objness
[
i
,
an_idx
*
h
*
w
+
gj
*
w
+
gi
]
=
gtscore
[
i
,
j
]
for
label_idx
in
range
(
class_num
):
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
float
(
label_idx
==
gtlabel
[
i
,
j
]))
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
label_pos
if
label_idx
==
gtlabel
[
i
,
j
]
else
label_neg
)
*
gtscore
[
i
,
j
]
for
j
in
range
(
mask_num
*
h
*
w
):
if
objness
[
i
,
j
]
>
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
1.0
)
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
1.0
)
*
objness
[
i
,
j
]
elif
objness
[
i
,
j
]
==
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
0.0
)
...
...
@@ -176,7 +177,8 @@ class TestYolov3LossOp(OpTest):
"anchor_mask"
:
self
.
anchor_mask
,
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"downsample"
:
self
.
downsample
,
"downsample_ratio"
:
self
.
downsample_ratio
,
"use_label_smooth"
:
self
.
use_label_smooth
,
}
self
.
inputs
=
{
...
...
@@ -184,7 +186,14 @@ class TestYolov3LossOp(OpTest):
'GTBox'
:
gtbox
.
astype
(
'float32'
),
'GTLabel'
:
gtlabel
.
astype
(
'int32'
),
}
loss
,
objness
,
gt_matches
=
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)
gtscore
=
np
.
ones
(
self
.
gtbox_shape
[:
2
]).
astype
(
'float32'
)
if
self
.
gtscore
:
gtscore
=
np
.
random
.
random
(
self
.
gtbox_shape
[:
2
]).
astype
(
'float32'
)
self
.
inputs
[
'GTScore'
]
=
gtscore
loss
,
objness
,
gt_matches
=
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
gtscore
,
self
.
attrs
)
self
.
outputs
=
{
'Loss'
:
loss
,
'ObjectnessMask'
:
objness
,
...
...
@@ -193,24 +202,57 @@ class TestYolov3LossOp(OpTest):
def
test_check_output
(
self
):
place
=
core
.
CPUPlace
()
self
.
check_output_with_place
(
place
,
atol
=
1
e-3
)
self
.
check_output_with_place
(
place
,
atol
=
2
e-3
)
def
test_check_grad_ignore_gtbox
(
self
):
place
=
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"GTBox"
,
"GTLabel"
]),
max_relative_error
=
0.3
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Loss'
,
max_relative_error
=
0.2
)
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
self
.
anchor_mask
=
[
0
,
1
,
2
]
self
.
class_num
=
5
self
.
ignore_thresh
=
0.7
self
.
downsample_ratio
=
32
self
.
x_shape
=
(
3
,
len
(
self
.
anchor_mask
)
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
gtbox_shape
=
(
3
,
5
,
4
)
self
.
gtscore
=
True
self
.
use_label_smooth
=
True
class
TestYolov3LossWithoutLabelSmooth
(
TestYolov3LossOp
):
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
self
.
anchor_mask
=
[
0
,
1
,
2
]
self
.
class_num
=
5
self
.
ignore_thresh
=
0.7
self
.
downsample_ratio
=
32
self
.
x_shape
=
(
3
,
len
(
self
.
anchor_mask
)
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
gtbox_shape
=
(
3
,
5
,
4
)
self
.
gtscore
=
True
self
.
use_label_smooth
=
False
class
TestYolov3LossNoGTScore
(
TestYolov3LossOp
):
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
self
.
anchor_mask
=
[
1
,
2
]
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
self
.
anchor_mask
=
[
0
,
1
,
2
]
self
.
class_num
=
5
self
.
ignore_thresh
=
0.
5
self
.
downsample
=
32
self
.
ignore_thresh
=
0.
7
self
.
downsample
_ratio
=
32
self
.
x_shape
=
(
3
,
len
(
self
.
anchor_mask
)
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
gtbox_shape
=
(
3
,
5
,
4
)
self
.
gtscore
=
False
self
.
use_label_smooth
=
True
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录