提交 a072ab9e 编写于 作者: Y Yang yaming 提交者: GitHub

Merge pull request #3768 from pkuyym/fix-3736

Add squared_l2_distance_op
...@@ -59,7 +59,7 @@ set(DEPS_OPS ...@@ -59,7 +59,7 @@ set(DEPS_OPS
op_library(identity_op DEPS scale_op) op_library(identity_op DEPS scale_op)
op_library(minus_op DEPS scale_op) op_library(minus_op DEPS scale_op)
op_library(mul_op DEPS math_function) op_library(mul_op DEPS math_function)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS framework_proto tensor operator net_op) DEPS framework_proto tensor operator net_op)
op_library(scale_op DEPS net_op) op_library(scale_op DEPS net_op)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/squared_l2_distance_op.h"
namespace paddle {
namespace operators {
class SquaredL2DistanceOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input of SquaredL2DistanceOp "
"must be initialized.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Target of SquaredL2DistanceOp "
"must be initialized.");
auto* x = ctx.Input<Tensor>("X");
auto x_dims = x->dims();
auto* y = ctx.Input<Tensor>("Y");
auto y_dims = y->dims();
PADDLE_ENFORCE_EQ(framework::arity(x_dims), framework::arity(y_dims),
"Tensor rank of both SquaredL2DistanceOp's "
"inputs must be same.");
int rank = framework::arity(x_dims);
PADDLE_ENFORCE_GE(rank, 2, "Tensor rank should be at least equal to 2.");
PADDLE_ENFORCE_EQ(framework::product(x_dims) / x_dims[0],
framework::product(y_dims) / y_dims[0],
"Product of dimensions expcet the first dimension of "
"input and target must be equal.");
PADDLE_ENFORCE(y_dims[0] == 1 || y_dims[0] == x_dims[0],
"First dimension of target must be equal to input "
"or to 1.");
ctx.Output<Tensor>("sub_result")
->Resize({static_cast<int>(x_dims[0]),
static_cast<int>(framework::product(x_dims) / x_dims[0])});
ctx.Output<Tensor>("Out")->Resize({x_dims[0], 1});
}
};
class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SquaredL2DistanceOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of SquaredL2DistanceOp.");
AddInput("Y", "Target of SquaredL2DistanceOp.");
AddOutput("sub_result",
"Buffering substraction result which "
"will be reused in backward.")
.AsIntermediate();
AddOutput("Out", "Squared l2 distance between input and target.");
AddComment(R"DOC(
SquaredL2DistanceOp will cacluate the squared L2 distance for
input and target. Number of distance value equals to the
first dimension of input. First dimension of target could be equal to
input or to 1. If the first dimension of target is 1, SquaredL2DistanceOp
will broadcast target's first dimension to input's first dimension.
You can decide whether calculate the gradient of input and target.
)DOC");
}
};
class SquaredL2DistanceGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Gradient of Out should not be null");
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0],
"First dimension of output gradient and "
"input value must be equal.");
PADDLE_ENFORCE_EQ(out_dims[1], 1,
"Second dimension of output gradient "
"must be 1.");
auto* x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
if (x_grad) x_grad->Resize(x_dims);
if (y_grad) y_grad->Resize(y_dims);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(squared_l2_distance, ops::SquaredL2DistanceOp,
ops::SquaredL2DistanceOpMaker, squared_l2_distance_grad,
ops::SquaredL2DistanceGradOp);
REGISTER_OP_CPU_KERNEL(
squared_l2_distance,
ops::SquaredL2DistanceKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
squared_l2_distance_grad,
ops::SquaredL2DistanceGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/squared_l2_distance_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
squared_l2_distance,
ops::SquaredL2DistanceKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
squared_l2_distance_grad,
ops::SquaredL2DistanceGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename Place, typename T>
class SquaredL2DistanceKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in0 = context.Input<Tensor>("X");
auto* in1 = context.Input<Tensor>("Y");
auto* out0 = context.Output<Tensor>("sub_result");
auto* out1 = context.Output<Tensor>("Out");
auto in0_dims = in0->dims();
auto in1_dims = in1->dims();
int cols = framework::product(in0_dims) / in0_dims[0];
// reduce dimensions except the first
auto x =
EigenMatrix<T>::From(*in0, framework::make_ddim({in0_dims[0], cols}));
auto y =
EigenMatrix<T>::From(*in1, framework::make_ddim({in1_dims[0], cols}));
out0->mutable_data<T>(context.GetPlace());
out1->mutable_data<T>(context.GetPlace());
auto sub_result = EigenMatrix<T>::From(*out0);
auto z = EigenVector<T>::Flatten(*out1);
auto place = context.GetEigenDevice<Place>();
auto x_dims = x.dimensions();
auto y_dims = y.dimensions();
// buffer the substraction result
if (y_dims[0] == 1 && x_dims[0] > y_dims[0]) {
sub_result.device(place) =
x -
y.broadcast(Eigen::array<int, 2>({{static_cast<int>(x_dims[0]), 1}}));
} else {
sub_result.device(place) = x - y;
}
auto sub_res_pow2 = sub_result * sub_result;
z.device(place) = sub_res_pow2.sum(Eigen::array<int, 1>({{1}}));
}
};
template <typename Place, typename T>
class SquaredL2DistanceGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in0 = context.Input<Tensor>("sub_result");
auto* in1 = context.Input<Tensor>(framework::GradVarName("Out"));
auto* x_g = context.Output<Tensor>(framework::GradVarName("X"));
auto* y_g = context.Output<Tensor>(framework::GradVarName("Y"));
auto sub_result = EigenMatrix<T>::From(*in0);
auto out_grad = EigenMatrix<T>::From(*in1);
auto x_dims = x_g->dims();
auto y_dims = y_g->dims();
int cols = framework::product(x_dims) / x_dims[0];
// calculate gradient
auto grad_mat = 2 *
(out_grad.broadcast(Eigen::array<int, 2>({{1, cols}}))) *
sub_result;
// propagate back to input
auto eigen_place = context.GetEigenDevice<Place>();
if (x_g) {
x_g->mutable_data<T>(context.GetPlace());
// eigen matrix
auto x_grad =
EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols}));
// dimensions are same with subResult
x_grad.device(eigen_place) = grad_mat;
}
if (y_g) {
y_g->mutable_data<T>(context.GetPlace());
PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
"First dimension of gradient must be greater or "
"equal than first dimension of target.");
if (sub_result.dimensions()[0] == y_dims[0]) {
auto y_grad =
EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
y_grad.device(eigen_place) = -1 * grad_mat;
} else {
auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({{0}})));
auto y_grad = EigenVector<T>::Flatten(*y_g);
y_grad.device(eigen_place) = col_sum_res;
}
}
}
};
} // namespace operators
} // namespace paddle
...@@ -49,6 +49,7 @@ USE_OP(minus); ...@@ -49,6 +49,7 @@ USE_OP(minus);
USE_OP(cos_sim); USE_OP(cos_sim);
USE_CPU_ONLY_OP(gather); USE_CPU_ONLY_OP(gather);
USE_CPU_ONLY_OP(scatter); USE_CPU_ONLY_OP(scatter);
USE_OP(squared_l2_distance);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -33,3 +33,4 @@ py_test(test_gradient_checker SRCS test_gradient_checker.py) ...@@ -33,3 +33,4 @@ py_test(test_gradient_checker SRCS test_gradient_checker.py)
py_test(test_lookup_table SRCS test_lookup_table.py) py_test(test_lookup_table SRCS test_lookup_table.py)
py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py) py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py)
py_test(mnist SRCS mnist.py) py_test(mnist SRCS mnist.py)
py_test(test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py)
...@@ -66,7 +66,7 @@ class OpTestMeta(type): ...@@ -66,7 +66,7 @@ class OpTestMeta(type):
self.assertTrue( self.assertTrue(
numpy.allclose( numpy.allclose(
actual, expect, atol=1e-05), actual, expect, atol=1e-05),
"output name: " + out_name + "has diff") "output name: " + out_name + " has diff")
obj.test_all = test_all obj.test_all = test_all
return obj return obj
import unittest
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
import numpy as np
class TestSquaredL2DistanceOp_f0(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = 'squared_l2_distance'
self.inputs = {
'X': np.random.uniform(0.1, 1., (32, 64)).astype('float32'),
'Y': np.random.uniform(0.1, 1., (32, 64)).astype('float32')
}
sub_res = self.inputs['X'] - self.inputs['Y']
output = sub_res * sub_res
self.outputs = {
'sub_result': sub_res,
'Out': np.expand_dims(output.sum(1), 1)
}
class TestSquaredL2DistanceOp_f1(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = 'squared_l2_distance'
self.inputs = {
'X': np.random.uniform(0.1, 1., (32, 64)).astype('float32'),
'Y': np.random.uniform(0.1, 1., (1, 64)).astype('float32')
}
sub_res = self.inputs['X'] - self.inputs['Y']
output = sub_res * sub_res
self.outputs = {
'sub_result': sub_res,
'Out': np.expand_dims(output.sum(1), 1)
}
class TestSquaredL2DistanceOp_f2(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = 'squared_l2_distance'
self.inputs = {
'X': np.random.uniform(0.1, 1., (32, 64, 128)).astype('float32'),
'Y': np.random.uniform(0.1, 1., (1, 64, 128)).astype('float32')
}
sub_res = self.inputs['X'] - self.inputs['Y']
sub_res = sub_res.reshape((32, 64 * 128))
output = sub_res * sub_res
self.outputs = {
'sub_result': sub_res,
'Out': np.expand_dims(output.sum(1), 1)
}
class TestSquaredL2DistanceGradOp(GradientChecker):
def test_squared_l2_distance_b0(self):
op = create_op("squared_l2_distance")
inputs = {
'X': np.random.uniform(0.1, .6, (2, 3)).astype('float32'),
'Y': np.random.uniform(0.1, .6, (2, 3)).astype('float32')
}
self.compare_grad(op, inputs)
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
def test_squared_l2_distance_b1(self):
op = create_op("squared_l2_distance")
inputs = {
'X': np.random.uniform(0.1, .6, (2, 3)).astype('float32'),
'Y': np.random.uniform(0.1, .6, (1, 3)).astype('float32')
}
self.compare_grad(op, inputs)
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
def test_squared_l2_distance_b2(self):
op = create_op("squared_l2_distance")
inputs = {
'X': np.random.uniform(0.1, .6, (2, 3, 4)).astype('float32'),
'Y': np.random.uniform(0.1, .6, (1, 3, 4)).astype('float32')
}
self.compare_grad(op, inputs)
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册