未验证 提交 9cda0596 编写于 作者: H houj04 提交者: GitHub

[NPU ]add npu kernel for gaussian random (#33983)

* add npu operator for gaussian random.

* bugfix: add wait after memory copy.

* update gaussian random op: use TensorCopy.
上级 02a524e5
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <random>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/fill_constant_op.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class NPUGaussianRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
float mean = context.Attr<float>("mean");
float std = context.Attr<float>("std");
auto* tensor = context.Output<framework::Tensor>("Out");
tensor->mutable_data<T>(context.GetPlace());
Tensor cpu_tensor(tensor->type());
cpu_tensor.Resize(tensor->dims());
T* cpu_data = cpu_tensor.mutable_data<T>(platform::CPUPlace());
std::normal_distribution<T> dist(mean, std);
int64_t size = tensor->numel();
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
auto engine = framework::GetCPURandomEngine(seed);
for (int64_t i = 0; i < size; ++i) {
cpu_data[i] = dist(*engine);
}
framework::TensorCopy(
cpu_tensor, context.GetPlace(),
context.template device_context<platform::DeviceContext>(), tensor);
context.template device_context<paddle::platform::NPUDeviceContext>()
.Wait();
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(gaussian_random, ops::NPUGaussianRandomKernel<float>);
......@@ -12,11 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/uniform_random_op.h"
#include <string>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/uniform_random_op.h"
namespace paddle {
namespace operators {
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
import unittest
import numpy as np
sys.path.append("..")
import paddle
import paddle.fluid as fluid
from op_test import OpTest
from test_gaussian_random_op import TestGaussianRandomOp
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestNPUGaussianRandomOp(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "gaussian_random"
self.init_dtype()
self.set_attrs()
self.inputs = {}
self.use_mkldnn = False
self.attrs = {
"shape": [123, 92],
"mean": self.mean,
"std": self.std,
"seed": 10,
"use_mkldnn": self.use_mkldnn
}
paddle.seed(10)
self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
def set_attrs(self):
self.mean = 1.0
self.std = 2.
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_customized(self.verify_output, self.place)
def verify_output(self, outs):
self.assertEqual(outs[0].shape, (123, 92))
hist, _ = np.histogram(outs[0], range=(-3, 5))
hist = hist.astype("float32")
hist /= float(outs[0].size)
data = np.random.normal(size=(123, 92), loc=1, scale=2)
hist2, _ = np.histogram(data, range=(-3, 5))
hist2 = hist2.astype("float32")
hist2 /= float(outs[0].size)
self.assertTrue(
np.allclose(
hist, hist2, rtol=0, atol=0.01),
"hist: " + str(hist) + " hist2: " + str(hist2))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册