Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
9cbba97b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9cbba97b
编写于
8月 18, 2021
作者:
L
lzzyzlbb
提交者:
GitHub
8月 18, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU]add rmsprop op (#34864)
* [npu]add rmsprop op
上级
755c8a19
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
253 addition
and
0 deletion
+253
-0
paddle/fluid/operators/optimizers/rmsprop_op_npu.cc
paddle/fluid/operators/optimizers/rmsprop_op_npu.cc
+101
-0
python/paddle/fluid/tests/unittests/npu/test_rmsprop_op_npu.py
...n/paddle/fluid/tests/unittests/npu/test_rmsprop_op_npu.py
+152
-0
未找到文件。
paddle/fluid/operators/optimizers/rmsprop_op_npu.cc
0 → 100644
浏览文件 @
9cbba97b
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/optimizers/rmsprop_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
RMSPROPNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
auto
*
param_out
=
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
);
auto
*
moment_out
=
ctx
.
Output
<
LoDTensor
>
(
"MomentOut"
);
auto
*
mean_square_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanSquareOut"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
rho
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"decay"
));
auto
momentum
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
auto
*
p_tensor
=
ctx
.
Input
<
LoDTensor
>
(
"Param"
);
auto
*
ms_tensor
=
ctx
.
Input
<
LoDTensor
>
(
"MeanSquare"
);
auto
*
lr_tensor
=
ctx
.
Input
<
LoDTensor
>
(
"LearningRate"
);
auto
*
mom_tensor
=
ctx
.
Input
<
LoDTensor
>
(
"Moment"
);
bool
centered
=
ctx
.
Attr
<
bool
>
(
"centered"
);
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
if
(
grad_var
->
IsType
<
LoDTensor
>
())
{
auto
*
grad_tensor
=
ctx
.
Input
<
LoDTensor
>
(
"Grad"
);
if
(
centered
)
{
framework
::
NPUAttributeMap
attr_input
=
{{
"use_locking"
,
false
}};
const
Tensor
*
rho_tensor
=
nullptr
;
const
Tensor
*
momentum_tensor
=
nullptr
;
const
Tensor
*
epsilon_tensor
=
nullptr
;
Tensor
rho_tmp
(
framework
::
proto
::
VarType
::
FP32
);
rho_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
FillNpuTensorWithConstant
<
T
>
(
&
rho_tmp
,
rho
);
rho_tensor
=
&
rho_tmp
;
Tensor
momentum_tmp
(
framework
::
proto
::
VarType
::
FP32
);
momentum_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
FillNpuTensorWithConstant
<
T
>
(
&
momentum_tmp
,
momentum
);
momentum_tensor
=
&
momentum_tmp
;
Tensor
epsilon_tmp
(
framework
::
proto
::
VarType
::
FP32
);
epsilon_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
FillNpuTensorWithConstant
<
T
>
(
&
epsilon_tmp
,
epsilon
);
epsilon_tensor
=
&
epsilon_tmp
;
auto
*
mg_tensor
=
ctx
.
Input
<
Tensor
>
(
"MeanGrad"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
Tensor
>
(
"MeanGradOut"
);
mean_grad_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
runner_applycenterrmsprop
=
NpuOpRunner
(
std
::
string
(
"ApplyCenteredRMSPropD"
),
{
*
p_tensor
,
*
mg_tensor
,
*
ms_tensor
,
*
mom_tensor
,
*
lr_tensor
,
*
rho_tensor
,
*
momentum_tensor
,
*
epsilon_tensor
,
*
grad_tensor
},
{
*
param_out
,
*
mean_grad_out
,
*
mean_square_out
,
*
moment_out
},
{
attr_input
});
runner_applycenterrmsprop
.
Run
(
stream
);
}
else
{
framework
::
NPUAttributeMap
attr_input
=
{
{
"rho"
,
rho
},
{
"momentum"
,
momentum
},
{
"epsilon"
,
epsilon
}};
const
auto
&
runner_applyrmsprop
=
NpuOpRunner
(
std
::
string
(
"ApplyRMSPropD"
),
{
*
p_tensor
,
*
ms_tensor
,
*
mom_tensor
,
*
lr_tensor
,
*
grad_tensor
},
{
*
param_out
,
*
mean_square_out
,
*
moment_out
},
{
attr_input
});
runner_applyrmsprop
.
Run
(
stream
);
}
}
else
{
PADDLE_ENFORCE_EQ
(
false
,
true
,
platform
::
errors
::
PermissionDenied
(
"Unsupported Variable Type of Grad "
"in RmspropOp. Excepted LodTensor, "
"But received [%s]"
,
paddle
::
framework
::
ToTypeName
(
grad_var
->
Type
())));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
rmsprop
,
ops
::
RMSPROPNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
)
python/paddle/fluid/tests/unittests/npu/test_rmsprop_op_npu.py
0 → 100644
浏览文件 @
9cbba97b
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
paddle
paddle
.
enable_static
()
SEED
=
2021
class
TestNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
sum
=
paddle
.
add
(
a
,
b
)
z
=
paddle
.
pow
(
sum
,
2.0
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
z
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
rmsprop
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
0.01
)
rmsprop
.
minimize
(
loss
)
if
run_npu
:
place
=
paddle
.
NPUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_npu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
npu_pred
,
npu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
npu_pred
,
cpu_pred
,
rtol
=
1e-3
))
self
.
assertTrue
(
np
.
allclose
(
npu_loss
,
cpu_loss
,
rtol
=
1e-3
))
class
TestCenteredNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
sum
=
paddle
.
add
(
a
,
b
)
z
=
paddle
.
pow
(
sum
,
2.0
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
z
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
rmsprop
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
0.01
,
centered
=
True
)
rmsprop
.
minimize
(
loss
)
if
run_npu
:
place
=
paddle
.
NPUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_npu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
npu_pred
,
npu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
npu_pred
,
cpu_pred
,
rtol
=
1e-3
))
self
.
assertTrue
(
np
.
allclose
(
npu_loss
,
cpu_loss
,
rtol
=
1e-3
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录