提交 9ca8124f 编写于 作者: Y Yao Cheng

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into develop

yes
../../v2/build_and_install/paddleci.png
\ No newline at end of file
...@@ -125,12 +125,12 @@ Compile Time -> IR -> Runtime ...@@ -125,12 +125,12 @@ Compile Time -> IR -> Runtime
## Operator/OpWithKernel/OpKernel ## Operator/OpWithKernel/OpKernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot) ![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op_op_with_kern_class_diagram.dot)
--- ---
## Operator ## Operator
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot) ![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op.dot)
* `Operator` is the fundamental building block of the user interface. * `Operator` is the fundamental building block of the user interface.
* Operator stores input/output variable names and attributes. * Operator stores input/output variable names and attributes.
...@@ -141,7 +141,7 @@ Compile Time -> IR -> Runtime ...@@ -141,7 +141,7 @@ Compile Time -> IR -> Runtime
## OpWithKernel/Kernel ## OpWithKernel/Kernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot) ![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op_with_kernel.dot)
* `OpWithKernel` inherits `Operator`. * `OpWithKernel` inherits `Operator`.
* `OpWithKernel` contains a Kernel map. * `OpWithKernel` contains a Kernel map.
......
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator| InferShape()=0\lRun()=0\l | map<string, string[]> inputs_\lmap<string, string[]> outputs_ \l AttributeMap attrs_\l}"];
}
\ No newline at end of file
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator| InferShape()=0\lRun()=0\l | map<string, string[]> inputs_\lmap<string, string[]> outputs_ \l AttributeMap attrs_\l}"];
op_with_kern [label="{OpWithKernel | InferShape()=0\lRun()\l | map<OpKernelKey,OpKernel>kernels_ }"]
op_kernel [label="{OpKernel | Compute()=0}"]
op_kernel_key [label="{OpKernelKey| Place place\n...}"]
op -> op_with_kern [dir=back, arrowtail=onormal]
op_with_kern -> op_kernel [arrowhead=vee, label="contains many"]
{
rank=same;
op_with_kern
op_kernel
}
op_kernel -> op_kernel_key [style=invis]
{
rank=same;
op_kernel
op_kernel_key
}
op_with_kern -> op_kernel_key [arrowhead=vee, label ="\nas map key"]
mul_op [label="MulOp"]
op_with_kern -> mul_op [dir=back, arrowtail=onormal]
mul_kernel [label="template <typename Place>\lclass MulOpKernel\l"]
op_kernel -> mul_kernel [dir=back, arrowtail=onormal]
mul_op -> mul_kernel [arrowhead=vee, label="register many"]
{
rank=same;
mul_op;
mul_kernel;
}
}
\ No newline at end of file
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator}"];
op_with_kern [label="{OpWithKernel | InferShape()=0\lRun()\l | map<OpKernelKey,OpKernel>kernels_ }"]
op_kernel [label="{OpKernel | Compute()=0}"]
op_kernel_key [label="{OpKernelKey| Place place\n...}"]
op -> op_with_kern [dir=back, arrowtail=onormal]
op_with_kern -> op_kernel [arrowhead=vee, label="contains many"]
{
rank=same;
op_with_kern
op_kernel
}
op_kernel -> op_kernel_key [style=invis]
{
rank=same;
op_kernel
op_kernel_key
}
op_with_kern -> op_kernel_key [arrowhead=vee, label ="\nas map key"]
}
\ No newline at end of file
...@@ -142,7 +142,7 @@ gated_unit ...@@ -142,7 +142,7 @@ gated_unit
----------- -----------
.. autoclass:: paddle.v2.layer.gated_unit .. autoclass:: paddle.v2.layer.gated_unit
:noindex: :noindex:
Recurrent Layer Group Recurrent Layer Group
===================== =====================
...@@ -354,7 +354,7 @@ dropout ...@@ -354,7 +354,7 @@ dropout
-------- --------
.. autoclass:: paddle.v2.layer.dropout .. autoclass:: paddle.v2.layer.dropout
:noindex: :noindex:
dot_prod dot_prod
--------- ---------
.. autoclass:: paddle.v2.layer.dot_prod .. autoclass:: paddle.v2.layer.dot_prod
...@@ -460,6 +460,11 @@ multi_binary_label_cross_entropy_cost ...@@ -460,6 +460,11 @@ multi_binary_label_cross_entropy_cost
.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost .. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
:noindex: :noindex:
classification_cost
-------------------
.. autoclass:: paddle.v2.layer.classification_cost
:noindex:
huber_regression_cost huber_regression_cost
------------------------- -------------------------
.. autoclass:: paddle.v2.layer.huber_regression_cost .. autoclass:: paddle.v2.layer.huber_regression_cost
...@@ -534,7 +539,7 @@ detection_output ...@@ -534,7 +539,7 @@ detection_output
---------------- ----------------
.. autoclass:: paddle.v2.layer.detection_output .. autoclass:: paddle.v2.layer.detection_output
:noindex: :noindex:
Check Layer Check Layer
============ ============
......
...@@ -49,7 +49,9 @@ void FetchOpHandle::RunImpl() { ...@@ -49,7 +49,9 @@ void FetchOpHandle::RunImpl() {
platform::DeviceContextPool::Instance().Get(platform::CPUPlace()); platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
for (auto *input : inputs_) { for (auto *input : inputs_) {
auto *var = static_cast<VarHandle *>(input); auto *var = static_cast<VarHandle *>(input);
var->generated_op_->Wait(cpu_ctx); if (var->generated_op_) {
var->generated_op_->Wait(cpu_ctx);
}
} }
tensors_.resize(inputs_.size()); tensors_.resize(inputs_.size());
auto *var_handle = static_cast<VarHandle *>(inputs_[0]); auto *var_handle = static_cast<VarHandle *>(inputs_[0]);
......
...@@ -36,7 +36,9 @@ void NCCLAllReduceOpHandle::RunImpl() { ...@@ -36,7 +36,9 @@ void NCCLAllReduceOpHandle::RunImpl() {
// Wait input done // Wait input done
for (auto *in : inputs_) { for (auto *in : inputs_) {
auto &p = static_cast<VarHandle *>(in)->place_; auto &p = static_cast<VarHandle *>(in)->place_;
in->generated_op_->Wait(dev_ctxes_[p]); if (in->generated_op_) {
in->generated_op_->Wait(dev_ctxes_[p]);
}
} }
auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_; auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_;
......
...@@ -32,7 +32,9 @@ void SendOpHandle::RunImpl() { ...@@ -32,7 +32,9 @@ void SendOpHandle::RunImpl() {
if (in->DebugString() == "dummy") { // HACK if (in->DebugString() == "dummy") { // HACK
continue; continue;
} }
in->generated_op_->Wait(dev_ctxes_[p]); if (in->generated_op_) {
in->generated_op_->Wait(dev_ctxes_[p]);
}
} }
auto &tmp_scope = local_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>(); auto &tmp_scope = local_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
// FIXME(wuyi): can not use RunAndRecordEvent here, for it will cause dead // FIXME(wuyi): can not use RunAndRecordEvent here, for it will cause dead
......
...@@ -36,5 +36,5 @@ inference_test(label_semantic_roles) ...@@ -36,5 +36,5 @@ inference_test(label_semantic_roles)
inference_test(recognize_digits ARGS mlp conv) inference_test(recognize_digits ARGS mlp conv)
inference_test(recommender_system) inference_test(recommender_system)
#inference_test(rnn_encoder_decoder) #inference_test(rnn_encoder_decoder)
inference_test(understand_sentiment ARGS conv) #inference_test(understand_sentiment ARGS conv)
inference_test(word2vec) inference_test(word2vec)
...@@ -187,7 +187,8 @@ class GemmConvKernel : public framework::OpKernel<T> { ...@@ -187,7 +187,8 @@ class GemmConvKernel : public framework::OpKernel<T> {
// gemm // gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
blas.MatMul(filter_slice, col_matrix, &out_slice); blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
T(0.0));
} }
} }
} }
...@@ -304,7 +305,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> { ...@@ -304,7 +305,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
col_matrix.ShareDataWith(in_grad_slice); col_matrix.ShareDataWith(in_grad_slice);
col_matrix.Resize(col_matrix_shape); col_matrix.Resize(col_matrix_shape);
} }
blas.MatMul(filter_slice, true, out_grad_slice, false, &col_matrix); blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
&col_matrix, T(0.0));
if (is_expand && data_dim == 2U) { if (is_expand && data_dim == 2U) {
col2im(dev_ctx, col, dilations, strides, col2im(dev_ctx, col, dilations, strides,
...@@ -351,8 +353,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> { ...@@ -351,8 +353,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
// gemm // gemm
Tensor filter_grad_slice = Tensor filter_grad_slice =
filter_grad_.Slice(g * out_step, (g + 1) * out_step); filter_grad_.Slice(g * out_step, (g + 1) * out_step);
blas.MatMul(out_grad_slice, false, col_matrix, true, blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
&filter_grad_slice); &filter_grad_slice, T(1.0));
} }
} }
} }
......
...@@ -135,7 +135,8 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> { ...@@ -135,7 +135,8 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
// col_matrix = filter * input_batch // col_matrix = filter * input_batch
// of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w) // of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
blas.MatMul(filter, true, input_batch, false, &col_matrix); blas.MatMul(filter, true, input_batch, false, static_cast<T>(1.0),
&col_matrix, static_cast<T>(0.0));
if (data_dim == 2U) { if (data_dim == 2U) {
// col2im: col_matrix -> dy // col2im: col_matrix -> dy
...@@ -267,7 +268,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> { ...@@ -267,7 +268,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// or // or
// (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m, // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
// d, h, w) // d, h, w)
blas.MatMul(filter, false, col_matrix, false, &input_grad_batch); blas.MatMul(filter, false, col_matrix, false, static_cast<T>(1.0),
&input_grad_batch, static_cast<T>(0.0));
} }
if (filter_grad) { if (filter_grad) {
// input batch // input batch
...@@ -277,7 +279,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> { ...@@ -277,7 +279,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// or // or
// (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d * // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
// k_h * k_w) // k_h * k_w)
blas.MatMul(in_batch, false, col_matrix, true, &filter_grad_); blas.MatMul(in_batch, false, col_matrix, true, static_cast<T>(1.0),
&filter_grad_, static_cast<T>(1.0));
} }
} }
} }
......
...@@ -63,6 +63,7 @@ __device__ T reduceSum(T val, int tid, int len) { ...@@ -63,6 +63,7 @@ __device__ T reduceSum(T val, int tid, int len) {
val += platform::CudaShuffleDownSync(mask, val, offset); val += platform::CudaShuffleDownSync(mask, val, offset);
if (tid < warpSize) shm[tid] = 0; if (tid < warpSize) shm[tid] = 0;
__syncthreads();
if (tid % warpSize == 0) { if (tid % warpSize == 0) {
shm[tid / warpSize] = val; shm[tid / warpSize] = val;
......
...@@ -463,7 +463,7 @@ void SetProfileListener() { ...@@ -463,7 +463,7 @@ void SetProfileListener() {
std::mt19937 rng; std::mt19937 rng;
rng.seed(std::random_device()()); rng.seed(std::random_device()());
std::uniform_int_distribution<std::mt19937::result_type> dist6( std::uniform_int_distribution<std::mt19937::result_type> dist6(
1, std::numeric_limits<int64_t>::max()); 1, std::numeric_limits<std::mt19937::result_type>::max());
profiler_lister_id = dist6(rng); profiler_lister_id = dist6(rng);
} }
int64_t ListenerId() { return profiler_lister_id; } int64_t ListenerId() { return profiler_lister_id; }
......
...@@ -18,7 +18,7 @@ import unittest ...@@ -18,7 +18,7 @@ import unittest
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer import paddle.fluid.optimizer as optimizer
from paddle.fluid.framework import Program, program_guard from paddle.fluid.framework import Program, program_guard
from paddle.fluid.memory_optimization_transpiler import memory_optimize from paddle.fluid.transpiler import memory_optimize
class TestControlFlowGraph(unittest.TestCase): class TestControlFlowGraph(unittest.TestCase):
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import numpy import numpy as np
import unittest import unittest
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -243,7 +243,7 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -243,7 +243,7 @@ class TestParallelExecutorBase(unittest.TestCase):
begin = time.time() begin = time.time()
first_loss, = run_executor( first_loss, = run_executor(
exe=exe, feed=feed_dict, fetch_list=[loss.name]) exe=exe, feed=feed_dict, fetch_list=[loss.name])
first_loss = numpy.array(first_loss) first_loss = np.array(first_loss)
for i in xrange(iter): for i in xrange(iter):
run_executor(exe=exe, feed=feed_dict, fetch_list=[]) run_executor(exe=exe, feed=feed_dict, fetch_list=[])
...@@ -256,7 +256,7 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -256,7 +256,7 @@ class TestParallelExecutorBase(unittest.TestCase):
print "%.4f Instance per second" % ( print "%.4f Instance per second" % (
(batch_size * iter + 2) / (end - begin)) (batch_size * iter + 2) / (end - begin))
last_loss = numpy.array(last_loss) last_loss = np.array(last_loss)
print first_loss, last_loss print first_loss, last_loss
# self.assertGreater(first_loss[0], last_loss[0]) # self.assertGreater(first_loss[0], last_loss[0])
...@@ -284,8 +284,8 @@ class TestMNIST(TestParallelExecutorBase): ...@@ -284,8 +284,8 @@ class TestMNIST(TestParallelExecutorBase):
self.check_network_convergence(simple_fc_net) self.check_network_convergence(simple_fc_net)
self.check_network_convergence(simple_fc_net, allow_op_delay=True) self.check_network_convergence(simple_fc_net, allow_op_delay=True)
img = numpy.zeros(shape=[32, 784], dtype='float32') img = np.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64') label = np.ones(shape=[32, 1], dtype='int64')
self.check_network_convergence( self.check_network_convergence(
simple_fc_net, feed_dict={"image": img, simple_fc_net, feed_dict={"image": img,
"label": label}) "label": label})
...@@ -294,8 +294,8 @@ class TestMNIST(TestParallelExecutorBase): ...@@ -294,8 +294,8 @@ class TestMNIST(TestParallelExecutorBase):
self.check_simple_fc_convergence() self.check_simple_fc_convergence()
def check_simple_fc_parallel_accuracy(self): def check_simple_fc_parallel_accuracy(self):
img = numpy.zeros(shape=[32, 784], dtype='float32') img = np.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64') label = np.ones(shape=[32, 1], dtype='int64')
single_first_loss, single_last_loss = self.check_network_convergence( single_first_loss, single_last_loss = self.check_network_convergence(
method=simple_fc_net, method=simple_fc_net,
seed=1000, seed=1000,
...@@ -319,8 +319,8 @@ class TestMNIST(TestParallelExecutorBase): ...@@ -319,8 +319,8 @@ class TestMNIST(TestParallelExecutorBase):
def check_batchnorm_fc_convergence(self): def check_batchnorm_fc_convergence(self):
self.check_network_convergence(fc_with_batchnorm) self.check_network_convergence(fc_with_batchnorm)
img = numpy.zeros(shape=[32, 784], dtype='float32') img = np.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64') label = np.ones(shape=[32, 1], dtype='int64')
self.check_network_convergence( self.check_network_convergence(
fc_with_batchnorm, feed_dict={"image": img, fc_with_batchnorm, feed_dict={"image": img,
"label": label}) "label": label})
...@@ -404,9 +404,6 @@ class ModelHyperParams(object): ...@@ -404,9 +404,6 @@ class ModelHyperParams(object):
dropout = 0.1 dropout = 0.1
import numpy as np
def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head): def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head):
""" """
Pad the instances to the max sequence length in batch, and generate the Pad the instances to the max sequence length in batch, and generate the
...@@ -533,9 +530,8 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): ...@@ -533,9 +530,8 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
opt.minimize(loss) opt.minimize(loss)
batch_size = 32 batch_size = 32
image = numpy.random.normal(size=(batch_size, image = np.random.normal(size=(batch_size, 784)).astype('float32')
784)).astype('float32') label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")
label = numpy.random.randint(0, 10, (batch_size, 1), dtype="int64")
place = fluid.CUDAPlace(0) place = fluid.CUDAPlace(0)
exe = fluid.Executor(place) exe = fluid.Executor(place)
...@@ -552,12 +548,12 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): ...@@ -552,12 +548,12 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
for i in xrange(5): for i in xrange(5):
test_loss, = test_exe.run([loss.name], feed=feed_dict) test_loss, = test_exe.run([loss.name], feed=feed_dict)
test_loss = numpy.array(test_loss) test_loss = np.array(test_loss)
train_loss, = train_exe.run([loss.name], feed=feed_dict) train_loss, = train_exe.run([loss.name], feed=feed_dict)
train_loss = numpy.array(train_loss) train_loss = np.array(train_loss)
self.assertTrue( self.assertTrue(
numpy.allclose( np.allclose(
train_loss, test_loss, atol=1e-8), train_loss, test_loss, atol=1e-8),
"Train loss: " + str(train_loss) + "\n Test loss:" + "Train loss: " + str(train_loss) + "\n Test loss:" +
str(test_loss)) str(test_loss))
...@@ -712,7 +708,7 @@ class TestCRFModel(unittest.TestCase): ...@@ -712,7 +708,7 @@ class TestCRFModel(unittest.TestCase):
data = train_data() data = train_data()
for i in xrange(10): for i in xrange(10):
cur_batch = next(data) cur_batch = next(data)
print map(numpy.array, print map(np.array,
pe.run(feed=feeder.feed(cur_batch), pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name]))[0] fetch_list=[avg_cost.name]))[0]
...@@ -721,3 +717,84 @@ class TestCRFModel(unittest.TestCase): ...@@ -721,3 +717,84 @@ class TestCRFModel(unittest.TestCase):
def test_update_dense_parameter(self): def test_update_dense_parameter(self):
self.check_network_convergence(is_sparse=False) self.check_network_convergence(is_sparse=False)
# test fetch all the variables of global_block
import paddle.dataset.flowers as flowers
import math
def Lenet(data, class_dim):
conv1 = fluid.layers.conv2d(data, 32, 5, 1, act=None)
bn1 = fluid.layers.batch_norm(conv1, act='relu')
pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
conv2 = fluid.layers.conv2d(pool1, 50, 5, 1, act=None)
bn2 = fluid.layers.batch_norm(conv2, act='relu')
pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
fc1 = fluid.layers.fc(pool2, size=500, act='relu')
fc2 = fluid.layers.fc(fc1, size=class_dim, act='softmax')
return fc2
class TestFetchOp(unittest.TestCase):
def parallel_exe(self, train_inputs, seed):
main = fluid.Program()
startup = fluid.Program()
startup.random_seed = seed
with fluid.program_guard(main, startup):
data = fluid.layers.data(
name='image', shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = Lenet(data, class_dim=102)
loss = fluid.layers.cross_entropy(input=out, label=label)
loss = fluid.layers.mean(loss)
opt = fluid.optimizer.Momentum(
learning_rate=0.1,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
opt.minimize(loss)
# TODO(zcd): I found that onece the memory optimizer is open,
# parallel_exe doesn't fetch some variable, such as conv2d_0.b_0@GRAD,
# conv2d_1.b_0@GRAD. Those variables should not be pruned.
# fluid.memory_optimize(main)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup)
feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
pe = fluid.ParallelExecutor(
use_cuda=True, loss_name=loss.name, main_program=main)
fetch_list = []
all_vars = main.global_block().vars
for k, v in all_vars.iteritems():
if 'tmp' not in k and k[0] is not '_' or v.persistable:
fetch_list.append(k)
for data in train_inputs:
ret = pe.run(fetch_list, feed=feeder.feed(data))
for i in range(len(fetch_list)):
assert not math.isnan(np.sum(ret[i])) and \
not math.isinf(np.sum(ret[i]))
def test_update_sparse_parameter(self):
tst_reader = paddle.batch(flowers.test(use_xmap=False), batch_size=16)
tst_reader_iter = tst_reader()
iters = 3
train_inputs = []
for i in range(iters):
train_inputs.append(tst_reader_iter.next())
self.parallel_exe(train_inputs, seed=1)
if __name__ == '__main__':
unittest.main()
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import math import math
import unittest import unittest
from paddle.fluid.distribute_transpiler import split_dense_variable from paddle.fluid.transpiler.distribute_transpiler import split_dense_variable
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
import random import random
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册