Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
9aecf286
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9aecf286
编写于
8月 15, 2022
作者:
W
Wilber
提交者:
GitHub
8月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
convert_fp16 support multi block (#45050)
* convert_fp16 support multi block * update * update
上级
b0e7681f
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
252 addition
and
83 deletion
+252
-83
.gitignore
.gitignore
+1
-0
paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.cc
...d/inference/analysis/passes/convert_to_mixed_precision.cc
+243
-74
paddle/fluid/operators/fused/conv_fusion_op.cu
paddle/fluid/operators/fused/conv_fusion_op.cu
+8
-9
未找到文件。
.gitignore
浏览文件 @
9aecf286
...
...
@@ -38,6 +38,7 @@ build_doc/
CMakeSettings.json
Makefile
.test_env/
.cache/
third_party/
*~
...
...
paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.cc
浏览文件 @
9aecf286
...
...
@@ -19,6 +19,7 @@
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/executor.h"
...
...
@@ -29,6 +30,7 @@
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
...
...
@@ -63,6 +65,7 @@ inline void StrToBinary(const std::string& path, const std::string& str) {
file
.
write
(
str
.
c_str
(),
str
.
size
());
file
.
close
();
}
inline
bool
NodeVarHasDtype
(
framework
::
ir
::
Node
*
node
)
{
if
(
node
->
IsCtrlVar
())
return
false
;
...
...
@@ -80,12 +83,63 @@ inline bool NodeVarHasDtype(framework::ir::Node* node) {
return
false
;
}
void
SaveMixedModel
(
framework
::
ir
::
Graph
*
graph
,
framework
::
Scope
*
scope
,
framework
::
ProgramDesc
*
mixed_program_desc
,
const
std
::
string
&
mixed_model_file
,
const
std
::
string
&
mixed_params_file
,
phi
::
DataType
mixed_precision
)
{
// Return Node* which first appers in block.
framework
::
ir
::
Node
*
GetRealNode
(
const
std
::
vector
<
framework
::
ir
::
Graph
*>&
graphes
,
int
block_idx
,
framework
::
ir
::
Node
*
node
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
)
{
if
(
vars_in_multi_block_map
->
count
(
node
->
Name
()))
{
int
var_origin_block_id
=
vars_in_multi_block_map
->
at
(
node
->
Name
()).
second
;
if
(
block_idx
!=
var_origin_block_id
)
{
auto
graph
=
graphes
[
var_origin_block_id
];
for
(
auto
nd
:
graph
->
Nodes
())
{
if
(
nd
->
Name
()
==
node
->
Name
())
{
return
nd
;
}
}
}
}
return
node
;
}
inline
bool
VarIsMultiOpsOut
(
const
std
::
vector
<
framework
::
ir
::
Graph
*>&
graphes
,
int
block_idx
,
framework
::
ir
::
Node
*
op_node
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
,
const
std
::
vector
<
std
::
set
<
std
::
string
>>&
vars_appear_multi_in_one_block
)
{
CHECK_EQ
(
op_node
->
IsOp
(),
true
);
for
(
auto
*
out
:
op_node
->
outputs
)
{
if
(
out
->
IsCtrlVar
())
continue
;
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
out
,
vars_in_multi_block_map
);
if
(
!
real_node
->
Var
()
->
Persistable
()
&&
vars_appear_multi_in_one_block
[
block_idx
].
count
(
out
->
Name
()))
{
VLOG
(
2
)
<<
out
->
Name
()
<<
" is multi op's out, so we skip convert to fp16"
;
return
true
;
}
}
return
false
;
}
void
SaveMixedModel
(
framework
::
ir
::
Graph
*
graph
,
framework
::
Scope
*
scope
,
framework
::
ProgramDesc
*
mixed_program_desc
,
const
std
::
string
&
mixed_model_file
,
const
std
::
string
&
mixed_params_file
,
phi
::
DataType
mixed_precision
,
const
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>&
vars_in_multi_block_map
)
{
paddle
::
CPUPlace
place
;
auto
parameters
=
scope
->
LocalVarNames
();
std
::
sort
(
parameters
.
begin
(),
parameters
.
end
());
...
...
@@ -169,7 +223,8 @@ bool GpuKernelSupportPrecision(
auto
it
=
all_kernels
.
find
(
op_type
);
if
(
it
!=
all_kernels
.
end
())
{
for
(
auto
&
kern_pair
:
it
->
second
)
{
if
(
platform
::
is_gpu_place
(
kern_pair
.
first
.
place_
))
{
if
(
platform
::
is_gpu_place
(
kern_pair
.
first
.
place_
)
&&
kern_pair
.
first
.
data_type_
==
framework
::
proto
::
VarType
::
FP16
)
{
res
=
true
;
}
}
...
...
@@ -205,10 +260,18 @@ bool OutShouldNotConvert(ir::Node* var_node) {
return
false
;
}
void
ProcessOutputNode
(
ir
::
Node
*
var_node
,
framework
::
proto
::
VarType
::
Type
to_type
)
{
if
(
!
NodeVarHasDtype
(
var_node
))
return
;
auto
*
out_var
=
var_node
->
Var
();
void
ProcessOutputNode
(
const
std
::
vector
<
framework
::
ir
::
Graph
*>&
graphes
,
int
block_idx
,
ir
::
Node
*
var_node
,
framework
::
proto
::
VarType
::
Type
to_type
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
)
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
var_node
,
vars_in_multi_block_map
);
if
(
!
NodeVarHasDtype
(
real_node
))
return
;
auto
*
out_var
=
real_node
->
Var
();
if
(
out_var
->
GetDataType
()
==
framework
::
proto
::
VarType
::
FP32
)
{
if
(
OutShouldNotConvert
(
var_node
))
return
;
out_var
->
SetDataType
(
to_type
);
...
...
@@ -241,6 +304,26 @@ bool WeightsShouldNotConvert(ir::Node* var_node) {
if
(
std
::
find
(
vecs
.
begin
(),
vecs
.
end
(),
var_node
->
Name
())
!=
vecs
.
end
())
{
return
true
;
}
}
else
if
(
op_desc
->
Type
()
==
"fused_multi_transformer"
)
{
auto
vecs
=
op_desc
->
Input
(
"LnScale"
);
if
(
std
::
find
(
vecs
.
begin
(),
vecs
.
end
(),
var_node
->
Name
())
!=
vecs
.
end
())
{
return
true
;
}
vecs
=
op_desc
->
Input
(
"LnBias"
);
if
(
std
::
find
(
vecs
.
begin
(),
vecs
.
end
(),
var_node
->
Name
())
!=
vecs
.
end
())
{
return
true
;
}
vecs
=
op_desc
->
Input
(
"FFNLnScale"
);
if
(
std
::
find
(
vecs
.
begin
(),
vecs
.
end
(),
var_node
->
Name
())
!=
vecs
.
end
())
{
return
true
;
}
vecs
=
op_desc
->
Input
(
"FFNLnBias"
);
if
(
std
::
find
(
vecs
.
begin
(),
vecs
.
end
(),
var_node
->
Name
())
!=
vecs
.
end
())
{
return
true
;
}
}
}
...
...
@@ -255,21 +338,28 @@ inline bool IsFloatVarType(framework::proto::VarType::Type type) {
}
void
ProcessInputNode
(
bool
support_precision
,
framework
::
ir
::
Graph
*
graph
,
std
::
vector
<
framework
::
ir
::
Graph
*>
graphes
,
ir
::
Node
*
in_node
,
ir
::
Node
*
op_node
,
int
*
suffix
,
framework
::
BlockDesc
*
block_desc
,
std
::
unordered_map
<
framework
::
ir
::
Node
*
,
framework
::
ir
::
Node
*>*
cast_map
,
framework
::
proto
::
VarType
::
Type
to_type
,
bool
is_main_block
,
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>*
int
block_idx
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
)
{
if
(
!
NodeVarHasDtype
(
in_node
))
return
;
auto
*
in_var
=
in_node
->
Var
();
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
in_node
,
vars_in_multi_block_map
);
if
(
!
NodeVarHasDtype
(
real_node
))
return
;
auto
graph
=
graphes
[
block_idx
];
bool
is_main_block
=
block_idx
==
0
;
auto
*
in_var
=
real_node
->
Var
();
auto
in_var_type
=
in_var
->
GetDataType
();
if
(
!
is_main_block
&&
vars_in_multi_block_map
->
count
(
in_var
->
Name
()))
{
in_var_type
=
vars_in_multi_block_map
->
at
(
in_var
->
Name
());
bool
is_in_multi_block
=
vars_in_multi_block_map
->
count
(
in_var
->
Name
());
if
(
!
is_main_block
&&
is_in_multi_block
)
{
in_var_type
=
vars_in_multi_block_map
->
at
(
in_var
->
Name
()).
first
;
}
if
(
support_precision
)
{
if
(
in_var
->
Persistable
()
&&
...
...
@@ -300,8 +390,7 @@ void ProcessInputNode(
cast_map
);
}
}
VLOG
(
3
)
<<
" in_node name "
<<
in_var
->
Name
()
<<
" data_type "
<<
in_var
->
GetDataType
();
VLOG
(
3
)
<<
" in_node name "
<<
in_var
->
Name
()
<<
" data_type "
<<
in_var_type
;
}
void
ConvertAllFp64ToFp32
(
framework
::
ir
::
Graph
*
graph
)
{
...
...
@@ -405,45 +494,87 @@ void FixCastAttr(framework::ir::Graph* graph) {
void
FindVarsInMultiBlock
(
framework
::
ProgramDesc
*
program_desc
,
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>*
vars_in_multi_block_map
)
{
std
::
set
<
std
::
string
>
vars_in_multi_block
;
std
::
set
<
std
::
string
>
main_block_var_names_set
;
for
(
auto
op
:
program_desc
->
Block
(
0
).
AllOps
())
{
auto
in_names
=
op
->
InputArgumentNames
();
main_block_var_names_set
.
insert
(
in_names
.
begin
(),
in_names
.
end
());
}
for
(
size_t
i
=
1
;
i
<
program_desc
->
Size
();
++
i
)
{
std
::
set
<
std
::
string
>
block_var_names_set
;
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
,
std
::
vector
<
std
::
set
<
std
::
string
>>*
vars_appear_multi_in_one_block
)
{
std
::
vector
<
std
::
set
<
std
::
string
>>
block_var_names_set
(
program_desc
->
Size
());
for
(
size_t
i
=
0
;
i
<
program_desc
->
Size
();
++
i
)
{
for
(
auto
op
:
program_desc
->
Block
(
i
).
AllOps
())
{
auto
in_names
=
op
->
InputArgumentNames
();
block_var_names_set
.
insert
(
in_names
.
begin
(),
in_names
.
end
());
block_var_names_set
[
i
].
insert
(
in_names
.
begin
(),
in_names
.
end
());
auto
out_names
=
op
->
OutputArgumentNames
();
if
(
op
->
HasAttr
(
"sub_block"
)
==
false
)
{
for
(
auto
&
n
:
out_names
)
{
if
(
block_var_names_set
[
i
].
count
(
n
))
{
(
*
vars_appear_multi_in_one_block
)[
i
].
insert
(
n
);
}
}
}
block_var_names_set
[
i
].
insert
(
out_names
.
begin
(),
out_names
.
end
());
}
}
for
(
size_t
i
=
0
;
i
<
program_desc
->
Size
()
-
1
;
++
i
)
{
for
(
size_t
j
=
i
+
1
;
j
<
program_desc
->
Size
();
++
j
)
{
std
::
set
<
std
::
string
>
vars_in_multi_block
;
std
::
set_intersection
(
block_var_names_set
[
i
].
begin
(),
block_var_names_set
[
i
].
end
(),
block_var_names_set
[
j
].
begin
(),
block_var_names_set
[
j
].
end
(),
std
::
inserter
(
vars_in_multi_block
,
vars_in_multi_block
.
begin
()));
for
(
auto
name
:
vars_in_multi_block
)
{
vars_in_multi_block_map
->
emplace
(
name
,
std
::
make_pair
(
framework
::
proto
::
VarType
::
FP32
,
i
));
}
}
}
}
std
::
set_intersection
(
main_block_var_names_set
.
begin
(),
main_block_var_names_set
.
end
(),
block_var_names_set
.
begin
(),
block_var_names_set
.
end
(),
std
::
inserter
(
vars_in_multi_block
,
vars_in_multi_block
.
begin
()));
bool
OpInOutHasTensorArray
(
std
::
vector
<
framework
::
ir
::
Graph
*>
graphes
,
int
block_idx
,
framework
::
ir
::
Node
*
op_node
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
)
{
CHECK_EQ
(
op_node
->
IsOp
(),
true
);
for
(
auto
in
:
op_node
->
inputs
)
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
in
,
vars_in_multi_block_map
);
if
(
!
NodeVarHasDtype
(
real_node
))
continue
;
if
(
real_node
->
Var
()
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
return
true
;
}
for
(
auto
name
:
vars_in_multi_block
)
{
vars_in_multi_block_map
->
emplace
(
name
,
framework
::
proto
::
VarType
::
FP32
);
for
(
auto
out
:
op_node
->
outputs
)
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
out
,
vars_in_multi_block_map
);
if
(
!
NodeVarHasDtype
(
real_node
))
continue
;
if
(
real_node
->
Var
()
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
return
true
;
}
return
false
;
}
void
ConvertTensorDtype
(
framework
::
ProgramDesc
*
program_desc
,
framework
::
ir
::
Graph
*
graph
,
std
::
vector
<
framework
::
ir
::
Graph
*>
graphes
,
const
std
::
unordered_set
<
std
::
string
>&
blacklist
,
bool
keep_io_types
,
phi
::
Backend
backend
,
phi
::
DataType
tensor_dtype
,
bool
is_main_block
,
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>*
vars_in_multi_block_map
)
{
int
block_idx
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
,
const
std
::
vector
<
std
::
set
<
std
::
string
>>&
vars_appear_multi_in_one_block
)
{
auto
graph
=
graphes
[
block_idx
];
framework
::
proto
::
VarType
::
Type
to_type
;
if
(
tensor_dtype
==
phi
::
DataType
::
FLOAT16
)
{
to_type
=
framework
::
proto
::
VarType
::
FP16
;
...
...
@@ -452,8 +583,7 @@ void ConvertTensorDtype(
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
InvalidArgument
(
"mixed_precision currently not supported dtype %d, we now only "
"support "
"fp16 and bf16."
,
"support fp16 and bf16."
,
static_cast
<
int
>
(
tensor_dtype
)));
}
...
...
@@ -490,15 +620,19 @@ void ConvertTensorDtype(
// same name.
std
::
unordered_map
<
std
::
string
,
framework
::
ir
::
Node
*>
in_name_to_node
;
for
(
auto
*
in
:
op_node
->
inputs
)
{
if
(
NodeVarHasDtype
(
in
))
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
in
,
vars_in_multi_block_map
);
if
(
NodeVarHasDtype
(
real_node
))
{
in_name_to_node
[
in
->
Name
()]
=
in
;
}
}
for
(
auto
out
:
op_node
->
outputs
)
{
if
(
NodeVarHasDtype
(
out
))
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
out
,
vars_in_multi_block_map
);
if
(
NodeVarHasDtype
(
real_node
))
{
if
(
in_name_to_node
.
count
(
out
->
Name
()))
out
->
Var
()
->
SetDataType
(
real_node
->
Var
()
->
SetDataType
(
in_name_to_node
[
out
->
Name
()]
->
Var
()
->
GetDataType
());
}
}
...
...
@@ -506,17 +640,39 @@ void ConvertTensorDtype(
continue
;
}
// A strange case found in multi block.
else
if
(
op_type
==
"assign"
&&
// NOLINT
op_node
->
inputs
[
0
]
->
Name
()
==
op_node
->
outputs
[
0
]
->
Name
())
{
VLOG
(
2
)
<<
" in out are same, continue"
;
continue
;
}
// Handle tensor array.
else
if
(
OpInOutHasTensorArray
(
// NOLINT
graphes
,
block_idx
,
op_node
,
vars_in_multi_block_map
))
{
VLOG
(
2
)
<<
" in or out has tensor array, continue"
;
continue
;
}
// 2. if op support fp16/bf16 and not in blacklist.
// - cast weight to fp16/bf16.
// - add cast op if the input dtype is not fp16/bf16.
// - set output dtype.
else
if
(
blacklist
.
count
(
op_type
)
==
0
)
{
// NOLINT
//
// If a var(op's out var) appears multiple times in a block, we should not
// convert to fp16.
else
if
(
blacklist
.
count
(
op_type
)
==
0
&&
// NOLINT
!
VarIsMultiOpsOut
(
graphes
,
block_idx
,
op_node
,
vars_in_multi_block_map
,
vars_appear_multi_in_one_block
))
{
bool
support_precision
=
OpSupportPrecision
(
op_type
,
backend
,
tensor_dtype
,
blacklist
);
VLOG
(
2
)
<<
"op_type "
<<
op_type
<<
", phi_op_type "
<<
phi
::
TransToPhiKernelName
(
op_type
)
<<
" support low precision "
<<
support_precision
<<
", "
<<
reinterpret_cast
<
void
*>
(
op_node
->
Op
()
->
Block
());
VLOG
(
2
)
<<
" support low precision "
<<
support_precision
;
if
(
support_precision
)
{
HandleSpecialOps
(
op_node
->
Op
());
...
...
@@ -525,32 +681,33 @@ void ConvertTensorDtype(
// Process inputs.
for
(
auto
*
in_node
:
inputs
)
{
ProcessInputNode
(
true
,
graph
,
graph
es
,
in_node
,
op_node
,
&
suffix
,
block_desc
,
&
cast_map
,
to_type
,
is_main_block
,
block_idx
,
vars_in_multi_block_map
);
}
// Process outputs.
for
(
auto
*
out_node
:
op_node
->
outputs
)
{
ProcessOutputNode
(
out_node
,
to_type
);
ProcessOutputNode
(
graphes
,
block_idx
,
out_node
,
to_type
,
vars_in_multi_block_map
);
}
}
else
{
auto
inputs
=
op_node
->
inputs
;
for
(
auto
*
in_node
:
inputs
)
{
ProcessInputNode
(
false
,
graph
,
graph
es
,
in_node
,
op_node
,
&
suffix
,
block_desc
,
&
cast_map
,
framework
::
proto
::
VarType
::
FP32
,
is_main_block
,
block_idx
,
vars_in_multi_block_map
);
}
}
...
...
@@ -606,16 +763,21 @@ void ConvertTensorDtype(
}
}
if
(
is_main_block
)
{
for
(
auto
node
:
graph
->
Nodes
())
{
if
(
vars_in_multi_block_map
->
count
(
node
->
Name
()))
{
vars_in_multi_block_map
->
at
(
node
->
Name
())
=
node
->
Var
()
->
GetDataType
();
}
for
(
auto
node
:
graph
->
Nodes
())
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
node
,
vars_in_multi_block_map
);
if
(
!
NodeVarHasDtype
(
real_node
))
continue
;
if
(
vars_in_multi_block_map
->
count
(
real_node
->
Name
())
&&
vars_in_multi_block_map
->
at
(
real_node
->
Name
()).
second
==
block_idx
)
{
vars_in_multi_block_map
->
at
(
real_node
->
Name
()).
first
=
real_node
->
Var
()
->
GetDataType
();
}
}
if
(
num_low_precision
)
LOG
(
INFO
)
<<
"--- detected "
<<
num_low_precision
<<
" low precision ops"
;
LOG
(
INFO
)
<<
"--- detected "
<<
num_low_precision
<<
" low precision ops in "
<<
block_idx
<<
" subgraph"
;
}
}
// namespace
...
...
@@ -701,26 +863,32 @@ void ConvertToMixedPrecision(const std::string& model_file,
auto
main_graph
=
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
(
new
framework
::
ir
::
Graph
(
*
program_desc
));
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>
vars_in_multi_block_map
;
FindVarsInMultiBlock
(
program_desc
.
get
(),
&
vars_in_multi_block_map
);
std
::
vector
<
std
::
set
<
std
::
string
>>
vars_appear_multi_in_one_block
(
program_desc
->
Size
());
FindVarsInMultiBlock
(
program_desc
.
get
(),
&
vars_in_multi_block_map
,
&
vars_appear_multi_in_one_block
);
std
::
vector
<
framework
::
ir
::
Graph
*>
graphes
;
for
(
size_t
i
=
0
;
i
<
main_graph
->
SubGraphsSize
();
++
i
)
{
auto
graph
=
main_graph
->
GetSubGraph
(
i
);
graphes
.
push_back
(
graph
);
VLOG
(
2
)
<<
" -------- handle subgraph "
<<
i
<<
", has "
<<
graph
->
Nodes
().
size
()
<<
" nodes"
;
program_desc
->
Block
(
i
).
LocalVarNames
();
<<
graph
->
Nodes
().
size
()
<<
" nodes --------"
;
ConvertAllFp64ToFp32
(
graph
);
ConvertTensorDtype
(
program_desc
.
get
(),
graph
,
graph
es
,
black_list
,
keep_io_types
,
backend
,
mixed_precision
,
i
==
0
,
&
vars_in_multi_block_map
);
i
,
&
vars_in_multi_block_map
,
vars_appear_multi_in_one_block
);
FixCastAttr
(
graph
);
}
...
...
@@ -732,7 +900,8 @@ void ConvertToMixedPrecision(const std::string& model_file,
&
mixed_program_desc
,
mixed_model_file
,
mixed_params_file
,
mixed_precision
);
mixed_precision
,
vars_in_multi_block_map
);
}
}
// namespace analysis
...
...
paddle/fluid/operators/fused/conv_fusion_op.cu
浏览文件 @
9aecf286
...
...
@@ -438,15 +438,14 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
cudnn_output_desc
,
algo
,
&
workspace_size_in_bytes
));
PADDLE_ENFORCE_LE
(
workspace_size_in_bytes
,
workspace_size_limit
,
platform
::
errors
::
InvalidArgument
(
"The actual workspace size to be allocated for cuDNN is expected "
"to be less than the limit. But received: the actual workspace "
"size = %d, limit = %d."
,
workspace_size_in_bytes
,
workspace_size_limit
));
// PADDLE_ENFORCE_LE(
// workspace_size_in_bytes,
// workspace_size_limit,
// platform::errors::InvalidArgument(
// "The actual workspace size to be allocated for cuDNN is expected
// " "to be less than the limit. But received: the actual workspace
// " "size = %d, limit = %d.", workspace_size_in_bytes,
// workspace_size_limit));
if
((
activation
==
"identity"
)
&&
(
!
residual
))
{
// Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录