未验证 提交 999242e3 编写于 作者: Z zhulei 提交者: GitHub

[NPU] Add iou_similarity op (#36412)

* [NPU] Add iou_similarity op

* [NPU] Add iou_similarity op

* [NPU] Add iou_similarity op
上级 f2612462
......@@ -64,6 +64,8 @@ endif()
if(WITH_XPU)
detection_library(iou_similarity_op SRCS iou_similarity_op.cc iou_similarity_op_xpu.cc)
elseif(WITH_ASCEND_CL)
detection_library(iou_similarity_op SRCS iou_similarity_op.cc iou_similarity_op_npu.cc)
else()
detection_library(iou_similarity_op SRCS iou_similarity_op.cc iou_similarity_op.cu)
endif()
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/iou_similarity_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
struct IouFunction {
public:
explicit IouFunction(const framework::ExecutionContext& ctx) : ctx(ctx) {
place = ctx.GetPlace();
stream = ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
}
void Transpose(const Tensor* x, Tensor* y, const std::vector<int>& axis) {
// y should be init first
const auto& runner =
NpuOpRunner("TransposeD", {*x}, {*y}, {{"perm", axis}});
runner.Run(stream);
}
void Add(const Tensor* x, const Tensor* y, Tensor* z) {
// y should be init first
const auto& runner = NpuOpRunner("AddV2", {*x, *y}, {*z}, {});
runner.Run(stream);
}
void Sub(const Tensor* x, const Tensor* y, Tensor* z) {
// y should be init first
const auto& runner = NpuOpRunner("Sub", {*x, *y}, {*z}, {});
runner.Run(stream);
}
void Mul(const Tensor* x, const Tensor* y, Tensor* z) {
// y should be init first
const auto& runner = NpuOpRunner("Mul", {*x, *y}, {*z}, {});
runner.Run(stream);
}
void DivNoNan(const Tensor* x, const Tensor* y, Tensor* z) {
// y should be init first
const auto& runner = NpuOpRunner("DivNoNan", {*x, *y}, {*z}, {});
runner.Run(stream);
}
void Adds(const Tensor* x, float scalar, Tensor* y) {
// y should be init first
const auto& runner = NpuOpRunner("Adds", {*x}, {*y}, {{"value", scalar}});
runner.Run(stream);
}
void Maximum(const Tensor* x, const Tensor* y, Tensor* z) {
// z should be init first
const auto& runner = NpuOpRunner("Maximum", {*x, *y}, {*z}, {});
runner.Run(stream);
}
void Minimum(const Tensor* x, const Tensor* y, Tensor* z) {
// z should be init first
const auto& runner = NpuOpRunner("Minimum", {*x, *y}, {*z}, {});
runner.Run(stream);
}
private:
platform::Place place;
aclrtStream stream;
const framework::ExecutionContext& ctx;
};
template <typename T>
class IouSimilarityNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::LoDTensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
bool normalized = ctx.Attr<bool>("box_normalized");
auto* out = ctx.Output<framework::LoDTensor>("Out");
auto _type = x->type();
auto place = ctx.GetPlace();
IouFunction<T> F(ctx);
auto N = x->dims()[0];
auto M = y->dims()[0];
out->mutable_data<T>({N, M}, place);
Tensor xt(_type);
Tensor yt(_type);
xt.mutable_data<T>({4, N}, place);
yt.mutable_data<T>({4, M}, place);
std::vector<int> vec_trans = {1, 0};
F.Transpose(x, &xt, vec_trans);
F.Transpose(y, &yt, vec_trans);
Tensor xmin1 = xt.Slice(0, 1);
Tensor ymin1 = xt.Slice(1, 2);
Tensor xmax1 = xt.Slice(2, 3);
Tensor ymax1 = xt.Slice(3, 4);
Tensor xmin2 = yt.Slice(0, 1);
Tensor ymin2 = yt.Slice(1, 2);
Tensor xmax2 = yt.Slice(2, 3);
Tensor ymax2 = yt.Slice(3, 4);
xmin1.Resize({N, 1});
ymin1.Resize({N, 1});
xmax1.Resize({N, 1});
ymax1.Resize({N, 1});
xmin2.Resize({1, M});
ymin2.Resize({1, M});
xmax2.Resize({1, M});
ymax2.Resize({1, M});
Tensor w1(_type);
Tensor h1(_type);
Tensor w2(_type);
Tensor h2(_type);
Tensor area1(_type);
Tensor area2(_type);
w1.mutable_data<T>({N, 1}, place);
h1.mutable_data<T>({N, 1}, place);
w2.mutable_data<T>({1, M}, place);
h2.mutable_data<T>({1, M}, place);
area1.mutable_data<T>({N, 1}, place);
area2.mutable_data<T>({1, M}, place);
F.Sub(&xmax1, &xmin1, &w1);
F.Sub(&ymax1, &ymin1, &h1);
F.Sub(&xmax2, &xmin2, &w2);
F.Sub(&ymax2, &ymin2, &h2);
if (!normalized) {
F.Adds(&w1, 1.0f, &w1);
F.Adds(&h1, 1.0f, &h1);
F.Adds(&w2, 1.0f, &w2);
F.Adds(&h2, 1.0f, &h2);
}
F.Mul(&w1, &h1, &area1);
F.Mul(&w2, &h2, &area2);
Tensor inter_xmax(_type);
Tensor inter_ymax(_type);
Tensor inter_xmin(_type);
Tensor inter_ymin(_type);
inter_xmax.mutable_data<T>({N, M}, place);
inter_ymax.mutable_data<T>({N, M}, place);
inter_xmin.mutable_data<T>({N, M}, place);
inter_ymin.mutable_data<T>({N, M}, place);
F.Minimum(&xmax1, &xmax2, &inter_xmax);
F.Minimum(&ymax1, &ymax2, &inter_ymax);
F.Maximum(&xmin1, &xmin2, &inter_xmin);
F.Maximum(&ymin1, &ymin2, &inter_ymin);
Tensor inter_w(_type);
Tensor inter_h(_type);
inter_w.mutable_data<T>({N, M}, place);
inter_h.mutable_data<T>({N, M}, place);
F.Sub(&inter_xmax, &inter_xmin, &inter_w);
F.Sub(&inter_ymax, &inter_ymin, &inter_h);
if (!normalized) {
F.Adds(&inter_w, 1.0f, &inter_w);
F.Adds(&inter_h, 1.0f, &inter_h);
}
Tensor zeros(_type);
zeros.mutable_data<T>({1}, place);
FillNpuTensorWithConstant<T>(&zeros, static_cast<T>(0));
F.Maximum(&inter_w, &zeros, &inter_w);
F.Maximum(&inter_h, &zeros, &inter_h);
F.Mul(&inter_w, &inter_h, out);
Tensor union_area(_type);
union_area.mutable_data<T>({N, M}, place);
F.Add(&area1, &area2, &union_area);
F.Sub(&union_area, out, &union_area);
F.DivNoNan(out, &union_area, out);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(iou_similarity, ops::IouSimilarityNPUKernel<float>,
ops::IouSimilarityNPUKernel<plat::float16>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import numpy.random as random
import sys
sys.path.append("..")
import math
import paddle
from op_test import OpTest
paddle.enable_static()
np.random.seed(2021)
class TestNpuIouSimilarityOp(OpTest):
def setUp(self):
self.op_type = "iou_similarity"
self.set_npu()
self.init_dtype()
self.set_init_config()
self.set_attrs()
self.set_inputs()
self.set_outputs()
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def set_init_config(self):
self.N = 2
self.M = 3
self.box_normalized = False
self.use_lod = False
def set_inputs(self):
self.boxes1 = random.rand(self.N, 4).astype(self.dtype)
self.boxes2 = random.rand(self.M, 4).astype(self.dtype)
if self.use_lod:
self.boxes1_lod = [[1 for _ in range(self.N)]]
self.inputs = {
'X': (self.boxes1, self.boxes1_lod),
'Y': self.boxes2
}
else:
self.inputs = {'X': self.boxes1, 'Y': self.boxes2}
def set_attrs(self):
self.attrs = {"box_normalized": self.box_normalized}
def set_outputs(self):
self.output = random.rand(self.N, self.M).astype(self.dtype)
self._compute_iou()
self.outputs = {'Out': self.output}
def test_check_output(self):
self.check_output_with_place(self.place)
def _compute_iou(self, ):
for row in range(self.boxes1.shape[0]):
for col in range(self.boxes2.shape[0]):
xmin1, ymin1, xmax1, ymax1 = self.boxes1[row]
xmin2, ymin2, xmax2, ymax2 = self.boxes2[col]
if not self.box_normalized:
area1 = (ymax1 - ymin1 + 1) * (xmax1 - xmin1 + 1)
area2 = (ymax2 - ymin2 + 1) * (xmax2 - xmin2 + 1)
else:
area1 = (ymax1 - ymin1) * (xmax1 - xmin1)
area2 = (ymax2 - ymin2) * (xmax2 - xmin2)
inter_xmax = min(xmax1, xmax2)
inter_ymax = min(ymax1, ymax2)
inter_xmin = max(xmin1, xmin2)
inter_ymin = max(ymin1, ymin2)
inter_height = inter_ymax - inter_ymin
inter_width = inter_xmax - inter_xmin
if not self.box_normalized:
inter_height += 1
inter_width += 1
inter_height = max(inter_height, 0)
inter_width = max(inter_width, 0)
inter_area = inter_width * inter_height
union_area = area1 + area2 - inter_area
sim_score = inter_area / union_area
self.output[row, col] = sim_score
class TestNpuIouSimilarityOpWithLoD(TestNpuIouSimilarityOp):
def set_init_config(self):
super(TestNpuIouSimilarityOpWithLoD, self).set_init_config()
self.box_normalized = True
self.use_lod = True
class TestNpuIouSimilarityOpWithBoxNormalized(TestNpuIouSimilarityOp):
def set_init_config(self):
super(TestNpuIouSimilarityOpWithBoxNormalized, self).set_init_config()
self.box_normalized = True
self.use_lod = True
def TestNpuIouSimilarityOpFp16(TestNpuIouSimilarityOp):
def init_dtype(self):
self.dtype = np.float16
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册