提交 98270c18 编写于 作者: J Jacek Czaja

- modified UT

上级 2b24a801
...@@ -47,7 +47,9 @@ class EltwiseMKLDNNKernel : public framework::OpKernel<T> { ...@@ -47,7 +47,9 @@ class EltwiseMKLDNNKernel : public framework::OpKernel<T> {
float scale_o = ctx.Attr<float>("Scale_out"); float scale_o = ctx.Attr<float>("Scale_out");
int axis = ctx.Attr<int>("axis"); int axis = ctx.Attr<int>("axis");
platform::BinaryMKLDNNHandler<T> handler( BINARY_OP, axis, mkldnn_engine, ctx.GetPlace(), x, y, z, scale_x, scale_y, scale_o); platform::BinaryMKLDNNHandler<T> handler(BINARY_OP, axis, mkldnn_engine,
ctx.GetPlace(), x, y, z, scale_x,
scale_y, scale_o);
const auto src_x_memory = handler.AcquireSrcMemory(x); const auto src_x_memory = handler.AcquireSrcMemory(x);
const auto src_y_memory = handler.AcquireSecondSrcMemory(y); const auto src_y_memory = handler.AcquireSecondSrcMemory(y);
......
...@@ -48,8 +48,8 @@ class EltwiseMulMKLDNNGradKernel : public ElemwiseGradKernel<T> { ...@@ -48,8 +48,8 @@ class EltwiseMulMKLDNNGradKernel : public ElemwiseGradKernel<T> {
if (dx) { if (dx) {
// dx = dout*y // dx = dout*y
platform::BinaryMKLDNNHandler<T> handler( platform::BinaryMKLDNNHandler<T> handler(
dnnl::algorithm::binary_mul, axis, mkldnn_engine, dnnl::algorithm::binary_mul, axis, mkldnn_engine, ctx.GetPlace(),
ctx.GetPlace(), dout, y, dx, 1.0f, 1.0f, 1.0f); dout, y, dx, 1.0f, 1.0f, 1.0f);
const auto src_dout_memory = handler.AcquireSrcMemory(dout); const auto src_dout_memory = handler.AcquireSrcMemory(dout);
const auto src_y_memory = handler.AcquireSecondSrcMemory(y); const auto src_y_memory = handler.AcquireSecondSrcMemory(y);
...@@ -74,8 +74,8 @@ class EltwiseMulMKLDNNGradKernel : public ElemwiseGradKernel<T> { ...@@ -74,8 +74,8 @@ class EltwiseMulMKLDNNGradKernel : public ElemwiseGradKernel<T> {
// Handler is having nullptr passed instead of output tensor as // Handler is having nullptr passed instead of output tensor as
// we want Dst buffer to be allocated by oneDNN not to use Tensor // we want Dst buffer to be allocated by oneDNN not to use Tensor
platform::BinaryMKLDNNHandler<T> handler( platform::BinaryMKLDNNHandler<T> handler(
dnnl::algorithm::binary_mul, axis, mkldnn_engine, dnnl::algorithm::binary_mul, axis, mkldnn_engine, ctx.GetPlace(),
ctx.GetPlace(), dout, x, nullptr, 1.0f, 1.0f, 1.0f); dout, x, nullptr, 1.0f, 1.0f, 1.0f);
const auto src_dout_memory = handler.AcquireSrcMemory(dout); const auto src_dout_memory = handler.AcquireSrcMemory(dout);
const auto src_x_memory = handler.AcquireSecondSrcMemory(x); const auto src_x_memory = handler.AcquireSecondSrcMemory(x);
......
...@@ -79,14 +79,15 @@ void eltwise_forward(const framework::ExecutionContext &ctx, ...@@ -79,14 +79,15 @@ void eltwise_forward(const framework::ExecutionContext &ctx,
paddle::platform::errors::PreconditionNotMet( paddle::platform::errors::PreconditionNotMet(
"Operator DNNL eletwise_forward must use CPUPlace")); "Operator DNNL eletwise_forward must use CPUPlace"));
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>(); auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine(); const auto &mkldnn_engine = dev_ctx.GetEngine();
const auto *x = ctx.Input<Tensor>("X"); const auto *x = ctx.Input<Tensor>("X");
auto *y = ctx.Output<Tensor>("Out"); auto *y = ctx.Output<Tensor>("Out");
bool is_inplaced = x->IsSharedBufferWith(*y); bool is_inplaced = x->IsSharedBufferWith(*y);
platform::ActivationMKLDNNHandler<T> handler(algorithm, ctx, mkldnn_engine, ctx.GetPlace(), x); platform::ActivationMKLDNNHandler<T> handler(algorithm, ctx, mkldnn_engine,
ctx.GetPlace(), x);
auto src_memory_p = handler.AcquireSrcMemory(x); auto src_memory_p = handler.AcquireSrcMemory(x);
auto dst_memory_p = is_inplaced ? src_memory_p : handler.AcquireDstMemory(y); auto dst_memory_p = is_inplaced ? src_memory_p : handler.AcquireDstMemory(y);
...@@ -105,14 +106,14 @@ template <typename T> ...@@ -105,14 +106,14 @@ template <typename T>
void eltwise_grad(const framework::ExecutionContext &ctx, void eltwise_grad(const framework::ExecutionContext &ctx,
mkldnn::algorithm algorithm) { mkldnn::algorithm algorithm) {
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>(); auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine(); const auto &mkldnn_engine = dev_ctx.GetEngine();
const auto *x = ctx.Input<Tensor>("X"); const auto *x = ctx.Input<Tensor>("X");
const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out")); const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X")); auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
platform::ActivationMKLDNNHandler<T> handler( platform::ActivationMKLDNNHandler<T> handler(algorithm, ctx, mkldnn_engine,
algorithm, ctx, mkldnn_engine, ctx.GetPlace(), x, diff_y); ctx.GetPlace(), x, diff_y);
auto src_memory_p = handler.AcquireBackwardSrcMemory(x); auto src_memory_p = handler.AcquireBackwardSrcMemory(x);
auto diff_dst_memory_p = handler.AcquireDiffDstMemory(diff_y); auto diff_dst_memory_p = handler.AcquireDiffDstMemory(diff_y);
......
...@@ -37,10 +37,12 @@ class ScaleMKLDNNKernel : public framework::OpKernel<T> { ...@@ -37,10 +37,12 @@ class ScaleMKLDNNKernel : public framework::OpKernel<T> {
bool is_inplaced = x->IsSharedBufferWith(*out); bool is_inplaced = x->IsSharedBufferWith(*out);
platform::ActivationMKLDNNHandler<T> handler( platform::ActivationMKLDNNHandler<T> handler(
mkldnn::algorithm::eltwise_linear, ctx, mkldnn_engine, ctx.GetPlace(), x); mkldnn::algorithm::eltwise_linear, ctx, mkldnn_engine, ctx.GetPlace(),
x);
auto src_memory_p = handler.AcquireSrcMemory(x); auto src_memory_p = handler.AcquireSrcMemory(x);
auto dst_memory_p = is_inplaced ? src_memory_p : handler.AcquireDstMemory(out); auto dst_memory_p =
is_inplaced ? src_memory_p : handler.AcquireDstMemory(out);
auto activation_p = handler.AcquireForwardPrimitive(); auto activation_p = handler.AcquireForwardPrimitive();
auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream(); auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
......
...@@ -33,12 +33,13 @@ using platform::to_void_cast; ...@@ -33,12 +33,13 @@ using platform::to_void_cast;
template <typename T> template <typename T>
class SoftmaxMKLDNNHandler class SoftmaxMKLDNNHandler
: public platform::MKLDNNHandlerNoCachingT<T, mkldnn::softmax_forward, : public platform::MKLDNNHandlerNoCachingT<T, mkldnn::softmax_forward,
mkldnn::softmax_backward> { mkldnn::softmax_backward> {
public: public:
SoftmaxMKLDNNHandler(const mkldnn::engine mkldnn_engine, SoftmaxMKLDNNHandler(const mkldnn::engine mkldnn_engine,
platform::Place cpu_place, const Tensor* input, platform::Place cpu_place, const Tensor* input,
Tensor* output, const int axis) Tensor* output, const int axis)
: platform::MKLDNNHandlerNoCachingT<T, mkldnn::softmax_forward, mkldnn::softmax_backward>( : platform::MKLDNNHandlerNoCachingT<T, mkldnn::softmax_forward,
mkldnn::softmax_backward>(
mkldnn_engine, cpu_place) { mkldnn_engine, cpu_place) {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
input->dims(), output->dims(), input->dims(), output->dims(),
...@@ -49,7 +50,8 @@ class SoftmaxMKLDNNHandler ...@@ -49,7 +50,8 @@ class SoftmaxMKLDNNHandler
auto md = memory::desc(softmax_tz, platform::MKLDNNGetDataType<T>(), auto md = memory::desc(softmax_tz, platform::MKLDNNGetDataType<T>(),
input->format()); input->format());
this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring, md, axis); this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring, md,
axis);
} }
SoftmaxMKLDNNHandler(const framework::ExecutionContext& ctx, SoftmaxMKLDNNHandler(const framework::ExecutionContext& ctx,
...@@ -58,25 +60,26 @@ class SoftmaxMKLDNNHandler ...@@ -58,25 +60,26 @@ class SoftmaxMKLDNNHandler
const Tensor* out_grad, Tensor* in_x_grad, const Tensor* out_grad, Tensor* in_x_grad,
const std::string& unique_name) const std::string& unique_name)
: platform::MKLDNNHandlerNoCachingT<T, mkldnn::softmax_forward, : platform::MKLDNNHandlerNoCachingT<T, mkldnn::softmax_forward,
mkldnn::softmax_backward>(mkldnn_engine, cpu_place) { mkldnn::softmax_backward>(
PADDLE_ENFORCE_EQ( mkldnn_engine, cpu_place) {
out_grad->dims(), in_x_grad->dims(), PADDLE_ENFORCE_EQ(
platform::errors::InvalidArgument("The shape of softmax_grad's input " out_grad->dims(), in_x_grad->dims(),
"and output must be identical.")); platform::errors::InvalidArgument("The shape of softmax_grad's input "
"and output must be identical."));
auto dims = out_grad->dims(); // input and output share the same shape
const int axis = CanonicalAxis(ctx.Attr<int>("axis"), dims.size()); auto dims = out_grad->dims(); // input and output share the same shape
auto softmax_tz = framework::vectorize<int64_t>(dims); const int axis = CanonicalAxis(ctx.Attr<int>("axis"), dims.size());
auto softmax_tz = framework::vectorize<int64_t>(dims);
auto data_softmax_md = MKLDNNMemDesc(
softmax_tz, platform::MKLDNNGetDataType<T>(), out->format()); auto data_softmax_md = MKLDNNMemDesc(
auto diff_softmax_md = MKLDNNMemDesc( softmax_tz, platform::MKLDNNGetDataType<T>(), out->format());
softmax_tz, platform::MKLDNNGetDataType<T>(), out_grad->format()); auto diff_softmax_md = MKLDNNMemDesc(
softmax_tz, platform::MKLDNNGetDataType<T>(), out_grad->format());
this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring,
data_softmax_md, axis); this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring,
this->AcquireBackwardPrimitiveDescriptor(diff_softmax_md, data_softmax_md, data_softmax_md, axis);
axis); this->AcquireBackwardPrimitiveDescriptor(diff_softmax_md, data_softmax_md,
axis);
} }
}; };
...@@ -93,7 +96,8 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> { ...@@ -93,7 +96,8 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
const int axis = CanonicalAxis(ctx.Attr<int>("axis"), input->dims().size()); const int axis = CanonicalAxis(ctx.Attr<int>("axis"), input->dims().size());
SoftmaxMKLDNNHandler<T> handler(mkldnn_engine, ctx.GetPlace(), input, output, axis); SoftmaxMKLDNNHandler<T> handler(mkldnn_engine, ctx.GetPlace(), input,
output, axis);
auto softmax_src_memory_p = handler.AcquireSrcMemory(input); auto softmax_src_memory_p = handler.AcquireSrcMemory(input);
// For Inplace src and and dst are the same memory object // For Inplace src and and dst are the same memory object
......
...@@ -70,11 +70,16 @@ void RunOperator(const platform::Place &place, const std::string &op_type, ...@@ -70,11 +70,16 @@ void RunOperator(const platform::Place &place, const std::string &op_type,
std::map<const std::string, int> num_inputs = {{"softmax", 1}, std::map<const std::string, int> num_inputs = {{"softmax", 1},
{"relu", 1}, {"relu", 1},
{"conv2d", 2},
{"elementwise_add", 2}, {"elementwise_add", 2},
{"elementwise_mul", 2}}; {"elementwise_mul", 2}};
std::string first_input = inplace == true ? output_name : "x"; std::string first_input = inplace == true ? output_name : "x";
std::string first_input_var_name = (op_type == "conv2d") ? "Input" : "X";
std::string second_input_var_name = (op_type == "conv2d") ? "Filter" : "Y";
std::string output_var_name = (op_type == "conv2d") ? "Output" : "Out";
std::vector<InputVars> input_names = { std::vector<InputVars> input_names = {
{first_input, scope.Var(first_input)->GetMutable<framework::LoDTensor>()}, {first_input, scope.Var(first_input)->GetMutable<framework::LoDTensor>()},
{"x1", num_inputs[op_type] > 1 {"x1", num_inputs[op_type] > 1
...@@ -113,68 +118,37 @@ void RunOperator(const platform::Place &place, const std::string &op_type, ...@@ -113,68 +118,37 @@ void RunOperator(const platform::Place &place, const std::string &op_type,
auto &pool = platform::DeviceContextPool::Instance(); auto &pool = platform::DeviceContextPool::Instance();
auto op = num_inputs[op_type] > 1 auto op =
? framework::OpRegistry::CreateOp( num_inputs[op_type] > 1
op_type, {{"X", {first_input}}, {"Y", {"x1"}}}, ? framework::OpRegistry::CreateOp(
{{"Out", {output_name}}}, {{"use_mkldnn", {true}}}) op_type, {{first_input_var_name, {first_input}},
: framework::OpRegistry::CreateOp( {second_input_var_name, {"x1"}}},
op_type, {{"X", {first_input}}}, {{"Out", {output_name}}}, {{output_var_name, {output_name}}}, {{"use_mkldnn", {true}}})
{{"use_mkldnn", {true}}}); : framework::OpRegistry::CreateOp(
op_type, {{first_input_var_name, {first_input}}},
{{output_var_name, {output_name}}}, {{"use_mkldnn", {true}}});
op->Run(scope, place); op->Run(scope, place);
pool.Get(place)->Wait(); pool.Get(place)->Wait();
} }
TEST(test_softmax_reuse_cache, cpu_place) { TEST(test_softmax_reuse_cache, cpu_place) {
framework::DDim dims({32, 64}); framework::DDim dims({1, 16, 32, 64});
platform::CPUPlace p; platform::CPUPlace p;
CacheTester ct; CacheTester ct;
RunOperator<float>(p, "softmax", dims, "softmax_out"); RunOperator<float>(p, "conv2d", dims, "conv_out");
RunOperator<float>(p, "softmax", dims, "softmax_out"); RunOperator<float>(p, "conv2d", dims, "conv_out");
PADDLE_ENFORCE_EQ(ct.Analyze(4), true, PADDLE_ENFORCE_EQ(ct.Analyze(4), true,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"Wrong number of cached oneDNN objects")); "Wrong number of cached oneDNN objects"));
} }
TEST(test_softmax_noreuse_cache, cpu_place) { TEST(test_softmax_noreuse_cache, cpu_place) {
framework::DDim dims({32, 64}); framework::DDim dims({1, 16, 32, 64});
platform::CPUPlace p;
CacheTester ct;
RunOperator<float>(p, "softmax", dims, "softmax_out");
RunOperator<float>(p, "softmax", dims, "softmax_out2");
PADDLE_ENFORCE_EQ(ct.Analyze(8), true,
platform::errors::InvalidArgument(
"Wrong number of cached oneDNN objects"));
}
TEST(test_softmax_inplace_cache, cpu_place) {
framework::DDim dims({32, 64});
platform::CPUPlace p;
CacheTester ct;
RunOperator<float>(p, "softmax", dims, "softmax_out");
RunOperator<float>(p, "softmax", dims, "softmax_out", true);
PADDLE_ENFORCE_EQ(ct.Analyze(7), true,
platform::errors::InvalidArgument(
"Wrong number of cached oneDNN objects"));
}
TEST(test_relu_inplace_cache, cpu_place) {
framework::DDim dims({32, 64});
platform::CPUPlace p;
CacheTester ct;
RunOperator<float>(p, "relu", dims, "relu_out");
RunOperator<float>(p, "relu", dims, "relu_out", true);
PADDLE_ENFORCE_EQ(ct.Analyze(7), true,
platform::errors::InvalidArgument(
"Wrong number of cached oneDNN objects"));
}
TEST(test_elementwise_add_reuse_cache, cpu_place) {
framework::DDim dims({32, 64});
platform::CPUPlace p; platform::CPUPlace p;
CacheTester ct; CacheTester ct;
RunOperator<float>(p, "elementwise_add", dims, "elementwise_add_out"); RunOperator<float>(p, "conv2d", dims, "conv_out");
RunOperator<float>(p, "relu", dims, "elementwise_add_out", true); RunOperator<float>(p, "conv2d", dims, "conv_out2");
PADDLE_ENFORCE_EQ(ct.Analyze(8), true, PADDLE_ENFORCE_EQ(ct.Analyze(8), true,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"Wrong number of cached oneDNN objects")); "Wrong number of cached oneDNN objects"));
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册