Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
97724c2a
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
97724c2a
编写于
1月 09, 2018
作者:
G
gx_wind
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bugs and modify func param name
上级
bf1e0372
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
13 addition
and
18 deletion
+13
-18
adversarial/advbox/attacks/base.py
adversarial/advbox/attacks/base.py
+5
-5
adversarial/advbox/attacks/gradientsign.py
adversarial/advbox/attacks/gradientsign.py
+5
-4
adversarial/advbox/models/base.py
adversarial/advbox/models/base.py
+1
-2
adversarial/advbox/models/paddle.py
adversarial/advbox/models/paddle.py
+1
-1
adversarial/fluid_mnist.py
adversarial/fluid_mnist.py
+1
-6
未找到文件。
adversarial/advbox/attacks/base.py
浏览文件 @
97724c2a
...
...
@@ -18,22 +18,22 @@ class Attack(object):
def
__init__
(
self
,
model
):
self
.
model
=
model
def
__call__
(
self
,
image_
batch
):
def
__call__
(
self
,
image_
label
):
"""
Generate the adversarial sample.
Args:
image_
batch(list): The image and label tuple lis
t.
image_
label(list): The image and label tuple list with one elemen
t.
"""
adv_img
=
self
.
_apply
(
image_
batch
)
adv_img
=
self
.
_apply
(
image_
label
)
return
adv_img
@
abstractmethod
def
_apply
(
self
,
image_
batch
):
def
_apply
(
self
,
image_
label
):
"""
Search an adversarial example.
Args:
image_batch(list): The image and label tuple list.
image_batch(list): The image and label tuple list
with one element
.
"""
raise
NotImplementedError
adversarial/advbox/attacks/gradientsign.py
浏览文件 @
97724c2a
...
...
@@ -15,18 +15,19 @@ class GradientSignAttack(Attack):
Paper link: https://arxiv.org/abs/1412.6572
"""
def
_apply
(
self
,
image_batch
,
epsilons
=
1000
):
pre_label
=
np
.
argmax
(
self
.
model
.
predict
(
image_batch
))
def
_apply
(
self
,
image_label
,
epsilons
=
1000
):
assert
len
(
image_label
)
==
1
pre_label
=
np
.
argmax
(
self
.
model
.
predict
(
image_label
))
min_
,
max_
=
self
.
model
.
bounds
()
gradient
=
self
.
model
.
gradient
(
image_
batch
)
gradient
=
self
.
model
.
gradient
(
image_
label
)
gradient_sign
=
np
.
sign
(
gradient
)
*
(
max_
-
min_
)
if
not
isinstance
(
epsilons
,
Iterable
):
epsilons
=
np
.
linspace
(
0
,
1
,
num
=
epsilons
+
1
)
for
epsilon
in
epsilons
:
adv_img
=
image_
batch
[
0
][
0
].
reshape
(
adv_img
=
image_
label
[
0
][
0
].
reshape
(
gradient_sign
.
shape
)
+
epsilon
*
gradient_sign
adv_img
=
np
.
clip
(
adv_img
,
min_
,
max_
)
adv_label
=
np
.
argmax
(
self
.
model
.
predict
([(
adv_img
,
0
)]))
...
...
adversarial/advbox/models/base.py
浏览文件 @
97724c2a
...
...
@@ -81,8 +81,7 @@ class Model(object):
Calculate the gradient of the cross-entropy loss w.r.t the image.
Args:
image(numpy.ndarray): image with shape (height, width, channel)
label(int): image label used to cal gradient.
image_batch(list): The image and label tuple list.
Return:
numpy.ndarray: gradient of the cross-entropy loss w.r.t the image with
...
...
adversarial/advbox/models/paddle.py
浏览文件 @
97724c2a
...
...
@@ -49,7 +49,7 @@ class PaddleModel(Model):
loss
=
self
.
_program
.
block
(
0
).
var
(
self
.
_cost_name
)
param_grads
=
fluid
.
backward
.
append_backward
(
loss
,
parameter_list
=
[
self
.
_input_name
])
self
.
_gradient
=
param_grads
[
0
][
1
]
self
.
_gradient
=
dict
(
param_grads
)[
self
.
_input_name
]
def
predict
(
self
,
image_batch
):
"""
...
...
adversarial/fluid_mnist.py
浏览文件 @
97724c2a
...
...
@@ -15,7 +15,6 @@ def mnist_cnn_model(img):
Returns:
Variable: the label prediction
"""
#conv1 = fluid.nets.conv2d()
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
img
,
num_filters
=
20
,
...
...
@@ -73,19 +72,15 @@ def main():
pass_acc
=
accuracy
.
eval
(
exe
)
print
(
"pass_id="
+
str
(
pass_id
)
+
" acc="
+
str
(
acc
)
+
" pass_acc="
+
str
(
pass_acc
))
# print loss, acc
if
loss
<
LOSS_THRESHOLD
and
pass_acc
>
ACC_THRESHOLD
:
# if avg cost less than 10.0 and accuracy is larger than 0.9, we think our code is good.
break
# exit(0)
pass_acc
=
accuracy
.
eval
(
exe
)
print
(
"pass_id="
+
str
(
pass_id
)
+
" pass_acc="
+
str
(
pass_acc
))
fluid
.
io
.
save_params
(
exe
,
dirname
=
'./mnist'
,
main_program
=
fluid
.
default_main_program
())
print
(
'train mnist done'
)
exit
(
1
)
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录