未验证 提交 96d2f337 编写于 作者: T tanzhipeng 提交者: GitHub

modify sequence_conv_xpu op test. test=kunlun (#40347)

上级 7dad9f70
...@@ -21,6 +21,8 @@ import random ...@@ -21,6 +21,8 @@ import random
import sys import sys
sys.path.append("../") sys.path.append("../")
from op_test_xpu import XPUOpTest from op_test_xpu import XPUOpTest
from xpu.get_test_cover_info import create_test_class, get_xpu_op_support_types
from xpu.get_test_cover_info import XPUOpTestWrapper
paddle.enable_static() paddle.enable_static()
np.set_printoptions(threshold=np.inf) np.set_printoptions(threshold=np.inf)
...@@ -73,188 +75,198 @@ def seqconv(x, ...@@ -73,188 +75,198 @@ def seqconv(x,
return np.dot(col, filter) return np.dot(col, filter)
class TestSeqProject(XPUOpTest): class XPUTestSequenceConv(XPUOpTestWrapper):
def setUp(self): def __init__(self):
self.init_test_case() self.op_name = 'sequence_conv'
self.op_type = 'sequence_conv'
self.use_xpu = True class TestSeqProject(XPUOpTest):
def setUp(self):
if self.context_length == 1 \ self.init_test_case()
and self.context_start == 0 \ self.op_type = 'sequence_conv'
and self.padding_trainable: self.dtype = self.in_type
print("If context_start is 0 " \ self.use_xpu = True
"and context_length is 1," \
" padding_trainable should be false.") if self.context_length == 1 \
return and self.context_start == 0 \
and self.padding_trainable:
# one level, batch size print("If context_start is 0 " \
x = np.random.uniform(-6.10907e-05, 0.000104218, "and context_length is 1," \
[self.input_size[0], " padding_trainable should be false.")
self.input_size[1]]).astype('float32') return
w = np.random.uniform(-3.17068e-05, 0.000159822, [
self.context_length * self.input_size[1], self.output_represention # one level, batch size
]).astype('float32') x = np.random.uniform(-6.10907e-05, 0.000104218,
[self.input_size[0],
begin_pad = np.max([0, -self.context_start]) self.input_size[1]]).astype(self.dtype)
end_pad = np.max([0, self.context_start + self.context_length - 1]) w = np.random.uniform(-3.17068e-05, 0.000159822, [
total_pad = begin_pad + end_pad self.context_length * self.input_size[1],
padding_data = np.random.uniform( self.output_represention
0, 0, [total_pad, self.input_size[1]]).astype('float32') ]).astype(self.dtype)
self.pad_data = padding_data
self.inputs = { begin_pad = np.max([0, -self.context_start])
'X': (x, self.lod), end_pad = np.max([0, self.context_start + self.context_length - 1])
'Filter': w, total_pad = begin_pad + end_pad
} padding_data = np.random.uniform(
self.inputs_val = ['X', 'Filter'] 0, 0, [total_pad, self.input_size[1]]).astype(self.dtype)
self.inputs_val_no_x = ['Filter'] self.pad_data = padding_data
self.inputs_val_no_f = ['X'] self.inputs = {
'X': (x, self.lod),
if total_pad != 0: 'Filter': w,
self.inputs['PaddingData'] = padding_data }
self.inputs_val = ['X', 'PaddingData', 'Filter'] self.inputs_val = ['X', 'Filter']
self.inputs_val_no_x = ['PaddingData', 'Filter'] self.inputs_val_no_x = ['Filter']
self.inputs_val_no_f = ['PaddingData', 'X'] self.inputs_val_no_f = ['X']
self.attrs = { if total_pad != 0:
'contextStart': self.context_start, self.inputs['PaddingData'] = padding_data
'contextLength': self.context_length, self.inputs_val = ['X', 'PaddingData', 'Filter']
'paddingTrainable': self.padding_trainable, self.inputs_val_no_x = ['PaddingData', 'Filter']
'contextStride': self.context_stride self.inputs_val_no_f = ['PaddingData', 'X']
}
out = seqconv(x, self.lod, w, self.context_length, self.context_start, self.attrs = {
self.padding_trainable, self.pad_data) 'contextStart': self.context_start,
self.outputs = {'Out': out} 'contextLength': self.context_length,
'paddingTrainable': self.padding_trainable,
def test_check_output(self): 'contextStride': self.context_stride
place = paddle.XPUPlace(0) }
self.check_output_with_place(place) out = seqconv(x, self.lod, w, self.context_length,
self.context_start, self.padding_trainable,
def test_check_grad_input(self): self.pad_data)
self.check_grad(['X'], 'Out', no_grad_set=set(self.inputs_val_no_x)) self.outputs = {'Out': out}
def test_check_grad_padding_data(self): def test_check_output(self):
if self.padding_trainable: place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_check_grad_input(self):
self.check_grad(['X'], 'Out', no_grad_set=set(self.inputs_val_no_x))
def test_check_grad_padding_data(self):
if self.padding_trainable:
self.check_grad(
['PaddingData'], 'Out', no_grad_set=set(['X', 'Filter']))
def test_check_grad_Filter(self):
self.check_grad( self.check_grad(
['PaddingData'], 'Out', no_grad_set=set(['X', 'Filter'])) ['Filter'], 'Out', no_grad_set=set(self.inputs_val_no_f))
def test_check_grad_Filter(self): def test_check_grad_input_filter(self):
self.check_grad( if self.padding_trainable:
['Filter'], 'Out', no_grad_set=set(self.inputs_val_no_f)) self.check_grad(
['X', 'Filter'], 'Out', no_grad_set=set(['PaddingData']))
def test_check_grad_input_filter(self):
if self.padding_trainable: def test_check_grad_padding_input(self):
self.check_grad( if self.padding_trainable:
['X', 'Filter'], 'Out', no_grad_set=set(['PaddingData'])) self.check_grad(
self.inputs_val_no_f, 'Out', no_grad_set=set(['Filter']))
def test_check_grad_padding_input(self):
if self.padding_trainable: def test_check_grad_padding_filter(self):
self.check_grad( if self.padding_trainable:
self.inputs_val_no_f, 'Out', no_grad_set=set(['Filter'])) self.check_grad(
self.inputs_val_no_x, 'Out', no_grad_set=set(['X']))
def test_check_grad_padding_filter(self):
if self.padding_trainable: def init_test_case(self):
self.check_grad(self.inputs_val_no_x, 'Out', no_grad_set=set(['X'])) self.input_row = 7
self.input_col = 25
def init_test_case(self): self.context_start = -2
self.input_row = 7 self.context_length = 5
self.input_col = 25 self.padding_trainable = False
self.context_start = -2 self.context_stride = 1
self.context_length = 5
self.padding_trainable = False self.input_size = [self.input_row, self.input_col]
self.context_stride = 1 offset_lod = [[0, 1, self.input_row]]
self.lod = [[]]
self.input_size = [self.input_row, self.input_col] # convert from offset-based lod to length-based lod
offset_lod = [[0, 1, self.input_row]] for i in range(len(offset_lod[0]) - 1):
self.lod = [[]] self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
# convert from offset-based lod to length-based lod self.output_represention = 8 # output feature size
for i in range(len(offset_lod[0]) - 1):
self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i]) class TestSeqProjectCase1(TestSeqProject):
self.output_represention = 8 # output feature size def init_test_case(self):
self.input_row = 11
self.context_start = -2
class TestSeqProjectCase1(TestSeqProject): self.context_length = 5
def init_test_case(self): self.padding_trainable = False
self.input_row = 11 self.context_stride = 1
self.context_start = -2
self.context_length = 5 self.input_size = [self.input_row, 50]
self.padding_trainable = False offset_lod = [[0, 4, 5, 8, self.input_row]]
self.context_stride = 1 self.lod = [[]]
# convert from offset-based lod to length-based lod
self.input_size = [self.input_row, 50] for i in range(len(offset_lod[0]) - 1):
offset_lod = [[0, 4, 5, 8, self.input_row]] self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
self.lod = [[]] self.output_represention = 8 # output feature size
# convert from offset-based lod to length-based lod
for i in range(len(offset_lod[0]) - 1): class TestSeqProjectCase2Len0(TestSeqProject):
self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i]) def init_test_case(self):
self.output_represention = 8 # output feature size self.input_row = 11
self.context_start = -2
self.context_length = 5
class TestSeqProjectCase2Len0(TestSeqProject): self.padding_trainable = False
def init_test_case(self): self.context_stride = 1
self.input_row = 11
self.context_start = -2 self.input_size = [self.input_row, 50]
self.context_length = 5 offset_lod = [[0, 0, 4, 5, 5, 8, self.input_row, self.input_row]]
self.padding_trainable = False self.lod = [[]]
self.context_stride = 1 # convert from offset-based lod to length-based lod
for i in range(len(offset_lod[0]) - 1):
self.input_size = [self.input_row, 50] self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
offset_lod = [[0, 0, 4, 5, 5, 8, self.input_row, self.input_row]] self.output_represention = 8 # output feature size
self.lod = [[]]
# convert from offset-based lod to length-based lod class TestSeqProjectCase3(TestSeqProject):
for i in range(len(offset_lod[0]) - 1): def init_test_case(self):
self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i]) self.input_row = 25
self.output_represention = 8 # output feature size self.context_start = -2
self.context_length = 5
self.padding_trainable = False
class TestSeqProjectCase3(TestSeqProject): self.context_stride = 1
def init_test_case(self):
self.input_row = 25 self.input_size = [self.input_row, 25]
self.context_start = -2 idx = list(range(self.input_size[0]))
self.context_length = 5 del idx[0]
self.padding_trainable = False offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
self.context_stride = 1 [self.input_size[0]]]
self.lod = [[]]
self.input_size = [self.input_row, 25] # convert from offset-based lod to length-based lod
idx = list(range(self.input_size[0])) for i in range(len(offset_lod[0]) - 1):
del idx[0] self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() + self.output_represention = 8 # output feature size
[self.input_size[0]]]
self.lod = [[]] class TestSeqProjectCase4(TestSeqProject):
# convert from offset-based lod to length-based lod def init_test_case(self):
for i in range(len(offset_lod[0]) - 1): self.input_row = 7835
self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i]) self.input_col = 128
self.output_represention = 8 # output feature size self.context_start = -2
self.context_length = 5
self.padding_trainable = False
class TestSeqProjectCase4(TestSeqProject): self.context_stride = 1
def init_test_case(self):
self.input_row = 7835 self.input_size = [self.input_row, self.input_col]
self.input_col = 128 offset_lod = [[
self.context_start = -2 0, 1, 2, 3, 131, 241, 242, 263, 264, 265, 266, 267, 268, 387,
self.context_length = 5 515, 516, 644, 645, 772, 794, 922, 923, 924, 944, 945, 1073,
self.padding_trainable = False 1074, 1202, 1330, 1458, 1556, 1557, 1558, 1686, 1748, 1876,
self.context_stride = 1 1912, 1913, 1914, 2032, 2066, 2194, 2308, 2309, 2347, 2475,
2476, 2477, 2478, 2606, 2607, 2735, 2736, 2737, 2738, 2838,
self.input_size = [self.input_row, self.input_col] 2966, 2967, 2968, 2969, 3097, 3225, 3353, 3481, 3482, 3520,
offset_lod = [[ 3642, 3643, 3754, 3882, 3883, 4010, 4011, 4012, 4140, 4219,
0, 1, 2, 3, 131, 241, 242, 263, 264, 265, 266, 267, 268, 387, 515, 4228, 4356, 4357, 4415, 4475, 4476, 4604, 4605, 4606, 4694,
516, 644, 645, 772, 794, 922, 923, 924, 944, 945, 1073, 1074, 1202, 4695, 4808, 4936, 4961, 4962, 5004, 5132, 5260, 5312, 5440,
1330, 1458, 1556, 1557, 1558, 1686, 1748, 1876, 1912, 1913, 1914, 5441, 5569, 5570, 5675, 5676, 5750, 5810, 5811, 5939, 6021,
2032, 2066, 2194, 2308, 2309, 2347, 2475, 2476, 2477, 2478, 2606, 6149, 6277, 6278, 6364, 6425, 6519, 6647, 6648, 6739, 6867,
2607, 2735, 2736, 2737, 2738, 2838, 2966, 2967, 2968, 2969, 3097, 6995, 6996, 7120, 7223, 7244, 7367, 7407, 7408, 7467, 7595,
3225, 3353, 3481, 3482, 3520, 3642, 3643, 3754, 3882, 3883, 4010, 7699, 7827, 7835
4011, 4012, 4140, 4219, 4228, 4356, 4357, 4415, 4475, 4476, 4604, ]]
4605, 4606, 4694, 4695, 4808, 4936, 4961, 4962, 5004, 5132, 5260, self.lod = [[]]
5312, 5440, 5441, 5569, 5570, 5675, 5676, 5750, 5810, 5811, 5939, # convert from offset-based lod to length-based lod
6021, 6149, 6277, 6278, 6364, 6425, 6519, 6647, 6648, 6739, 6867, for i in range(len(offset_lod[0]) - 1):
6995, 6996, 7120, 7223, 7244, 7367, 7407, 7408, 7467, 7595, 7699, self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
7827, 7835 self.output_represention = 8 # output feature size
]]
self.lod = [[]]
# convert from offset-based lod to length-based lod support_types = get_xpu_op_support_types('sequence_conv')
for i in range(len(offset_lod[0]) - 1): for stype in support_types:
self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i]) create_test_class(globals(), XPUTestSequenceConv, stype)
self.output_represention = 8 # output feature size
class TestSeqConvApi(unittest.TestCase): class TestSeqConvApi(unittest.TestCase):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册