提交 95ef1af2 编写于 作者: E emailweixu 提交者: GitHub

Merge pull request #516 from wangyang59/gan

Demo: Generative Adverserial Nets
......@@ -8,3 +8,4 @@ build/
.cproject
.pydevproject
Makefile
.test_env/
output/
uniform_params/
cifar_params/
mnist_params/
*.png
.pydevproject
.project
*.log
*.pyc
data/mnist_data/
data/cifar-10-batches-py/
# Generative Adversarial Networks (GAN)
This demo implements GAN training described in the original GAN paper (https://arxiv.org/abs/1406.2661) and DCGAN (https://arxiv.org/abs/1511.06434).
The general training procedures are implemented in gan_trainer.py. The neural network configurations are specified in gan_conf.py (for synthetic data) and gan_conf_image.py (for image data).
In order to run the model, first download the corresponding data by running the shell script in ./data.
Then you can run the command below. The flag -d specifies the training data (cifar, mnist or uniform) and flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu).
$python gan_trainer.py -d cifar --use_gpu 1
The generated images will be stored in ./cifar_samples/
The corresponding models will be stored in ./cifar_params/
\ No newline at end of file
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
tar zxf cifar-10-python.tar.gz
rm cifar-10-python.tar.gz
#!/usr/bin/env sh
# This script downloads the mnist data and unzips it.
set -e
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
rm -rf "$DIR/mnist_data"
mkdir "$DIR/mnist_data"
cd "$DIR/mnist_data"
echo "Downloading..."
for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
do
if [ ! -e $fname ]; then
wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz
gunzip ${fname}.gz
fi
done
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
mode = get_config_arg("mode", str, "generator")
assert mode in set(["generator",
"discriminator",
"generator_training",
"discriminator_training"])
is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
is_generator = mode == "generator"
is_discriminator = mode == "discriminator"
# The network structure below follows the ref https://arxiv.org/abs/1406.2661
# Here we used two hidden layers and batch_norm
print('mode=%s' % mode)
# the dim of the noise (z) as the input of the generator network
noise_dim = 10
# the dim of the hidden layer
hidden_dim = 10
# the dim of the generated sample
sample_dim = 2
settings(
batch_size=128,
learning_rate=1e-4,
learning_method=AdamOptimizer(beta1=0.5)
)
def discriminator(sample):
"""
discriminator ouputs the probablity of a sample is from generator
or real data.
The output has two dimenstional: dimension 0 is the probablity
of the sample is from generator and dimension 1 is the probabblity
of the sample is from real data.
"""
param_attr = ParamAttr(is_static=is_generator_training)
bias_attr = ParamAttr(is_static=is_generator_training,
initial_mean=1.0,
initial_std=0)
hidden = fc_layer(input=sample, name="dis_hidden", size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=ReluActivation())
hidden2 = fc_layer(input=hidden, name="dis_hidden2", size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
hidden_bn = batch_norm_layer(hidden2,
act=ReluActivation(),
name="dis_hidden_bn",
bias_attr=bias_attr,
param_attr=ParamAttr(is_static=is_generator_training,
initial_mean=1.0,
initial_std=0.02),
use_global_stats=False)
return fc_layer(input=hidden_bn, name="dis_prob", size=2,
bias_attr=bias_attr,
param_attr=param_attr,
act=SoftmaxActivation())
def generator(noise):
"""
generator generates a sample given noise
"""
param_attr = ParamAttr(is_static=is_discriminator_training)
bias_attr = ParamAttr(is_static=is_discriminator_training,
initial_mean=1.0,
initial_std=0)
hidden = fc_layer(input=noise,
name="gen_layer_hidden",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=ReluActivation())
hidden2 = fc_layer(input=hidden, name="gen_hidden2", size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
hidden_bn = batch_norm_layer(hidden2,
act=ReluActivation(),
name="gen_layer_hidden_bn",
bias_attr=bias_attr,
param_attr=ParamAttr(is_static=is_discriminator_training,
initial_mean=1.0,
initial_std=0.02),
use_global_stats=False)
return fc_layer(input=hidden_bn,
name="gen_layer1",
size=sample_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
if is_generator_training:
noise = data_layer(name="noise", size=noise_dim)
sample = generator(noise)
if is_discriminator_training:
sample = data_layer(name="sample", size=sample_dim)
if is_generator_training or is_discriminator_training:
label = data_layer(name="label", size=1)
prob = discriminator(sample)
cost = cross_entropy(input=prob, label=label)
classification_error_evaluator(input=prob, label=label, name=mode+'_error')
outputs(cost)
if is_generator:
noise = data_layer(name="noise", size=noise_dim)
outputs(generator(noise))
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
mode = get_config_arg("mode", str, "generator")
dataSource = get_config_arg("data", str, "mnist")
assert mode in set(["generator",
"discriminator",
"generator_training",
"discriminator_training"])
is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
is_generator = mode == "generator"
is_discriminator = mode == "discriminator"
# The network structure below follows the dcgan paper
# (https://arxiv.org/abs/1511.06434)
print('mode=%s' % mode)
# the dim of the noise (z) as the input of the generator network
noise_dim = 100
# the number of filters in the layer in generator/discriminator that is
# closet to the image
gf_dim = 64
df_dim = 64
if dataSource == "mnist":
sample_dim = 28 # image dim
c_dim = 1 # image color
else:
sample_dim = 32
c_dim = 3
s2, s4 = int(sample_dim/2), int(sample_dim/4),
s8, s16 = int(sample_dim/8), int(sample_dim/16)
settings(
batch_size=128,
learning_rate=2e-4,
learning_method=AdamOptimizer(beta1=0.5)
)
def conv_bn(input, channels, imgSize, num_filters, output_x, stride, name,
param_attr, bias_attr, param_attr_bn, bn, trans=False,
act=ReluActivation()):
"""
conv_bn is a utility function that constructs a convolution/deconv layer
with an optional batch_norm layer
:param bn: whether to use batch_norm_layer
:type bn: bool
:param trans: whether to use conv (False) or deconv (True)
:type trans: bool
"""
# calculate the filter_size and padding size based on the given
# imgSize and ouput size
tmp = imgSize - (output_x - 1) * stride
if tmp <= 1 or tmp > 5:
raise ValueError("conv input-output dimension does not fit")
elif tmp <= 3:
filter_size = tmp + 2
padding = 1
else:
filter_size = tmp
padding = 0
print (imgSize, output_x, stride, filter_size, padding)
if trans:
nameApx = "_conv"
else:
nameApx = "_convt"
if bn:
conv = img_conv_layer(input, filter_size=filter_size,
num_filters=num_filters,
name=name + nameApx, num_channels=channels,
act=LinearActivation(), groups=1, stride=stride,
padding=padding, bias_attr=bias_attr,
param_attr=param_attr, shared_biases=True, layer_attr=None,
filter_size_y=None, stride_y=None, padding_y=None,
trans=trans)
conv_bn = batch_norm_layer(conv,
act=act,
name=name + nameApx + "_bn",
bias_attr=bias_attr,
param_attr=param_attr_bn,
use_global_stats=False)
return conv_bn
else:
conv = img_conv_layer(input, filter_size=filter_size,
num_filters=num_filters,
name=name + nameApx, num_channels=channels,
act=act, groups=1, stride=stride,
padding=padding, bias_attr=bias_attr,
param_attr=param_attr, shared_biases=True, layer_attr=None,
filter_size_y=None, stride_y=None, padding_y=None,
trans=trans)
return conv
def generator(noise):
"""
generator generates a sample given noise
"""
param_attr = ParamAttr(is_static=is_discriminator_training,
initial_mean=0.0,
initial_std=0.02)
bias_attr = ParamAttr(is_static=is_discriminator_training,
initial_mean=0.0,
initial_std=0.0)
param_attr_bn=ParamAttr(is_static=is_discriminator_training,
initial_mean=1.0,
initial_std=0.02)
h1 = fc_layer(input=noise,
name="gen_layer_h1",
size=s8 * s8 * gf_dim * 4,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
h1_bn = batch_norm_layer(h1,
act=ReluActivation(),
name="gen_layer_h1_bn",
bias_attr=bias_attr,
param_attr=param_attr_bn,
use_global_stats=False)
h2_bn = conv_bn(h1_bn,
channels=gf_dim*4,
output_x=s8,
num_filters=gf_dim*2,
imgSize=s4,
stride=2,
name="gen_layer_h2",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=True,
trans=True)
h3_bn = conv_bn(h2_bn,
channels=gf_dim*2,
output_x=s4,
num_filters=gf_dim,
imgSize=s2,
stride=2,
name="gen_layer_h3",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=True,
trans=True)
return conv_bn(h3_bn,
channels=gf_dim,
output_x=s2,
num_filters=c_dim,
imgSize=sample_dim,
stride=2,
name="gen_layer_h4",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=False,
trans=True,
act=TanhActivation())
def discriminator(sample):
"""
discriminator ouputs the probablity of a sample is from generator
or real data.
The output has two dimenstional: dimension 0 is the probablity
of the sample is from generator and dimension 1 is the probabblity
of the sample is from real data.
"""
param_attr = ParamAttr(is_static=is_generator_training,
initial_mean=0.0,
initial_std=0.02)
bias_attr = ParamAttr(is_static=is_generator_training,
initial_mean=0.0,
initial_std=0.0)
param_attr_bn=ParamAttr(is_static=is_generator_training,
initial_mean=1.0,
initial_std=0.02)
h0 = conv_bn(sample,
channels=c_dim,
imgSize=sample_dim,
num_filters=df_dim,
output_x=s2,
stride=2,
name="dis_h0",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=False)
h1_bn = conv_bn(h0,
channels=df_dim,
imgSize=s2,
num_filters=df_dim*2,
output_x=s4,
stride=2,
name="dis_h1",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=True)
h2_bn = conv_bn(h1_bn,
channels=df_dim*2,
imgSize=s4,
num_filters=df_dim*4,
output_x=s8,
stride=2,
name="dis_h2",
param_attr=param_attr,
bias_attr=bias_attr,
param_attr_bn=param_attr_bn,
bn=True)
return fc_layer(input=h2_bn, name="dis_prob", size=2,
bias_attr=bias_attr,
param_attr=param_attr,
act=SoftmaxActivation())
if is_generator_training:
noise = data_layer(name="noise", size=noise_dim)
sample = generator(noise)
if is_discriminator_training:
sample = data_layer(name="sample", size=sample_dim * sample_dim*c_dim)
if is_generator_training or is_discriminator_training:
label = data_layer(name="label", size=1)
prob = discriminator(sample)
cost = cross_entropy(input=prob, label=label)
classification_error_evaluator(input=prob, label=label, name=mode+'_error')
outputs(cost)
if is_generator:
noise = data_layer(name="noise", size=noise_dim)
outputs(generator(noise))
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import random
import numpy
import cPickle
import sys,os
from PIL import Image
from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
import matplotlib.pyplot as plt
def plot2DScatter(data, outputfile):
'''
Plot the data as a 2D scatter plot and save to outputfile
data needs to be two dimensinoal
'''
x = data[:, 0]
y = data[:, 1]
logger.info("The mean vector is %s" % numpy.mean(data, 0))
logger.info("The std vector is %s" % numpy.std(data, 0))
heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50)
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
plt.clf()
plt.scatter(x, y)
plt.savefig(outputfile, bbox_inches='tight')
def CHECK_EQ(a, b):
assert a == b, "a=%s, b=%s" % (a, b)
def copy_shared_parameters(src, dst):
'''
copy the parameters from src to dst
:param src: the source of the parameters
:type src: GradientMachine
:param dst: the destination of the parameters
:type dst: GradientMachine
'''
src_params = [src.getParameter(i)
for i in xrange(src.getParameterSize())]
src_params = dict([(p.getName(), p) for p in src_params])
for i in xrange(dst.getParameterSize()):
dst_param = dst.getParameter(i)
src_param = src_params.get(dst_param.getName(), None)
if src_param is None:
continue
src_value = src_param.getBuf(api.PARAMETER_VALUE)
dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
CHECK_EQ(len(src_value), len(dst_value))
dst_value.copyFrom(src_value)
dst_param.setValueUpdated()
def print_parameters(src):
src_params = [src.getParameter(i)
for i in xrange(src.getParameterSize())]
print "***************"
for p in src_params:
print "Name is %s" % p.getName()
print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()
def load_mnist_data(imageFile):
f = open(imageFile, "rb")
f.read(16)
# Define number of samples for train/test
if "train" in imageFile:
n = 60000
else:
n = 10000
data = numpy.fromfile(f, 'ubyte', count=n*28*28).reshape((n, 28*28))
data = data / 255.0 * 2.0 - 1.0
f.close()
return data.astype('float32')
def load_cifar_data(cifar_path):
batch_size = 10000
data = numpy.zeros((5*batch_size, 32*32*3), dtype = "float32")
for i in range(1, 6):
file = cifar_path + "/data_batch_" + str(i)
fo = open(file, 'rb')
dict = cPickle.load(fo)
fo.close()
data[(i - 1)*batch_size:(i*batch_size), :] = dict["data"]
data = data / 255.0 * 2.0 - 1.0
return data
# synthesize 2-D uniform data
def load_uniform_data():
data = numpy.random.rand(1000000, 2).astype('float32')
return data
def merge(images, size):
if images.shape[1] == 28*28:
h, w, c = 28, 28, 1
else:
h, w, c = 32, 32, 3
img = numpy.zeros((h * size[0], w * size[1], c))
for idx in xrange(size[0] * size[1]):
i = idx % size[1]
j = idx // size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = \
((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0)
return img.astype('uint8')
def save_images(images, path):
merged_img = merge(images, [8, 8])
if merged_img.shape[2] == 1:
im = Image.fromarray(numpy.squeeze(merged_img)).convert('RGB')
else:
im = Image.fromarray(merged_img, mode="RGB")
im.save(path)
def get_real_samples(batch_size, data_np):
return data_np[numpy.random.choice(data_np.shape[0], batch_size,
replace=False),:]
def get_noise(batch_size, noise_dim):
return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')
def get_fake_samples(generator_machine, batch_size, noise):
gen_inputs = api.Arguments.createArguments(1)
gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
gen_outputs = api.Arguments.createArguments(0)
generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
return fake_samples
def get_training_loss(training_machine, inputs):
outputs = api.Arguments.createArguments(0)
training_machine.forward(inputs, outputs, api.PASS_TEST)
loss = outputs.getSlotValue(0).copyToNumpyMat()
return numpy.mean(loss)
def prepare_discriminator_data_batch_pos(batch_size, data_np):
real_samples = get_real_samples(batch_size, data_np)
labels = numpy.ones(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(real_samples))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
return inputs
def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise):
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
labels = numpy.zeros(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(fake_samples))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
return inputs
def prepare_generator_data_batch(batch_size, noise):
label = numpy.ones(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label))
return inputs
def find(iterable, cond):
for item in iterable:
if cond(item):
return item
return None
def get_layer_size(model_conf, layer_name):
layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
return layer_conf.size
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--data_source", help="mnist or cifar or uniform")
parser.add_argument("--use_gpu", default="1",
help="1 means use gpu for training")
parser.add_argument("--gpu_id", default="0",
help="the gpu_id parameter")
args = parser.parse_args()
data_source = args.data_source
use_gpu = args.use_gpu
assert data_source in ["mnist", "cifar", "uniform"]
assert use_gpu in ["0", "1"]
if not os.path.exists("./%s_samples/" % data_source):
os.makedirs("./%s_samples/" % data_source)
if not os.path.exists("./%s_params/" % data_source):
os.makedirs("./%s_params/" % data_source)
api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10', '--log_period=100',
'--gpu_id=' + args.gpu_id, '--save_dir=' + "./%s_params/" % data_source)
if data_source == "uniform":
conf = "gan_conf.py"
num_iter = 10000
else:
conf = "gan_conf_image.py"
num_iter = 1000
gen_conf = parse_config(conf, "mode=generator_training,data=" + data_source)
dis_conf = parse_config(conf, "mode=discriminator_training,data=" + data_source)
generator_conf = parse_config(conf, "mode=generator,data=" + data_source)
batch_size = dis_conf.opt_config.batch_size
noise_dim = get_layer_size(gen_conf.model_config, "noise")
if data_source == "mnist":
data_np = load_mnist_data("./data/mnist_data/train-images-idx3-ubyte")
elif data_source == "cifar":
data_np = load_cifar_data("./data/cifar-10-batches-py/")
else:
data_np = load_uniform_data()
# this creates a gradient machine for discriminator
dis_training_machine = api.GradientMachine.createFromConfigProto(
dis_conf.model_config)
# this create a gradient machine for generator
gen_training_machine = api.GradientMachine.createFromConfigProto(
gen_conf.model_config)
# generator_machine is used to generate data only, which is used for
# training discriminator
logger.info(str(generator_conf.model_config))
generator_machine = api.GradientMachine.createFromConfigProto(
generator_conf.model_config)
dis_trainer = api.Trainer.create(
dis_conf, dis_training_machine)
gen_trainer = api.Trainer.create(
gen_conf, gen_training_machine)
dis_trainer.startTrain()
gen_trainer.startTrain()
# Sync parameters between networks (GradientMachine) at the beginning
copy_shared_parameters(gen_training_machine, dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
# constrain that either discriminator or generator can not be trained
# consecutively more than MAX_strike times
curr_train = "dis"
curr_strike = 0
MAX_strike = 5
for train_pass in xrange(100):
dis_trainer.startTrainPass()
gen_trainer.startTrainPass()
for i in xrange(num_iter):
# Do forward pass in discriminator to get the dis_loss
noise = get_noise(batch_size, noise_dim)
data_batch_dis_pos = prepare_discriminator_data_batch_pos(
batch_size, data_np)
dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
data_batch_dis_neg = prepare_discriminator_data_batch_neg(
generator_machine, batch_size, noise)
dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)
dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
# Do forward pass in generator to get the gen_loss
data_batch_gen = prepare_generator_data_batch(
batch_size, noise)
gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
if i % 100 == 0:
print "d_pos_loss is %s d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg)
print "d_loss is %s g_loss is %s" % (dis_loss, gen_loss)
# Decide which network to train based on the training history
# And the relative size of the loss
if (not (curr_train == "dis" and curr_strike == MAX_strike)) and \
((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss):
if curr_train == "dis":
curr_strike += 1
else:
curr_train = "dis"
curr_strike = 1
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
copy_shared_parameters(dis_training_machine, gen_training_machine)
else:
if curr_train == "gen":
curr_strike += 1
else:
curr_train = "gen"
curr_strike = 1
gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)
# TODO: add API for paddle to allow true parameter sharing between different GradientMachines
# so that we do not need to copy shared parameters.
copy_shared_parameters(gen_training_machine, dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
dis_trainer.finishTrainPass()
gen_trainer.finishTrainPass()
# At the end of each pass, save the generated samples/images
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
if data_source == "uniform":
plot2DScatter(fake_samples, "./%s_samples/train_pass%s.png" % (data_source, train_pass))
else:
save_images(fake_samples, "./%s_samples/train_pass%s.png" % (data_source, train_pass))
dis_trainer.finishTrain()
gen_trainer.finishTrain()
if __name__ == '__main__':
main()
......@@ -27,11 +27,6 @@ Arguments* Arguments::createArguments(size_t slotNum) {
void Arguments::resize(size_t slotNum) { m->outputs.resize(slotNum); }
Matrix* Arguments::getSlotValue(size_t idx) const throw(RangeError) {
auto& a = m->getArg(idx);
return Matrix::createByPaddleMatrixPtr(&a.value);
}
Arguments::Arguments() : m(new ArgumentsPrivate()) {}
Arguments::~Arguments() { delete m; }
......@@ -43,6 +38,16 @@ Arguments* Arguments::createByPaddleArgumentVector(void* ptr) {
return args;
}
Matrix* Arguments::getSlotValue(size_t idx) const throw(RangeError) {
auto& a = m->getArg(idx);
return Matrix::createByPaddleMatrixPtr(&a.value);
}
Matrix* Arguments::getSlotGrad(size_t idx) const throw(RangeError) {
auto& a = m->getArg(idx);
return Matrix::createByPaddleMatrixPtr(&a.grad);
}
IVector* Arguments::getSlotIds(size_t idx) const throw(RangeError) {
auto& a = m->getArg(idx);
return IVector::createByPaddleVectorPtr(&a.ids);
......@@ -58,6 +63,11 @@ void Arguments::setSlotValue(size_t idx, Matrix* mat) throw(RangeError) {
a.value = m->cast<paddle::Matrix>(mat->getSharedPtr());
}
void Arguments::setSlotGrad(size_t idx, Matrix* mat) throw(RangeError) {
auto& a = m->getArg(idx);
a.grad = m->cast<paddle::Matrix>(mat->getSharedPtr());
}
void Arguments::setSlotIn(size_t idx, Matrix* mat) throw(RangeError) {
auto& a = m->getArg(idx);
a.in = m->cast<paddle::Matrix>(mat->getSharedPtr());
......
......@@ -193,5 +193,4 @@ namespace std {
%ignore OptimizationConfigPrivate;
%ignore ParameterTraverseCallbackPrivate;
%include "utils/GlobalConstants.h"
%include "api/PaddleAPI.h"
%include "api/PaddleAPI.h"
\ No newline at end of file
......@@ -156,12 +156,15 @@ public:
* @param dim1 dimension of data.
* @param dim2 dimension of data.
* @param copy true if copy into a new matrix, false will create
* matrix inplace.
* matrix inplace. copy = false should be used with extreme
* care because Matrix will share the memory with the given
* numpy array. If the numpy array object is no longer valid,
* the memory space will not be usable.
*/
static Matrix* createCpuDenseFromNumpy(float* data,
int dim1,
int dim2,
bool copy = false);
bool copy = true);
/// Create Gpu Dense Matrix from numpy matrix, dtype=float32
static Matrix* createGpuDenseFromNumpy(float* data, int dim1, int dim2);
......@@ -271,11 +274,18 @@ public:
*/
static Vector* createCpuVectorFromNumpy(float* data,
int dim,
bool copy = false);
bool copy = true);
/// Create Gpu Vector from numpy array, which dtype=float32
static Vector* createGpuVectorFromNumpy(float* data, int dim);
/**
* copy from another vector
* throw(RangeError) if size of src vector is different from size of this
* vector
*/
void copyFrom(Vector* src) throw(RangeError);
/// Cast to numpy array inplace.
void toNumpyArrayInplace(float** view_data, int* dim1) throw(UnsupportError);
......@@ -339,7 +349,7 @@ public:
*/
static IVector* createCpuVectorFromNumpy(int* data,
int dim,
bool copy = false);
bool copy = true);
/**
* Create Gpu IVector from numpy array, which dtype=int32
*/
......@@ -418,6 +428,7 @@ public:
* the param idx is the slot id
*/
Matrix* getSlotValue(size_t idx) const throw(RangeError);
Matrix* getSlotGrad(size_t idx) const throw(RangeError);
IVector* getSlotIds(size_t idx) const throw(RangeError);
Matrix* getSlotIn(size_t idx) const throw(RangeError);
IVector* getSlotSequenceStartPositions(size_t idx) const throw(RangeError);
......@@ -434,6 +445,7 @@ public:
* The other param is the input Matrix or vector.
*/
void setSlotValue(size_t idx, Matrix* mat) throw(RangeError);
void setSlotGrad(size_t idx, Matrix* mat) throw(RangeError);
void setSlotIn(size_t idx, Matrix* mat) throw(RangeError);
void setSlotIds(size_t idx, IVector* vec) throw(RangeError);
void setSlotSequenceStartPositions(size_t idx,
......@@ -535,6 +547,7 @@ public:
size_t getID() const;
ParameterConfig* getConfig();
void setValueUpdated();
private:
static Parameter* createFromRawPtr(void* ptr);
......
......@@ -68,3 +68,5 @@ ParameterConfig* Parameter::getConfig() {
}
size_t Parameter::getID() const { return m->getPtr()->getID(); }
void Parameter::setValueUpdated() { m->getPtr()->setValueUpdated(); }
......@@ -281,6 +281,13 @@ FloatArray Vector::getData() const {
}
}
void Vector::copyFrom(Vector* src) throw(RangeError) {
if (src->m->vec->getSize() != m->vec->getSize()) {
throw RangeError();
}
m->vec->copyFrom(*src->m->vec);
}
bool Vector::isGpu() const {
return std::dynamic_pointer_cast<paddle::GpuVector>(m->vec) != nullptr;
}
......
......@@ -68,7 +68,7 @@ class TestMatrix(unittest.TestCase):
def test_numpyCpu(self):
numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32")
m = swig_paddle.Matrix.createCpuDenseFromNumpy(numpy_mat)
m = swig_paddle.Matrix.createCpuDenseFromNumpy(numpy_mat, copy=False)
self.assertEqual((int(m.getHeight()), int(m.getWidth())),
numpy_mat.shape)
......
......@@ -43,7 +43,7 @@ class TestIVector(unittest.TestCase):
def test_cpu_numpy(self):
vec = np.array([1, 3, 4, 65, 78, 1, 4], dtype="int32")
iv = swig_paddle.IVector.createCpuVectorFromNumpy(vec)
iv = swig_paddle.IVector.createCpuVectorFromNumpy(vec, copy=False)
self.assertEqual(vec.shape[0], int(iv.__len__()))
vec[4] = 832
for i in xrange(len(iv)):
......@@ -107,7 +107,7 @@ class TestVector(unittest.TestCase):
def testCpuNumpy(self):
numpy_arr = np.array([1.2, 2.3, 3.4, 4.5], dtype="float32")
vec = swig_paddle.Vector.createCpuVectorFromNumpy(numpy_arr)
vec = swig_paddle.Vector.createCpuVectorFromNumpy(numpy_arr, copy=False)
assert isinstance(vec, swig_paddle.Vector)
numpy_arr[0] = 0.1
for n, v in zip(numpy_arr, vec):
......@@ -152,4 +152,4 @@ if __name__ == '__main__':
unittest.TextTestRunner().run(suite)
if swig_paddle.isGpuVersion():
swig_paddle.setUseGpu(True)
unittest.main()
\ No newline at end of file
unittest.main()
......@@ -24,7 +24,9 @@ def doubleEqual(a, b):
def __readFromFile():
for i in xrange(10002):
yield np.random.rand(784), random.randint(0, 9)
label = np.random.randint(0, 9)
sample = np.random.rand(784) + 0.1 * label
yield sample, label
def loadMNISTTrainData(batch_size=100):
......
......@@ -68,10 +68,10 @@ void BatchNormBaseLayer::calFeatureMapSize() {
} else {
imageH_ = inputLayers_[0]->getOutput().getFrameHeight();
imageW_ = inputLayers_[0]->getOutput().getFrameWidth();
getOutput().setFrameHeight(imageH_);
getOutput().setFrameWidth(imageW_);
}
imgPixels_ = imageH_ * imageW_;
getOutput().setFrameHeight(imageH_);
getOutput().setFrameWidth(imageW_);
}
} // namespace paddle
......@@ -39,9 +39,17 @@ add_unittest_without_exec(test_ConvUnify
test_ConvUnify.cpp
LayerGradUtil.cpp
TestUtil.cpp)
add_test(NAME test_ConvUnify
COMMAND test_ConvUnify)
################# test_BatchNorm #######################
add_unittest_without_exec(test_BatchNorm
test_BatchNorm.cpp
LayerGradUtil.cpp
TestUtil.cpp)
add_test(NAME test_BatchNorm
COMMAND test_BatchNorm)
################## test_Evaluator #######################
add_unittest(test_Evaluator
test_Evaluator.cpp
......
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <vector>
#include <string>
#include "paddle/gserver/layers/DataLayer.h"
#include "ModelConfig.pb.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/utils/GlobalConstants.h"
#include "paddle/gserver/layers/ExpandConvTransLayer.h"
#include "TestUtil.h"
#include "LayerGradUtil.h"
using namespace paddle; // NOLINT
using namespace std; // NOLINT
P_DECLARE_bool(use_gpu);
P_DECLARE_int32(gpu_id);
P_DECLARE_double(checkgrad_eps);
P_DECLARE_bool(thread_local_rand_use_global_seed);
P_DECLARE_bool(prev_batch_state);
// Test that the batchNormLayer can be followed by a ConvLayer
TEST(Layer, batchNorm) {
FLAGS_use_gpu = false;
TestConfig configBN;
const int CHANNELS = 6272;
const int IMG_SIZE = 1;
configBN.layerConfig.set_type("batch_norm");
configBN.layerConfig.set_name("bn");
configBN.layerConfig.set_size(CHANNELS * IMG_SIZE * IMG_SIZE);
configBN.layerConfig.set_active_type("relu");
configBN.biasSize = CHANNELS;
configBN.inputDefs.push_back({INPUT_DATA, "layer_0",
/* dim= */ IMG_SIZE * IMG_SIZE * CHANNELS,
/* paraSize= */ CHANNELS});
configBN.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean",
1, CHANNELS});
configBN.inputDefs.back().isStatic = true;
configBN.inputDefs.push_back({INPUT_DATA, "layer_2_running_var",
1, CHANNELS});
configBN.inputDefs.back().isStatic = true;
LayerInputConfig* input = configBN.layerConfig.add_inputs();
configBN.layerConfig.add_inputs();
configBN.layerConfig.add_inputs();
ImageConfig* img_conf = input->mutable_image_conf();
img_conf->set_channels(CHANNELS);
img_conf->set_img_size(IMG_SIZE);
// Setting up conv-layer config
TestConfig config;
config.biasSize = 64;
config.layerConfig.set_type("exconv");
config.layerConfig.set_num_filters(64);
config.layerConfig.set_partial_sum(1);
config.layerConfig.set_shared_biases(true);
config.inputDefs.push_back({INPUT_DATA, "bn", 6272, 204800});
input = config.layerConfig.add_inputs();
ConvConfig* conv = input->mutable_conv_conf();
conv->set_filter_size(5);
conv->set_filter_size_y(5);
conv->set_channels(128);
conv->set_padding(1);
conv->set_padding_y(1);
conv->set_stride(2);
conv->set_stride_y(2);
conv->set_groups(1);
conv->set_filter_channels(conv->channels() / conv->groups());
conv->set_img_size(7);
conv->set_output_x(3);
config.layerConfig.set_size(conv->output_x() * conv->output_x() *
config.layerConfig.num_filters());
config.layerConfig.set_name("conv");
// data layer initialize
std::vector<DataLayerPtr> dataLayers;
LayerMap layerMap;
vector<Argument> datas;
initDataLayer(configBN, &dataLayers, &datas, &layerMap, "batch_norm",
100, false, false);
// test layer initialize
std::vector<ParameterPtr> parameters;
LayerPtr bnLayer;
initTestLayer(configBN, &layerMap, &parameters, &bnLayer);
std::vector<ParameterPtr> parameters2;
LayerPtr convLayer;
initTestLayer(config, &layerMap, &parameters2, &convLayer);
bnLayer->forward(PASS_GC);
convLayer->forward(PASS_GC);
CHECK_EQ(convLayer->getOutputValue()->getHeight(), 100);
CHECK_EQ(convLayer->getOutputValue()->getWidth(), 576);
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
initMain(argc, argv);
FLAGS_thread_local_rand_use_global_seed = true;
srand(1);
return RUN_ALL_TESTS();
}
......@@ -559,10 +559,10 @@ def __monkey_patch_trainer__():
def monkeypatches():
patches = [
__monkeypatch_init_paddle__, __monkeypatch_gradient_machine__,
__monkey_patch_protobuf_objects__, __monkey_patch_parameter__,
__monkey_patch_trainer__
]
patches = [__monkeypatch_init_paddle__,
__monkeypatch_gradient_machine__,
__monkey_patch_protobuf_objects__,
__monkey_patch_parameter__,
__monkey_patch_trainer__]
for patch in patches:
patch()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册