Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
95440685
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
95440685
编写于
8月 08, 2017
作者:
Y
Yi Wang
浏览文件
操作
浏览文件
下载
差异文件
Resovle conflicts manually
上级
d97a2b42
18cf0786
变更
78
隐藏空白更改
内联
并排
Showing
78 changed file
with
1620 addition
and
345 deletion
+1620
-345
.travis.yml
.travis.yml
+1
-1
Dockerfile
Dockerfile
+4
-5
doc/api/v2/config/layer.rst
doc/api/v2/config/layer.rst
+10
-0
doc/design/releasing_process.md
doc/design/releasing_process.md
+9
-0
doc/templates/conf.py.cn.in
doc/templates/conf.py.cn.in
+3
-7
doc/templates/conf.py.en.in
doc/templates/conf.py.en.in
+3
-7
paddle/framework/CMakeLists.txt
paddle/framework/CMakeLists.txt
+11
-7
paddle/framework/backward.cc
paddle/framework/backward.cc
+1
-0
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+10
-4
paddle/framework/op_registry.h
paddle/framework/op_registry.h
+0
-6
paddle/framework/operator.h
paddle/framework/operator.h
+17
-9
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+19
-19
paddle/framework/tensor.h
paddle/framework/tensor.h
+2
-2
paddle/framework/tensor_impl.h
paddle/framework/tensor_impl.h
+14
-13
paddle/framework/tensor_test.cc
paddle/framework/tensor_test.cc
+4
-2
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
+117
-0
paddle/gserver/layers/SubNestedSequenceLayer.cpp
paddle/gserver/layers/SubNestedSequenceLayer.cpp
+176
-0
paddle/gserver/tests/CMakeLists.txt
paddle/gserver/tests/CMakeLists.txt
+10
-0
paddle/gserver/tests/test_KmaxSeqScore.cpp
paddle/gserver/tests/test_KmaxSeqScore.cpp
+160
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+78
-0
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+3
-0
paddle/operators/add_op.cc
paddle/operators/add_op.cc
+10
-7
paddle/operators/add_op.cu
paddle/operators/add_op.cu
+3
-1
paddle/operators/add_op.h
paddle/operators/add_op.h
+9
-3
paddle/operators/add_op_test.cc
paddle/operators/add_op_test.cc
+2
-2
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+14
-10
paddle/operators/cross_entropy_op.cu
paddle/operators/cross_entropy_op.cu
+5
-0
paddle/operators/cross_entropy_op.h
paddle/operators/cross_entropy_op.h
+7
-5
paddle/operators/fc_op.cc
paddle/operators/fc_op.cc
+10
-3
paddle/operators/fill_zeros_like_op.cc
paddle/operators/fill_zeros_like_op.cc
+3
-3
paddle/operators/fill_zeros_like_op.cu
paddle/operators/fill_zeros_like_op.cu
+2
-1
paddle/operators/fill_zeros_like_op.h
paddle/operators/fill_zeros_like_op.h
+2
-1
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+13
-10
paddle/operators/mean_op.cu
paddle/operators/mean_op.cu
+5
-2
paddle/operators/mean_op.h
paddle/operators/mean_op.h
+14
-5
paddle/operators/mul_op.cc
paddle/operators/mul_op.cc
+8
-7
paddle/operators/mul_op.cu
paddle/operators/mul_op.cu
+3
-1
paddle/operators/mul_op.h
paddle/operators/mul_op.h
+10
-4
paddle/operators/net_op.h
paddle/operators/net_op.h
+12
-7
paddle/operators/net_op_test.cc
paddle/operators/net_op_test.cc
+9
-13
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+8
-5
paddle/operators/rnn/recurrent_op_utils.cc
paddle/operators/rnn/recurrent_op_utils.cc
+8
-7
paddle/operators/rnn/recurrent_op_utils.h
paddle/operators/rnn/recurrent_op_utils.h
+3
-2
paddle/operators/rowwise_add_op.cc
paddle/operators/rowwise_add_op.cc
+9
-6
paddle/operators/rowwise_add_op.cu
paddle/operators/rowwise_add_op.cu
+3
-2
paddle/operators/rowwise_add_op.h
paddle/operators/rowwise_add_op.h
+12
-3
paddle/operators/sgd_op.cc
paddle/operators/sgd_op.cc
+7
-5
paddle/operators/sgd_op.cu
paddle/operators/sgd_op.cu
+3
-1
paddle/operators/sgd_op.h
paddle/operators/sgd_op.h
+9
-3
paddle/operators/sigmoid_op.cc
paddle/operators/sigmoid_op.cc
+13
-9
paddle/operators/sigmoid_op.cu
paddle/operators/sigmoid_op.cu
+6
-3
paddle/operators/sigmoid_op.h
paddle/operators/sigmoid_op.h
+11
-6
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+15
-11
paddle/operators/softmax_op.cu
paddle/operators/softmax_op.cu
+7
-5
paddle/operators/softmax_op.h
paddle/operators/softmax_op.h
+11
-9
paddle/operators/uniform_random_op.cc
paddle/operators/uniform_random_op.cc
+84
-0
paddle/operators/uniform_random_op.cu
paddle/operators/uniform_random_op.cu
+70
-0
paddle/parameter/Argument.cpp
paddle/parameter/Argument.cpp
+20
-0
paddle/parameter/Argument.h
paddle/parameter/Argument.h
+24
-0
paddle/platform/enforce.h
paddle/platform/enforce.h
+4
-13
paddle/platform/enforce_test.cc
paddle/platform/enforce_test.cc
+27
-1
paddle/pybind/CMakeLists.txt
paddle/pybind/CMakeLists.txt
+0
-10
paddle/scripts/docker/build.sh
paddle/scripts/docker/build.sh
+6
-1
paddle/scripts/travis/build_doc.sh
paddle/scripts/travis/build_doc.sh
+2
-7
proto/CMakeLists.txt
proto/CMakeLists.txt
+1
-1
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+35
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+92
-1
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
.../paddle/trainer_config_helpers/tests/configs/file_list.sh
+2
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr
...tests/configs/protostr/test_kmax_seq_socre_layer.protostr
+66
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_seq_select_layers.protostr
...rs/tests/configs/protostr/test_seq_select_layers.protostr
+37
-0
python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py
...config_helpers/tests/configs/test_kmax_seq_socre_layer.py
+11
-0
python/paddle/trainer_config_helpers/tests/configs/test_seq_select_layers.py
...er_config_helpers/tests/configs/test_seq_select_layers.py
+11
-0
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+2
-0
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+149
-3
python/paddle/v2/framework/tests/op_test_util.py
python/paddle/v2/framework/tests/op_test_util.py
+4
-3
python/paddle/v2/framework/tests/test_cross_entropy_op.py
python/paddle/v2/framework/tests/test_cross_entropy_op.py
+14
-2
python/paddle/v2/framework/tests/test_softmax_op.py
python/paddle/v2/framework/tests/test_softmax_op.py
+6
-58
python/paddle/v2/framework/tests/test_uniform_random_op.py
python/paddle/v2/framework/tests/test_uniform_random_op.py
+35
-0
未找到文件。
.travis.yml
浏览文件 @
95440685
...
...
@@ -38,7 +38,7 @@ before_install:
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version.
-
pip install numpy wheel 'protobuf==3.1' sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker
-
pip install rarfile
-
pip install rarfile
nltk==3.2.2 scipy==0.19.0 recordio matplotlib Pillow
-
curl https://glide.sh/get | bash
-
eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
-
go get -u github.com/alecthomas/gometalinter
...
...
Dockerfile
浏览文件 @
95440685
...
...
@@ -38,17 +38,16 @@ RUN apt-get update && \
RUN
pip
--no-cache-dir
install
'numpy>=1.12.0'
# Install Go and glide
RUN
wget
-
O
go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz
&&
\
tar
-
C
/usr/local
-xzf
go.tgz
&&
\
RUN
wget
-
qO-
https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz |
\
tar
-
xz
-C
/usr/local
&&
\
mkdir
/root/gopath
&&
\
mkdir
/root/gopath/bin
&&
\
mkdir
/root/gopath/src
&&
\
rm
go.tgz
mkdir
/root/gopath/src
ENV
GOROOT=/usr/local/go GOPATH=/root/gopath
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV
PATH=${PATH}:${GOROOT}/bin:${GOPATH}/bin
# install glide
RUN
curl
-q
https://glide.sh/get | sh
RUN
curl
-
s
-
q
https://glide.sh/get | sh
# git credential to skip password typing
RUN
git config
--global
credential.helper store
...
...
doc/api/v2/config/layer.rst
浏览文件 @
95440685
...
...
@@ -257,6 +257,16 @@ seq_concat
.. autoclass:: paddle.v2.layer.seq_concat
:noindex:
kmax_sequence_score
-------------------
.. autoclass:: paddle.v2.layer.kmax_sequence_score
:noindex:
sub_nested_seq
--------------
.. autoclass:: paddle.v2.layer.sub_nested_seq
:noindex:
Reshaping Layers
================
...
...
doc/design/releasing_process.md
浏览文件 @
95440685
...
...
@@ -11,6 +11,15 @@ Paddle每次发新的版本,遵循以下流程:
*
编译这个版本的Ubuntu Deb包。如果失败,修复Ubuntu Deb包编译问题,Patch号加一,返回第二步。
*
使用Regression Test List作为检查列表,测试Docker镜像/ubuntu安装包的功能正确性
*
如果失败,记录下所有失败的例子,在这个
`release/版本号`
分支中,修复所有bug后,Patch号加一,返回第二步
*
编译这个版本的python wheel包,并发布到pypi。
*
由于pypi.python.org目前遵循
[
严格的命名规范PEP 513
](
https://www.python.org/dev/peps/pep-0513
)
,在使用twine上传之前,需要重命名wheel包中platform相关的后缀,比如将
`linux_x86_64`
修改成
`manylinux1_x86_64`
。
*
pypi上的package名称为paddlepaddle和paddlepaddle_gpu,如果要上传GPU版本的包,需要修改build/python/setup.py中,name: "paddlepaddle_gpu"并重新打包wheel包:
`python setup.py bdist_wheel`
。
*
上传方法:
```
cd build/python
pip install twine
twine upload dist/[package to upload]
```
4.
第三步完成后,将
`release/版本号`
分支合入master分支,并删除
`release/版本号`
分支。将master分支的合入commit打上tag,tag为
`版本号`
。同时再将
`master`
分支合入
`develop`
分支。最后删除
`release/版本号`
分支。
5.
编译master分支的Docker发行镜像,发布到dockerhub。编译ubuntu的deb包,发布到github release页面
6.
协同完成Release Note的书写
...
...
doc/templates/conf.py.cn.in
浏览文件 @
95440685
...
...
@@ -13,15 +13,11 @@
# serve to show the default.
import sys
import os, subprocess
sys.path.insert(0, os.path.abspath('@PROJ_ROOT@/python'))
import shlex
from recommonmark import parser, transform
try:
import py_paddle
import paddle
import paddle.v2
except ImportError:
print("Must install paddle python package before generating documentation")
sys.exit(1)
import paddle
import paddle.v2
MarkdownParser = parser.CommonMarkParser
AutoStructify = transform.AutoStructify
...
...
doc/templates/conf.py.en.in
浏览文件 @
95440685
...
...
@@ -13,15 +13,11 @@
# serve to show the default.
import sys
import os, subprocess
sys.path.insert(0, os.path.abspath('@PROJ_ROOT@/python'))
import shlex
from recommonmark import parser, transform
try:
import py_paddle
import paddle
import paddle.v2
except ImportError:
print("Must install paddle python package before generating documentation")
sys.exit(1)
import paddle
import paddle.v2
MarkdownParser = parser.CommonMarkParser
...
...
paddle/framework/CMakeLists.txt
浏览文件 @
95440685
...
...
@@ -31,13 +31,17 @@ add_dependencies(framework_py_proto framework_py_proto_init)
cc_library
(
backward SRCS backward.cc DEPS net_op
)
cc_test
(
backward_test SRCS backward_test.cc DEPS backward
)
if
(
WITH_PYTHON
)
cc_library
(
paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
fc_op
sgd_op
add_op
mean_op
cross_entropy_op
fill_zeros_like_op
recurrent_op
)
fc_op
sgd_op
add_op
mean_op
cross_entropy_op
recurrent_op
uniform_random_op
fill_zeros_like_op
)
endif
(
WITH_PYTHON
)
paddle/framework/backward.cc
浏览文件 @
95440685
...
...
@@ -13,6 +13,7 @@
limitations under the License. */
#include "paddle/framework/backward.h"
#include <list>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
...
...
paddle/framework/backward_test.cc
浏览文件 @
95440685
...
...
@@ -17,16 +17,21 @@
#include <gtest/gtest.h>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
namespace
paddle
{
namespace
framework
{
using
OperatorBase
=
framework
::
OperatorBase
;
using
OpProtoAndCheckerMaker
=
framework
::
OpProtoAndCheckerMaker
;
using
OpProto
=
framework
::
OpProto
;
using
OpAttrChecker
=
framework
::
OpAttrChecker
;
using
Scope
=
framework
::
Scope
;
using
DeviceContext
=
platform
::
DeviceContext
;
class
EmptyOp
:
public
OperatorBase
{
public:
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
DeviceContext
&
dev_ctx
)
const
override
{}
};
class
RowWiseAddOpMaker
:
public
OpProtoAndCheckerMaker
{
...
...
@@ -71,7 +76,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker {
}
};
class
FcOp
:
public
ops
::
NetOp
{
class
FcOp
:
public
op
erator
s
::
NetOp
{
public:
void
Init
()
override
{
AddOp
(
OpRegistry
::
CreateOp
(
"mul"
,
...
...
@@ -145,6 +150,7 @@ class AddOpMaker : public OpProtoAndCheckerMaker {
}
// namespace paddle
namespace
f
=
paddle
::
framework
;
namespace
ops
=
paddle
::
operators
;
using
EnforceNotMet
=
paddle
::
platform
::
EnforceNotMet
;
REGISTER_OP
(
rowwise_add
,
f
::
EmptyOp
,
f
::
RowWiseAddOpMaker
);
REGISTER_GRADIENT_OP
(
rowwise_add
,
rowwise_add_grad
,
f
::
EmptyOp
);
...
...
paddle/framework/op_registry.h
浏览文件 @
95440685
...
...
@@ -204,12 +204,6 @@ class OpRegistry {
return
CreateOp
(
op_desc
.
type
(),
inputs
,
outputs
,
attrs
);
}
static
bool
SupportGPU
(
const
std
::
string
&
op_type
)
{
OperatorWithKernel
::
OpKernelKey
key
;
key
.
place_
=
platform
::
GPUPlace
();
return
OperatorWithKernel
::
AllOpKernels
().
at
(
op_type
).
count
(
key
)
!=
0
;
}
static
std
::
shared_ptr
<
OperatorBase
>
CreateGradOp
(
const
OperatorBase
&
op
)
{
PADDLE_ENFORCE
(
!
op
.
IsNetOp
(),
"Use framework::Backward to get backward ops"
);
...
...
paddle/framework/operator.h
浏览文件 @
95440685
...
...
@@ -87,6 +87,8 @@ class OperatorBase {
virtual
bool
IsNetOp
()
const
{
return
false
;
}
virtual
bool
SupportGPU
()
const
{
return
false
;
}
/// rename inputs outputs name
void
Rename
(
const
std
::
string
&
old_name
,
const
std
::
string
&
new_name
);
...
...
@@ -160,14 +162,14 @@ class OperatorContext {
template
<
typename
T
>
const
T
*
Input
(
const
std
::
string
&
name
)
const
{
auto
var
=
InputVar
(
name
);
PADDLE_ENFORCE
(
var
!=
nullpt
r
,
"Input(%s) should not be nullptr"
,
name
);
PADDLE_ENFORCE
_NOT_NULL
(
va
r
,
"Input(%s) should not be nullptr"
,
name
);
return
&
var
->
Get
<
T
>
();
}
template
<
typename
T
>
T
*
Output
(
const
std
::
string
&
name
)
const
{
auto
var
=
OutputVar
(
name
);
PADDLE_ENFORCE
(
var
!=
nullpt
r
,
"Output(%s) should not be nullptr"
,
name
);
PADDLE_ENFORCE
_NOT_NULL
(
va
r
,
"Output(%s) should not be nullptr"
,
name
);
return
var
->
GetMutable
<
T
>
();
}
...
...
@@ -179,9 +181,9 @@ class OperatorContext {
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
const
std
::
string
&
sub_name
)
{
auto
var
=
scope_
.
FindVar
(
sub_name
);
PADDLE_ENFORCE
(
var
!=
nullptr
,
"MultiInput(%s:%s) should not be nullptr"
,
name
,
sub_name
);
PADDLE_ENFORCE
_NOT_NULL
(
var
,
"MultiInput(%s:%s) should not be nullptr"
,
name
,
sub_name
);
return
&
var
->
Get
<
T
>
();
});
return
res
;
...
...
@@ -195,9 +197,9 @@ class OperatorContext {
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
const
std
::
string
&
sub_name
)
{
auto
var
=
scope_
.
FindVar
(
sub_name
);
PADDLE_ENFORCE
(
var
!=
nullptr
,
"MultiOutput(%s:%s) should not be nullptr"
,
name
,
sub_name
);
PADDLE_ENFORCE
_NOT_NULL
(
var
,
"MultiOutput(%s:%s) should not be nullptr"
,
name
,
sub_name
);
return
var
->
GetMutable
<
T
>
();
});
return
res
;
...
...
@@ -283,7 +285,7 @@ class OperatorWithKernel : public OperatorBase {
using
OpKernelMap
=
std
::
unordered_map
<
OpKernelKey
,
std
::
unique_ptr
<
OpKernel
>
,
OpKernelHash
>
;
void
InferShape
(
const
Scope
&
scope
)
const
{
void
InferShape
(
const
Scope
&
scope
)
const
override
{
InferShape
(
InferShapeContext
(
this
,
scope
));
}
...
...
@@ -299,6 +301,12 @@ class OperatorWithKernel : public OperatorBase {
return
g_all_op_kernels
;
}
bool
SupportGPU
()
const
override
{
OperatorWithKernel
::
OpKernelKey
key
;
key
.
place_
=
platform
::
GPUPlace
();
return
OperatorWithKernel
::
AllOpKernels
().
at
(
type_
).
count
(
key
)
!=
0
;
}
protected:
virtual
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
=
0
;
};
...
...
paddle/framework/pybind.cc
浏览文件 @
95440685
...
...
@@ -18,11 +18,8 @@ limitations under the License. */
#include "paddle/framework/backward.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor_py.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/place.h"
#include "pybind11/numpy.h"
...
...
@@ -42,8 +39,12 @@ USE_OP(softmax);
USE_OP
(
rowwise_add
);
USE_OP
(
fill_zeros_like
);
USE_OP_WITHOUT_KERNEL
(
recurrent_op
);
USE_OP
(
uniform_random
);
namespace
paddle
{
namespace
framework
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
ClassType
>
void
ExposeOperator
(
ClassType
&
m
)
{
m
.
def
(
"infer_shape"
,
&
ClassType
::
type
::
InferShape
)
...
...
@@ -130,8 +131,8 @@ All parameter, weight, gradient are variables in Paddle.
[](
Variable
&
self
)
->
Tensor
*
{
return
self
.
GetMutable
<
Tensor
>
();
},
py
::
return_value_policy
::
reference
)
.
def
(
"get_net"
,
[](
Variable
&
self
)
->
ops
::
NetOp
*
{
return
self
.
GetMutable
<
ops
::
NetOp
>
();
[](
Variable
&
self
)
->
op
erator
s
::
NetOp
*
{
return
self
.
GetMutable
<
op
erator
s
::
NetOp
>
();
},
py
::
return_value_policy
::
reference
);
...
...
@@ -202,8 +203,6 @@ All parameter, weight, gradient are variables in Paddle.
return
OpRegistry
::
CreateOp
(
desc
);
});
operator_base
.
def_static
(
"support_gpu"
,
&
OpRegistry
::
SupportGPU
);
operator_base
.
def
(
"backward"
,
[](
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
...
...
@@ -212,23 +211,24 @@ All parameter, weight, gradient are variables in Paddle.
ExposeOperator
(
operator_base
);
py
::
class_
<
op
s
::
NetOp
,
std
::
shared_ptr
<
op
s
::
NetOp
>>
net
(
m
,
"Net"
);
py
::
class_
<
op
erators
::
NetOp
,
std
::
shared_ptr
<
operator
s
::
NetOp
>>
net
(
m
,
"Net"
);
net
.
def_static
(
"create"
,
[]()
->
std
::
shared_ptr
<
ops
::
NetOp
>
{
auto
retv
=
std
::
make_shared
<
ops
::
NetOp
>
();
[]()
->
std
::
shared_ptr
<
op
erator
s
::
NetOp
>
{
auto
retv
=
std
::
make_shared
<
op
erator
s
::
NetOp
>
();
retv
->
type_
=
"plain_net"
;
return
retv
;
})
.
def
(
"add_op"
,
&
ops
::
NetOp
::
AddOp
)
.
def
(
"add_op"
,
[](
ops
::
NetOp
&
self
,
const
std
::
shared_ptr
<
ops
::
NetOp
>
&
net
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
OperatorBase
>
(
net
));
})
.
def
(
"complete_add_op"
,
&
ops
::
NetOp
::
CompleteAddOp
)
.
def
(
"complete_add_op"
,
[](
std
::
shared_ptr
<
ops
::
NetOp
>
&
self
)
{
self
->
CompleteAddOp
();
});
.
def
(
"add_op"
,
&
operators
::
NetOp
::
AddOp
)
.
def
(
"add_op"
,
[](
operators
::
NetOp
&
self
,
const
std
::
shared_ptr
<
operators
::
NetOp
>
&
net
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
OperatorBase
>
(
net
));
})
.
def
(
"complete_add_op"
,
&
operators
::
NetOp
::
CompleteAddOp
)
.
def
(
"complete_add_op"
,
[](
std
::
shared_ptr
<
operators
::
NetOp
>
&
self
)
{
self
->
CompleteAddOp
();
});
ExposeOperator
(
net
);
...
...
paddle/framework/tensor.h
浏览文件 @
95440685
...
...
@@ -127,8 +127,8 @@ class Tensor {
memory
::
PODDeleter
<
T
,
Place
>
(
place
)),
place_
(
place
),
size_
(
size
)
{
PADDLE_ENFORCE
(
ptr_
!=
nullptr
,
"Insufficient %s memory to allocation."
,
is_cpu_place
(
place_
)
?
"CPU"
:
"GPU"
);
PADDLE_ENFORCE
_NOT_NULL
(
ptr_
,
"Insufficient %s memory to allocation."
,
(
is_cpu_place
(
place_
)
?
"CPU"
:
"GPU"
)
);
}
virtual
size_t
size
()
const
{
return
size_
;
}
...
...
paddle/framework/tensor_impl.h
浏览文件 @
95440685
...
...
@@ -14,17 +14,18 @@ limitations under the License. */
#pragma once
#include "paddle/memory/memcpy.h"
#include "paddle/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
template
<
typename
T
>
inline
void
Tensor
::
check_memory_size
()
const
{
PADDLE_ENFORCE
(
holder_
!=
nullptr
,
"Tenosr holds no memory. Call Tensor::mutable_data first."
);
PADDLE_ENFORCE
(
holder_
->
size
()
>=
product
(
dims_
)
*
sizeof
(
T
)
+
offset_
,
"Tensor's dims_ is out of bound. Call Tensor::mutable_data "
"first to re-allocate memory."
);
PADDLE_ENFORCE
_NOT_NULL
(
holder_
,
"Tenosr holds no memory. Call Tensor::mutable_data first."
);
PADDLE_ENFORCE
_GE
(
holder_
->
size
(),
product
(
dims_
)
*
sizeof
(
T
)
+
offset_
,
"Tensor's dims_ is out of bound. Call Tensor::mutable_data "
"first to re-allocate memory."
);
}
template
<
typename
T
>
...
...
@@ -51,9 +52,9 @@ inline T* Tensor::mutable_data(DDim dims, platform::Place place) {
template
<
typename
T
>
inline
T
*
Tensor
::
mutable_data
(
platform
::
Place
place
)
{
static_assert
(
std
::
is_pod
<
T
>::
value
,
"T must be POD"
);
PADDLE_ENFORCE
(
product
(
dims_
)
>
0
,
"Tensor's numel must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first."
);
PADDLE_ENFORCE
_GT
(
product
(
dims_
),
0
,
"Tensor's numel must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first."
);
/* some versions of boost::variant don't have operator!= */
size_t
size
=
product
(
dims_
)
*
sizeof
(
T
);
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
||
...
...
@@ -120,11 +121,11 @@ inline void Tensor::CopyFrom(const Tensor& src,
template
<
typename
T
>
inline
Tensor
Tensor
::
Slice
(
const
int
&
begin_idx
,
const
int
&
end_idx
)
const
{
check_memory_size
<
T
>
();
PADDLE_ENFORCE
(
begin_idx
>=
0
,
"Slice begin index is less than zero."
);
PADDLE_ENFORCE
(
end_idx
<=
dims_
[
0
],
"Slice end index is out of bound."
);
PADDLE_ENFORCE
(
begin_idx
<
end_idx
,
"Begin index must be less than end index."
);
PADDLE_ENFORCE
(
dims_
[
0
]
!=
1
,
"Can not slice a tensor with dims_[0] = 1."
);
PADDLE_ENFORCE
_GE
(
begin_idx
,
0
,
"Slice begin index is less than zero."
);
PADDLE_ENFORCE
_LE
(
end_idx
,
dims_
[
0
],
"Slice end index is out of bound."
);
PADDLE_ENFORCE
_LT
(
begin_idx
,
end_idx
,
"Begin index must be less than end index."
);
PADDLE_ENFORCE
_NE
(
dims_
[
0
],
1
,
"Can not slice a tensor with dims_[0] = 1."
);
int
base
=
product
(
dims_
)
/
dims_
[
0
];
Tensor
dst
;
dst
.
holder_
=
holder_
;
...
...
paddle/framework/tensor_test.cc
浏览文件 @
95440685
...
...
@@ -36,7 +36,8 @@ TEST(Tensor, DataAssert) {
}
catch
(
paddle
::
platform
::
EnforceNotMet
err
)
{
caught
=
true
;
std
::
string
msg
=
"Tenosr holds no memory. Call Tensor::mutable_data first."
;
"holder_ should not be null
\n
Tenosr holds no memory. Call "
"Tensor::mutable_data first."
;
const
char
*
what
=
err
.
what
();
for
(
size_t
i
=
0
;
i
<
msg
.
length
();
++
i
)
{
ASSERT_EQ
(
what
[
i
],
msg
[
i
]);
...
...
@@ -111,7 +112,8 @@ TEST(Tensor, ShareDataWith) {
}
catch
(
paddle
::
platform
::
EnforceNotMet
err
)
{
caught
=
true
;
std
::
string
msg
=
"Tenosr holds no memory. Call Tensor::mutable_data first."
;
"holder_ should not be null
\n
Tenosr holds no memory. Call "
"Tensor::mutable_data first."
;
const
char
*
what
=
err
.
what
();
for
(
size_t
i
=
0
;
i
<
msg
.
length
();
++
i
)
{
ASSERT_EQ
(
what
[
i
],
msg
[
i
]);
...
...
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
0 → 100644
浏览文件 @
95440685
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
namespace
paddle
{
class
KmaxSeqScoreLayer
:
public
Layer
{
private:
MatrixPtr
scores_
;
size_t
beamSize_
;
void
kmaxScorePerSeq
(
const
real
*
score
,
real
*
sortedRes
,
const
ICpuGpuVectorPtr
seqStartPos
);
public:
explicit
KmaxSeqScoreLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
};
REGISTER_LAYER
(
kmax_seq_score
,
KmaxSeqScoreLayer
);
bool
KmaxSeqScoreLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
bool
ret
=
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_EQ
(
1U
,
inputLayers_
.
size
());
beamSize_
=
config_
.
beam_size
();
CHECK_GE
(
beamSize_
,
1U
);
setNeedSequenceInfo
(
false
);
setNeedGradient
(
false
);
return
ret
;
}
void
KmaxSeqScoreLayer
::
kmaxScorePerSeq
(
const
real
*
scores
,
real
*
sortedIds
,
const
ICpuGpuVectorPtr
seqStartPos
)
{
int
*
starts
=
seqStartPos
->
getMutableData
(
false
);
std
::
vector
<
real
>
indices
;
for
(
size_t
i
=
0
;
i
<
seqStartPos
->
getSize
()
-
1
;
++
i
)
{
int
seqLen
=
starts
[
i
+
1
]
-
starts
[
i
];
int
k
=
std
::
min
(
static_cast
<
int
>
(
beamSize_
),
seqLen
);
indices
.
resize
(
seqLen
,
0
);
std
::
iota
(
begin
(
indices
),
end
(
indices
),
0.
);
std
::
vector
<
real
>
tmpScore
(
scores
+
starts
[
i
],
scores
+
starts
[
i
+
1
]);
std
::
partial_sort
(
begin
(
indices
),
begin
(
indices
)
+
k
,
end
(
indices
),
[
&
](
size_t
a
,
size_t
b
)
{
return
tmpScore
[
a
]
>
tmpScore
[
b
];
});
memcpy
(
sortedIds
+
(
i
*
beamSize_
),
indices
.
data
(),
k
*
sizeof
(
real
));
}
}
void
KmaxSeqScoreLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
const
Argument
&
input
=
getInput
(
0
);
const
MatrixPtr
inputScore
=
getInputValue
(
0
);
CHECK
(
input
.
hasSeq
()
||
input
.
hasSubseq
())
<<
"input of "
<<
getName
()
<<
" must be a sequence or a nested sequence."
;
CHECK_EQ
(
input
.
value
->
getWidth
(),
1UL
)
<<
"input of "
<<
getName
()
<<
" is score over a sequence or a nested sequence, so its width "
<<
" must be 1."
;
if
(
useGpu_
)
{
// this Layer runs only in CPU, if the model is runing on GPU,
// then copy the input to this layer from GPU to CPU.
Matrix
::
resizeOrCreate
(
scores_
,
inputScore
->
getHeight
(),
1
,
false
/* trans */
,
false
/* useGpu */
);
scores_
->
copyFrom
(
*
inputScore
);
}
else
{
scores_
=
inputScore
;
}
Matrix
::
resizeOrCreate
(
output_
.
value
,
input
.
hasSubseq
()
?
input
.
getNumSubSequences
()
:
input
.
getNumSequences
(),
beamSize_
,
false
,
false
);
output_
.
value
->
one
();
output_
.
value
->
mulScalar
(
-
1.
);
kmaxScorePerSeq
(
scores_
->
getData
(),
output_
.
value
->
getData
(),
input
.
hasSubseq
()
?
input
.
subSequenceStartPositions
:
input
.
sequenceStartPositions
);
}
void
KmaxSeqScoreLayer
::
backward
(
const
UpdateCallback
&
callback
)
{}
}
// namespace paddle
paddle/gserver/layers/SubNestedSequenceLayer.cpp
0 → 100644
浏览文件 @
95440685
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
class
SubNestedSequenceLayer
:
public
Layer
{
public:
explicit
SubNestedSequenceLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
private:
/*
* This functions generates the indices of rows in a batch according to the
* indices of selected sub-sequence in each sequence.
*
* Examples:
* selectedIndices:
* [
* [0, 1, -1],
* [0, 1, 2],
* [0, -1, -1],
* [0, 2, 3],
* ]
* inputSeqInfo:
* [
* [0,3,4],
* [4,5,7,10,15],
* [15,20],
* [20,22,23,25,28]
* ]
*
* ths output is saved to private member rowIndice_;
* [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
* 16,17,18,19,20,21,22,23,24,25,26,27]
*/
void
calSelectedCols
(
const
MatrixPtr
selectedIndices
,
const
std
::
vector
<
std
::
vector
<
int
>>&
inputSeqInfo
);
// if the second input of this layer is on GPU memory, copy it to CPU memory.
MatrixPtr
selIdsCpu_
;
// reorganized sequenceStartPositions and subSequenceStartPositions
// into a 2d vector to facilitate the sequence selection process.
std
::
vector
<
std
::
vector
<
int
>>
inputSeqInfoVec_
;
// the final selected row indices in a batch,
// rowIdx_ and selectedRows_ actually share a same memory.
IVectorPtr
rowIndice_
;
std
::
vector
<
int
>
selectedRows_
;
};
REGISTER_LAYER
(
sub_nested_seq
,
SubNestedSequenceLayer
);
bool
SubNestedSequenceLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_EQ
(
2U
,
inputLayers_
.
size
());
setNeedSequenceInfo
(
false
);
return
true
;
}
void
SubNestedSequenceLayer
::
calSelectedCols
(
const
MatrixPtr
selectedIndices
,
const
std
::
vector
<
std
::
vector
<
int
>>&
inputSeqInfo
)
{
selectedRows_
.
clear
();
std
::
vector
<
int
>
outSeqStartInfo
(
1
,
0
);
std
::
vector
<
int
>
outSubSeqStartInfo
(
1
,
0
);
size_t
seqNum
=
selectedIndices
->
getHeight
();
size_t
beamSize
=
selectedIndices
->
getWidth
();
for
(
size_t
i
=
0
;
i
<
seqNum
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
beamSize
;
++
j
)
{
if
(
selectedIndices
->
getElement
(
i
,
j
)
==
-
1.
)
break
;
int
selSubSeqIdx
=
selectedIndices
->
getElement
(
i
,
j
);
CHECK_GT
(
inputSeqInfoVec_
[
i
].
size
()
-
1
,
selSubSeqIdx
);
size_t
subSeqLen
=
inputSeqInfoVec_
[
i
][
selSubSeqIdx
+
1
]
-
inputSeqInfoVec_
[
i
][
selSubSeqIdx
];
for
(
size_t
k
=
0
;
k
<
subSeqLen
;
++
k
)
selectedRows_
.
push_back
(
inputSeqInfoVec_
[
i
][
selSubSeqIdx
]
+
k
);
outSubSeqStartInfo
.
push_back
(
outSubSeqStartInfo
.
back
()
+
subSeqLen
);
}
outSeqStartInfo
.
push_back
(
outSubSeqStartInfo
.
back
());
}
if
(
useGpu_
)
{
rowIndice_
=
IVector
::
create
(
selectedRows_
.
size
(),
useGpu_
);
rowIndice_
->
copyFrom
(
selectedRows_
.
data
(),
selectedRows_
.
size
());
}
else
{
rowIndice_
=
IVector
::
create
(
selectedRows_
.
data
(),
selectedRows_
.
size
(),
useGpu_
);
}
// create the sequence information for the output.
ICpuGpuVector
::
resizeOrCreate
(
output_
.
sequenceStartPositions
,
outSeqStartInfo
.
size
(),
false
);
output_
.
sequenceStartPositions
->
copyFrom
(
outSeqStartInfo
.
data
(),
outSeqStartInfo
.
size
(),
false
);
ICpuGpuVector
::
resizeOrCreate
(
output_
.
subSequenceStartPositions
,
outSubSeqStartInfo
.
size
(),
false
);
output_
.
subSequenceStartPositions
->
copyFrom
(
outSubSeqStartInfo
.
data
(),
outSubSeqStartInfo
.
size
(),
false
);
}
void
SubNestedSequenceLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
const
Argument
&
inputSeq
=
getInput
(
0
);
CHECK
(
inputSeq
.
hasSubseq
())
<<
"The first input of SubNestSequence layer "
<<
"must be a nested sequence."
;
const
MatrixPtr
selectedIndices
=
getInputValue
(
1
);
CHECK_EQ
(
inputSeq
.
getNumSequences
(),
selectedIndices
->
getHeight
());
if
(
dynamic_cast
<
GpuMatrix
*>
(
selectedIndices
.
get
()))
{
/*
* Currently, the second input for this layer is generated by
* kmax_sequence_score_layer whose output is always stored on CPU,
* or a data_layer which canbe on GPU.
*
* If the second input is on GPU, copy it to CPU memory, because this
* input always uses very few memory, and operations related to it are
* all logic control, not computations.
*/
Matrix
::
resizeOrCreate
(
selIdsCpu_
,
selectedIndices
->
getHeight
(),
selectedIndices
->
getWidth
(),
false
/* trans */
,
false
/* useGpu */
);
selIdsCpu_
->
copyFrom
(
*
selectedIndices
);
}
else
{
selIdsCpu_
=
selectedIndices
;
}
Argument
::
reorganizeSeqInfo
(
inputSeq
.
sequenceStartPositions
,
inputSeq
.
subSequenceStartPositions
,
inputSeqInfoVec_
);
calSelectedCols
(
selIdsCpu_
,
inputSeqInfoVec_
);
resetOutput
(
selectedRows_
.
size
(),
getSize
());
getOutputValue
()
->
selectRows
(
*
getInputValue
(
0
),
*
rowIndice_
);
}
void
SubNestedSequenceLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
MatrixPtr
inputSeqGrad
=
getInputGrad
(
0
);
MatrixPtr
outputGrad
=
getOutputGrad
();
if
(
inputSeqGrad
)
outputGrad
->
addToRows
(
*
inputSeqGrad
,
*
rowIndice_
);
}
}
// namespace paddle
paddle/gserver/tests/CMakeLists.txt
浏览文件 @
95440685
...
...
@@ -66,6 +66,16 @@ add_unittest_without_exec(test_BatchNorm
add_test
(
NAME test_BatchNorm
COMMAND test_BatchNorm
)
################# test_KmaxSeqScore #######################
add_unittest_without_exec
(
test_KmaxSeqScore
test_KmaxSeqScore.cpp
LayerGradUtil.cpp
)
add_test
(
NAME test_KmaxSeqScore
COMMAND test_KmaxSeqScore
)
################## test_Evaluator #######################
add_unittest
(
test_Evaluator
test_Evaluator.cpp
)
...
...
paddle/gserver/tests/test_KmaxSeqScore.cpp
0 → 100644
浏览文件 @
95440685
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <algorithm>
#include <string>
#include <vector>
#include "ModelConfig.pb.h"
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/utils/GlobalConstants.h"
#include "LayerGradUtil.h"
#include "paddle/testing/TestUtil.h"
using
namespace
paddle
;
// NOLINT
using
namespace
std
;
// NOLINT
DECLARE_bool
(
use_gpu
);
DECLARE_int32
(
gpu_id
);
DECLARE_bool
(
thread_local_rand_use_global_seed
);
vector
<
int
>
randSampling
(
int
range
,
int
n
)
{
CHECK_GE
(
range
,
n
);
vector
<
int
>
num
(
range
);
iota
(
begin
(
num
),
end
(
num
),
0
);
if
(
range
==
n
)
return
num
;
random_shuffle
(
begin
(
num
),
end
(
num
));
num
.
resize
(
n
);
return
num
;
}
void
genRandomSeqInfo
(
vector
<
int
>&
seqStartPosition
,
vector
<
int
>&
subSeqStartPosition
)
{
const
int
maxSeqNum
=
100
;
// generate random start position information
int
seqNum
=
1
+
(
rand
()
%
maxSeqNum
);
seqStartPosition
.
resize
(
seqNum
+
1
,
0
);
subSeqStartPosition
.
resize
(
1
,
0
);
for
(
int
i
=
0
;
i
<
seqNum
;
++
i
)
{
int
subSeqLen
=
1
+
(
rand
()
%
maxSeqNum
);
for
(
int
j
=
0
;
j
<
subSeqLen
;
++
j
)
subSeqStartPosition
.
push_back
(
subSeqStartPosition
.
back
()
+
subSeqLen
);
seqStartPosition
[
i
+
1
]
=
subSeqStartPosition
.
back
();
}
}
void
genRandomGroundTruth
(
real
*
values
,
vector
<
vector
<
int
>>&
groundTruth
,
vector
<
int
>&
startPos
,
size_t
beamSize
)
{
groundTruth
.
resize
(
startPos
.
size
()
-
1
,
vector
<
int
>
(
beamSize
,
-
1
));
for
(
size_t
i
=
0
;
i
<
startPos
.
size
()
-
1
;
++
i
)
{
int
seqLen
=
startPos
[
i
+
1
]
-
startPos
[
i
];
vector
<
int
>
pos
=
randSampling
(
seqLen
,
min
(
static_cast
<
int
>
(
beamSize
),
seqLen
));
for
(
size_t
j
=
0
;
j
<
pos
.
size
();
++
j
)
{
groundTruth
[
i
][
j
]
=
pos
[
j
];
values
[
startPos
[
i
]
+
pos
[
j
]]
=
1.
;
}
}
}
void
checkLayerOut
(
vector
<
vector
<
int
>>
groundTruth
,
real
*
layerOut
,
size_t
beamSize
)
{
for
(
size_t
i
=
0
;
i
<
groundTruth
.
size
();
++
i
)
{
int
begPos
=
i
*
beamSize
;
vector
<
real
>
tmp
(
layerOut
+
begPos
,
layerOut
+
begPos
+
beamSize
);
sort
(
begin
(
tmp
),
end
(
tmp
));
sort
(
begin
(
groundTruth
[
i
]),
end
(
groundTruth
[
i
]));
for
(
size_t
j
=
0
;
j
<
beamSize
;
++
j
)
CHECK_EQ
(
tmp
[
j
],
groundTruth
[
i
][
j
]);
}
}
TEST
(
Layer
,
kmaxSeqScoreLayer
)
{
const
size_t
maxBeamSize
=
100
;
int
beamSize
=
1
+
(
rand
()
%
maxBeamSize
);
vector
<
int
>
seqStartPosition
;
vector
<
int
>
subSeqStartPosition
;
genRandomSeqInfo
(
seqStartPosition
,
subSeqStartPosition
);
MatrixPtr
inValue
=
Matrix
::
create
(
subSeqStartPosition
.
back
(),
1
,
false
,
false
);
for
(
auto
hasSubseq
:
{
false
,
true
})
{
vector
<
vector
<
int
>>
groundTruth
;
inValue
->
randomizeUniform
();
genRandomGroundTruth
(
inValue
->
getData
(),
groundTruth
,
hasSubseq
?
subSeqStartPosition
:
seqStartPosition
,
beamSize
);
for
(
auto
useGpu
:
{
false
,
true
})
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"kmax_seq_score"
);
config
.
layerConfig
.
set_beam_size
(
beamSize
);
if
(
hasSubseq
)
{
config
.
inputDefs
.
push_back
({
INPUT_SELF_DEFINE_DATA
,
"scores"
,
inValue
,
seqStartPosition
,
subSeqStartPosition
});
}
else
{
config
.
inputDefs
.
push_back
(
{
INPUT_SELF_DEFINE_DATA
,
"scores"
,
inValue
,
seqStartPosition
});
}
config
.
layerConfig
.
add_inputs
();
// data layer initialize
std
::
vector
<
DataLayerPtr
>
dataLayers
;
LayerMap
layerMap
;
vector
<
Argument
>
datas
;
initDataLayer
(
config
,
&
dataLayers
,
&
datas
,
&
layerMap
,
"kmax_seq_score"
,
100
/* actually this parameter is unused in self-defined input*/
,
false
,
useGpu
);
// test layer initialize
std
::
vector
<
ParameterPtr
>
parameters
;
LayerPtr
kmaxSeqScoreLayer
;
FLAGS_use_gpu
=
useGpu
;
initTestLayer
(
config
,
&
layerMap
,
&
parameters
,
&
kmaxSeqScoreLayer
);
kmaxSeqScoreLayer
->
forward
(
PASS_TRAIN
);
const
MatrixPtr
outValue
=
kmaxSeqScoreLayer
->
getOutputValue
();
CHECK_EQ
(
outValue
->
getHeight
(),
hasSubseq
?
subSeqStartPosition
.
size
()
-
1
:
seqStartPosition
.
size
()
-
1
);
CHECK_EQ
(
outValue
->
getWidth
(),
beamSize
);
checkLayerOut
(
groundTruth
,
outValue
->
getData
(),
beamSize
);
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initMain
(
argc
,
argv
);
FLAGS_thread_local_rand_use_global_seed
=
true
;
srand
((
size_t
)(
time
(
NULL
)));
return
RUN_ALL_TESTS
();
}
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
95440685
...
...
@@ -1899,6 +1899,84 @@ TEST(Layer, CropLayer) {
}
}
vector
<
real
>
randSampling
(
real
range
,
int
n
)
{
CHECK_GE
(
range
,
n
);
vector
<
real
>
num
(
range
);
iota
(
begin
(
num
),
end
(
num
),
0.
);
if
(
range
==
n
)
return
num
;
random_shuffle
(
begin
(
num
),
end
(
num
));
num
.
resize
(
n
);
sort
(
begin
(
num
),
end
(
num
));
return
num
;
}
TEST
(
Layer
,
SubNestedSequenceLayer
)
{
// layer size is not crutial for this layer,
// so use a small layer size in unittest
const
int
layerSize
=
4
;
const
int
maxSeqNum
=
50
;
const
int
maxSeqLen
=
50
;
const
int
maxBeamSize
=
32
;
srand
((
size_t
)(
time
(
NULL
)));
int
beamSize
=
1
+
(
rand
()
%
maxBeamSize
);
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"sub_nested_seq"
);
config
.
layerConfig
.
set_name
(
"sub_nested_seq_layer"
);
config
.
layerConfig
.
set_size
(
layerSize
);
int
seqNum
=
1
+
(
rand
()
%
maxSeqNum
);
// sequence information for the first input, it is a nested sequence
vector
<
int
>
seqStartPos
(
seqNum
+
1
,
0
);
vector
<
int
>
subSeqStartPos
(
1
,
0
);
// selected indices
MatrixPtr
selectedIndices
=
Matrix
::
create
(
seqNum
,
beamSize
,
false
,
false
);
selectedIndices
->
one
();
selectedIndices
->
mulScalar
(
-
1.
);
real
*
indicesData
=
selectedIndices
->
getData
();
for
(
int
i
=
0
;
i
<
seqNum
;
++
i
)
{
int
subSeqNum
=
1
+
(
rand
()
%
maxSeqNum
);
for
(
int
j
=
0
;
j
<
subSeqNum
;
++
j
)
{
subSeqStartPos
.
push_back
(
subSeqStartPos
.
back
()
+
(
1
+
(
rand
()
%
maxSeqLen
)));
}
vector
<
real
>
selSeqs
=
randSampling
(
static_cast
<
real
>
(
subSeqNum
),
min
(
beamSize
,
subSeqNum
));
memcpy
(
indicesData
+
(
i
*
beamSize
),
selSeqs
.
data
(),
selSeqs
.
size
()
*
sizeof
(
real
));
seqStartPos
[
i
+
1
]
=
subSeqStartPos
.
back
();
}
MatrixPtr
seqInputPtr
=
Matrix
::
create
(
seqStartPos
.
back
(),
layerSize
,
false
,
false
);
seqInputPtr
->
randomizeUniform
();
config
.
inputDefs
.
push_back
({
INPUT_SELF_DEFINE_DATA
,
"nested_seq_input"
,
seqInputPtr
,
seqStartPos
,
subSeqStartPos
});
config
.
layerConfig
.
add_inputs
();
config
.
inputDefs
.
push_back
(
{
INPUT_SELF_DEFINE_DATA
,
"selected_indices"
,
selectedIndices
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"sub_nested_seq"
,
/* batchSize */
seqNum
,
/* trans */
false
,
/* useGpu*/
useGpu
,
/* useWeight */
false
);
}
}
TEST
(
Layer
,
ClipLayer
)
{
const
size_t
batchSize
=
128
;
const
size_t
size
=
512
;
...
...
paddle/operators/CMakeLists.txt
浏览文件 @
95440685
...
...
@@ -59,6 +59,7 @@ op_library(cross_entropy_op SRCS cross_entropy_op.cc cross_entropy_op.cu)
op_library
(
fill_zeros_like_op SRCS fill_zeros_like_op.cc fill_zeros_like_op.cu
)
op_library
(
sgd_op SRCS sgd_op.cc sgd_op.cu
)
cc_test
(
sgd_op_test SRCS sgd_op_test.cc DEPS sgd_op
)
op_library
(
fc_op
SRCS fc_op.cc
...
...
@@ -66,3 +67,5 @@ op_library(fc_op
op_library
(
recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS framework_proto tensor op_registry operator net_op
)
cc_test
(
recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op
)
op_library
(
uniform_random_op
SRCS uniform_random_op.cc uniform_random_op.cu
)
paddle/operators/add_op.cc
浏览文件 @
95440685
...
...
@@ -17,9 +17,9 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
class
AddOp
:
public
OperatorWithKernel
{
class
AddOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
(),
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
(),
"Two input of Add Op's dimension must be same."
);
...
...
@@ -27,9 +27,9 @@ class AddOp : public OperatorWithKernel {
}
};
class
AddOpMaker
:
public
OpProtoAndCheckerMaker
{
class
AddOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
AddOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
AddOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The first input of add op"
);
AddInput
(
"Y"
,
"The second input of add op"
);
...
...
@@ -42,14 +42,17 @@ The equation is: Out = X + Y
}
};
class
AddOpGrad
:
public
OperatorWithKernel
{
class
AddOpGrad
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{}
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
add_two
,
ops
::
AddOp
,
ops
::
AddOpMaker
);
REGISTER_GRADIENT_OP
(
add_two
,
add_two_grad
,
ops
::
AddOpGrad
);
REGISTER_OP_CPU_KERNEL
(
add_two
,
ops
::
AddKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
add_two
,
ops
::
AddKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/add_op.cu
浏览文件 @
95440685
...
...
@@ -16,4 +16,6 @@
#include "paddle/framework/op_registry.h"
#include "paddle/operators/add_op.h"
REGISTER_OP_GPU_KERNEL
(
add_two
,
ops
::
AddKernel
<
ops
::
GPUPlace
,
float
>
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
add_two
,
ops
::
AddKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/add_op.h
浏览文件 @
95440685
...
...
@@ -13,15 +13,21 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/type_alias.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
AddKernel
:
public
OpKernel
{
class
AddKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
input1
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
...
...
paddle/operators/add_op_test.cc
浏览文件 @
95440685
...
...
@@ -14,9 +14,9 @@ limitations under the License. */
#include <gtest/gtest.h>
#define private public
#include <paddle/framework/op_registry.h>
#include "paddle/framework/op_registry.h"
USE_OP
(
add_two
);
// USE_OP(add_two_grad);
TEST
(
AddOp
,
GetOpProto
)
{
auto
&
protos
=
paddle
::
framework
::
OpRegistry
::
protos
();
...
...
paddle/operators/cross_entropy_op.cc
浏览文件 @
95440685
...
...
@@ -17,9 +17,9 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
class
OnehotCrossEntropyOp
:
public
OperatorWithKernel
{
class
OnehotCrossEntropyOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
*
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"label"
);
...
...
@@ -30,9 +30,9 @@ class OnehotCrossEntropyOp : public OperatorWithKernel {
}
};
class
OnehotCrossEntropyGradientOp
:
public
OperatorWithKernel
{
class
OnehotCrossEntropyGradientOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
X_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
...
...
@@ -41,9 +41,10 @@ class OnehotCrossEntropyGradientOp : public OperatorWithKernel {
}
};
class
OnehotCrossEntropyOpMaker
:
public
OpProtoAndCheckerMaker
{
class
OnehotCrossEntropyOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
OnehotCrossEntropyOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
OnehotCrossEntropyOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The first input of OnehotCrossEntropyOp"
);
AddInput
(
"label"
,
"The second input of OnehotCrossEntropyOp"
);
...
...
@@ -59,11 +60,14 @@ OnehotCrossEntropy Operator.
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOp
,
ops
::
OnehotCrossEntropyOpMaker
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOpKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
onehot_cross_entropy
,
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOp
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOpKernel
<
ops
::
CPUPlace
,
float
>
);
ops
::
OnehotCrossEntropyGradientOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/cross_entropy_op.cu
浏览文件 @
95440685
...
...
@@ -14,3 +14,8 @@
#define EIGEN_USE_GPU
#include "paddle/operators/cross_entropy_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/cross_entropy_op.h
浏览文件 @
95440685
...
...
@@ -13,11 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/
operators/type_alias
.h"
#include "paddle/
framework/op_registry
.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
T
tolerable_value
(
T
x
)
{
static_assert
(
std
::
is_floating_point
<
T
>::
value
,
...
...
@@ -38,9 +40,9 @@ T tolerable_value(T x) {
}
template
<
typename
Place
,
typename
T
>
class
OnehotCrossEntropyOpKernel
:
public
OpKernel
{
class
OnehotCrossEntropyOpKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
T
*
Xdata
=
X
->
data
<
T
>
();
const
int
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"label"
)
->
data
<
int
>
();
...
...
@@ -61,9 +63,9 @@ class OnehotCrossEntropyOpKernel : public OpKernel {
};
template
<
typename
Place
,
typename
T
>
class
OnehotCrossEntropyGradientOpKernel
:
public
OpKernel
{
class
OnehotCrossEntropyGradientOpKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
dY
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
...
...
paddle/operators/fc_op.cc
浏览文件 @
95440685
...
...
@@ -12,11 +12,16 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "type_alias.h"
#include "paddle/operators/net_op.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
OpRegistry
=
framework
::
OpRegistry
;
class
FullyConnectedOp
:
public
NetOp
{
public:
void
Init
()
override
{
...
...
@@ -39,9 +44,10 @@ class FullyConnectedOp : public NetOp {
}
};
class
FullyConnectedOpMaker
:
public
OpProtoAndCheckerMaker
{
class
FullyConnectedOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
FullyConnectedOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
FullyConnectedOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"the input of fc operator"
);
AddInput
(
"W"
,
"the weight of fc operator"
);
...
...
@@ -66,4 +72,5 @@ USE_OP(rowwise_add);
USE_OP
(
sigmoid
);
USE_OP
(
softmax
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
fc
,
ops
::
FullyConnectedOp
,
ops
::
FullyConnectedOpMaker
);
paddle/operators/fill_zeros_like_op.cc
浏览文件 @
95440685
...
...
@@ -42,8 +42,8 @@ The output will have the same size with input.
}
// namespace operators
}
// namespace paddle
REGISTER_OP
(
fill_zeros_like
,
paddle
::
operators
::
FillZerosLikeOp
,
paddle
::
operator
s
::
FillZerosLikeOpMaker
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
fill_zeros_like
,
ops
::
FillZerosLikeOp
,
op
s
::
FillZerosLikeOpMaker
);
REGISTER_OP_CPU_KERNEL
(
fill_zeros_like
,
paddle
::
operator
s
::
FillZerosLikeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
op
s
::
FillZerosLikeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/fill_zeros_like_op.cu
浏览文件 @
95440685
...
...
@@ -16,6 +16,7 @@
#include "paddle/framework/op_registry.h"
#include "paddle/operators/fill_zeros_like_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
fill_zeros_like
,
paddle
::
operator
s
::
FillZerosLikeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
op
s
::
FillZerosLikeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/fill_zeros_like_op.h
浏览文件 @
95440685
...
...
@@ -13,7 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/type_alias.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/operators/mean_op.cc
浏览文件 @
95440685
...
...
@@ -17,18 +17,18 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
class
MeanOp
:
public
OperatorWithKernel
{
class
MeanOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
InputVar
(
"X"
)
!=
nullptr
,
"Input of MeanOp must be initialized."
);
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
_NOT_NULL
(
ctx
.
InputVar
(
"X"
)
,
"Input of MeanOp must be initialized."
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
1
});
}
};
class
MeanOpMaker
:
public
OpProtoAndCheckerMaker
{
class
MeanOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
MeanOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
MeanOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
).
IgnoreGradient
();
...
...
@@ -36,9 +36,9 @@ class MeanOpMaker : public OpProtoAndCheckerMaker {
}
};
class
MeanGradOp
:
public
OperatorWithKernel
{
class
MeanGradOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
"X"
+
framework
::
kGradVarSuffix
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
...
...
@@ -47,7 +47,10 @@ class MeanGradOp : public OperatorWithKernel {
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
mean
,
ops
::
MeanOp
,
ops
::
MeanOpMaker
);
REGISTER_OP_CPU_KERNEL
(
mean
,
ops
::
MeanKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
mean
,
ops
::
MeanKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
mean
,
mean_grad
,
ops
::
MeanGradOp
);
REGISTER_OP_CPU_KERNEL
(
mean_grad
,
ops
::
MeanGradKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
mean_grad
,
ops
::
MeanGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/mean_op.cu
浏览文件 @
95440685
...
...
@@ -16,5 +16,8 @@
#include "paddle/operators/mean_op.h"
REGISTER_OP_GPU_KERNEL
(
mean
,
ops
::
MeanKernel
<
ops
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
mean_grad
,
ops
::
MeanGradKernel
<
ops
::
GPUPlace
,
float
>
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
mean
,
ops
::
MeanKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
mean_grad
,
ops
::
MeanGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/mean_op.h
浏览文件 @
95440685
...
...
@@ -13,15 +13,24 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/type_alias.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenScalar
=
framework
::
EigenScalar
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
MeanKernel
:
public
OpKernel
{
class
MeanKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
input
=
context
.
Input
<
Tensor
>
(
0
);
auto
output
=
context
.
Output
<
Tensor
>
(
0
);
...
...
@@ -36,9 +45,9 @@ class MeanKernel : public OpKernel {
};
template
<
typename
Place
,
typename
T
>
class
MeanGradKernel
:
public
OpKernel
{
class
MeanGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
OG
=
context
.
Input
<
Tensor
>
(
"Out"
+
framework
::
kGradVarSuffix
);
PADDLE_ENFORCE
(
framework
::
product
(
OG
->
dims
())
==
1
,
"Mean Gradient should be scalar"
);
...
...
paddle/operators/mul_op.cc
浏览文件 @
95440685
...
...
@@ -17,9 +17,9 @@
namespace
paddle
{
namespace
operators
{
class
MulOp
:
public
OperatorWithKernel
{
class
MulOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
dim0
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
dim1
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
dim0
.
size
(),
2
,
...
...
@@ -35,9 +35,9 @@ class MulOp : public OperatorWithKernel {
}
};
class
MulOpMaker
:
public
OpProtoAndCheckerMaker
{
class
MulOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
MulOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
MulOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The first input of mul op"
);
AddInput
(
"Y"
,
"The second input of mul op"
);
...
...
@@ -50,9 +50,9 @@ The equation is: Out = X * Y
}
};
class
MulOpGrad
:
public
OperatorWithKernel
{
class
MulOpGrad
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{}
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{}
std
::
string
DebugString
()
const
override
{
LOG
(
INFO
)
<<
"MulGrad"
;
return
""
;
...
...
@@ -62,7 +62,8 @@ class MulOpGrad : public OperatorWithKernel {
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
mul
,
ops
::
MulOp
,
ops
::
MulOpMaker
);
REGISTER_GRADIENT_OP
(
mul
,
mul_grad
,
ops
::
MulOpGrad
);
REGISTER_OP_CPU_KERNEL
(
mul
,
ops
::
MulKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
mul
,
ops
::
MulKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/mul_op.cu
浏览文件 @
95440685
...
...
@@ -15,4 +15,6 @@
#define EIGEN_USE_GPU
#include "paddle/operators/mul_op.h"
REGISTER_OP_GPU_KERNEL
(
mul
,
ops
::
MulKernel
<
ops
::
GPUPlace
,
float
>
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
mul
,
ops
::
MulKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/mul_op.h
浏览文件 @
95440685
...
...
@@ -13,16 +13,21 @@
limitations under the License. */
#pragma once
#include "paddle/
operators/type_alias
.h"
#include "paddle/framework/eigen.h"
#include "paddle/
framework/op_registry
.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
MulKernel
:
public
OpKernel
{
class
MulKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
Eigen
::
array
<
Eigen
::
IndexPair
<
Eigen
::
DenseIndex
>
,
1
>
dim_pair
=
{
{
Eigen
::
IndexPair
<
Eigen
::
DenseIndex
>
(
1
,
0
)}};
...
...
@@ -40,5 +45,6 @@ class MulKernel : public OpKernel {
Z
.
device
(
place
)
=
X
.
contract
(
Y
,
dim_pair
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/operators/net_op.h
浏览文件 @
95440685
...
...
@@ -16,10 +16,6 @@ limitations under the License. */
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/operators/type_alias.h"
#include "paddle/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -64,20 +60,29 @@ class NetOp : public framework::OperatorBase {
}
}
bool
SupportGPU
()
const
override
{
for
(
auto
&
op
:
ops_
)
{
if
(
!
op
->
SupportGPU
())
{
return
false
;
}
}
return
true
;
}
/**
* @brief Add an operator by ptr
*/
void
AddOp
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
{
PADDLE_ENFORCE
(
!
add_op_done_
,
"Cannot AddOp when this network is sealed"
);
PADDLE_ENFORCE
(
op
!=
nullptr
,
"Cannot Insert Null op"
);
PADDLE_ENFORCE
_NOT_NULL
(
op
,
"Cannot Insert Null op"
);
ops_
.
push_back
(
op
);
}
void
InsertOp
(
size_t
pos
,
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
{
PADDLE_ENFORCE
(
!
add_op_done_
,
"Cannot InsertOp when this network is sealed"
);
PADDLE_ENFORCE
(
op
!=
nullptr
,
"Cannot Insert Null op"
);
PADDLE_ENFORCE
(
pos
<=
ops_
.
size
(),
"Out of range"
);
PADDLE_ENFORCE
_NOT_NULL
(
op
,
"Cannot Insert Null op"
);
PADDLE_ENFORCE
_LE
(
pos
,
ops_
.
size
(),
"Out of range"
);
ops_
.
insert
(
ops_
.
begin
()
+
pos
,
op
);
}
...
...
paddle/operators/net_op_test.cc
浏览文件 @
95440685
...
...
@@ -2,31 +2,27 @@
#include <gtest/gtest.h>
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
namespace
paddle
{
namespace
operators
{
using
Scope
=
framework
::
Scope
;
using
DeviceContext
=
platform
::
DeviceContext
;
static
int
infer_shape_cnt
=
0
;
static
int
run_cnt
=
0
;
class
TestOp
:
public
OperatorBase
{
class
TestOp
:
public
framework
::
OperatorBase
{
public:
void
InferShape
(
const
framework
::
Scope
&
scope
)
const
override
{
++
infer_shape_cnt
;
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
paddle
::
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
void
InferShape
(
const
Scope
&
scope
)
const
override
{
++
infer_shape_cnt
;
}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
++
run_cnt
;
}
};
class
EmptyOp
:
public
OperatorBase
{
class
EmptyOp
:
public
framework
::
OperatorBase
{
public:
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
DeviceContext
&
dev_ctx
)
const
override
{}
};
template
<
typename
T
>
...
...
@@ -73,7 +69,7 @@ TEST(OpKernel, all) {
net
->
Run
(
scope
,
dev_ctx
);
ASSERT_EQ
(
2
,
infer_shape_cnt
);
ASSERT_EQ
(
2
,
run_cnt
);
ASSERT_THROW
(
net
->
AddOp
(
op2
),
p
addle
::
p
latform
::
EnforceNotMet
);
ASSERT_THROW
(
net
->
AddOp
(
op2
),
platform
::
EnforceNotMet
);
}
TEST
(
NetOp
,
insert_op
)
{
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
95440685
...
...
@@ -14,17 +14,19 @@
#include "paddle/operators/recurrent_op.h"
#include <glog/logging.h>
#include <cstring>
#include <sstream>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
using
Scope
=
framework
::
Scope
;
using
Variable
=
framework
::
Variable
;
using
Tensor
=
framework
::
Tensor
;
void
RecurrentAlgorithm
::
InferShape
(
const
Scope
&
scope
)
const
{
seq_len_
=
scope
.
FindVar
((
arg_
->
inlinks
[
0
]).
external
)
->
GetMutable
<
Tensor
>
()
...
...
@@ -140,10 +142,11 @@ void RecurrentOp::Init() {
alg_
.
Init
(
std
::
move
(
arg
));
}
class
RecurrentAlgorithmProtoAndCheckerMaker
:
public
OpProtoAndCheckerMaker
{
class
RecurrentAlgorithmProtoAndCheckerMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
RecurrentAlgorithmProtoAndCheckerMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
RecurrentAlgorithmProtoAndCheckerMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
const
auto
&
name
=
RecurrentOp
::
kArgName
;
// inputs and outputs stored in proto
...
...
paddle/operators/rnn/recurrent_op_utils.cc
浏览文件 @
95440685
...
...
@@ -18,7 +18,9 @@ namespace paddle {
namespace
operators
{
namespace
rnn
{
namespace
fmw
=
paddle
::
framework
;
namespace
f
=
paddle
::
framework
;
using
Tensor
=
framework
::
Tensor
;
void
SegmentInputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
,
...
...
@@ -30,10 +32,10 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
inlinks
[
i
].
external
);
Tensor
*
input
=
input_var
->
GetMutable
<
Tensor
>
();
f
mw
::
DDim
dims
=
input
->
dims
();
f
::
DDim
dims
=
input
->
dims
();
PADDLE_ENFORCE
(
static_cast
<
size_t
>
(
dims
[
0
])
==
seq_len
,
"all the inlinks must have same length"
);
f
mw
::
DDim
step_dims
=
slice_ddim
(
dims
,
1
,
dims
.
size
());
f
::
DDim
step_dims
=
slice_ddim
(
dims
,
1
,
dims
.
size
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_input
=
step_scopes
[
j
]
->
NewVar
(
inlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
();
...
...
@@ -58,11 +60,10 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes,
auto
step_scope_var
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
internal
);
PADDLE_ENFORCE
(
step_scope_var
!=
nullptr
,
"%s not in scope"
,
outlinks
[
i
].
internal
);
fmw
::
DDim
step_dims
=
step_scope_var
->
template
GetMutable
<
Tensor
>()
->
dims
();
f
::
DDim
step_dims
=
step_scope_var
->
template
GetMutable
<
Tensor
>()
->
dims
();
std
::
vector
<
int
>
dims_vec
=
vectorize
(
step_dims
);
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len
);
output
->
Resize
(
f
mw
::
make_ddim
(
dims_vec
));
output
->
Resize
(
f
::
make_ddim
(
dims_vec
));
}
else
{
output
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
...
...
@@ -104,7 +105,7 @@ void LinkMemories(const std::vector<Scope*>& scopes,
}
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
const
OperatorBase
&
op
)
{
const
framework
::
OperatorBase
&
op
)
{
arg
->
step_net
=
op
.
Input
(
name
.
step_net
);
arg
->
step_scopes
=
op
.
Output
(
name
.
step_scopes
);
...
...
paddle/operators/rnn/recurrent_op_utils.h
浏览文件 @
95440685
...
...
@@ -17,12 +17,13 @@
#include <string>
#include "paddle/framework/operator.h"
#include "paddle/operators/type_alias.h"
namespace
paddle
{
namespace
operators
{
namespace
rnn
{
using
Scope
=
framework
::
Scope
;
/**
* Memory of a RNN (same as the role of `Momory` in PaddlePaddle).
*
...
...
@@ -86,7 +87,7 @@ void LinkMemories(const std::vector<Scope*>& step_scopes,
const
int
offset
,
bool
infer_shape_mode
);
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
const
OperatorBase
&
op
);
const
framework
::
OperatorBase
&
op
);
}
// namespace rnn
}
// namespace operators
...
...
paddle/operators/rowwise_add_op.cc
浏览文件 @
95440685
...
...
@@ -13,12 +13,13 @@
limitations under the License. */
#include "paddle/operators/rowwise_add_op.h"
namespace
paddle
{
namespace
operators
{
class
RowWiseAddOp
:
public
OperatorWithKernel
{
class
RowWiseAddOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
dim0
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
dim1
=
ctx
.
Input
<
Tensor
>
(
"b"
)
->
dims
();
...
...
@@ -30,9 +31,10 @@ class RowWiseAddOp : public OperatorWithKernel {
}
};
class
RowWiseAddOpMaker
:
public
OpProtoAndCheckerMaker
{
class
RowWiseAddOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
RowWiseAddOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
RowWiseAddOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The left input of row-wise add op, must be matrix"
);
AddInput
(
"b"
,
"The right input of row-wise add op, must be vector"
);
...
...
@@ -48,6 +50,7 @@ for i in xrange(X.shape[0]):
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
rowwise_add
,
ops
::
RowWiseAddOp
,
ops
::
RowWiseAddOpMaker
);
REGISTER_OP_CPU_KERNEL
(
rowwise_add
,
ops
::
RowWiseAddKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
rowwise_add
,
ops
::
RowWiseAddKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/rowwise_add_op.cu
浏览文件 @
95440685
...
...
@@ -15,5 +15,6 @@
#define EIGEN_USE_GPU
#include "paddle/operators/rowwise_add_op.h"
REGISTER_OP_GPU_KERNEL
(
rowwise_add
,
ops
::
RowWiseAddKernel
<
ops
::
GPUPlace
,
float
>
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
rowwise_add
,
ops
::
RowWiseAddKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/rowwise_add_op.h
浏览文件 @
95440685
...
...
@@ -13,15 +13,24 @@
limitations under the License. */
#pragma once
#include "paddle/operators/type_alias.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
RowWiseAddKernel
:
public
OpKernel
{
class
RowWiseAddKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
out
=
context
.
Output
<
Tensor
>
(
0
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
paddle/operators/sgd_op.cc
浏览文件 @
95440685
...
...
@@ -17,9 +17,9 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
class
SGDOp
:
public
OperatorWithKernel
{
class
SGDOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"param"
)
->
dims
()
==
ctx
.
Input
<
Tensor
>
(
"grad"
)
->
dims
(),
"Two input of SGD Op's dimension must be same."
);
...
...
@@ -27,9 +27,9 @@ class SGDOp : public OperatorWithKernel {
}
};
class
SGDOpMaker
:
public
OpProtoAndCheckerMaker
{
class
SGDOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
SGDOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
SGDOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"param"
,
"input parameter"
);
AddInput
(
"grad"
,
"input gradient"
);
...
...
@@ -47,5 +47,7 @@ param_out = param - learning_rate * grad;
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
sgd
,
ops
::
SGDOp
,
ops
::
SGDOpMaker
);
REGISTER_OP_CPU_KERNEL
(
sgd
,
ops
::
SGDOpKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
sgd
,
ops
::
SGDOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/sgd_op.cu
浏览文件 @
95440685
...
...
@@ -15,4 +15,6 @@
#define EIGEN_USE_GPU
#include "paddle/operators/sgd_op.h"
REGISTER_OP_GPU_KERNEL
(
sgd
,
ops
::
SGDOpKernel
<
ops
::
GPUPlace
,
float
>
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
sgd
,
ops
::
SGDOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/sgd_op.h
浏览文件 @
95440685
...
...
@@ -13,15 +13,21 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/type_alias.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
SGDOpKernel
:
public
OpKernel
{
class
SGDOpKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
param
=
ctx
.
Input
<
Tensor
>
(
"param"
);
auto
grad
=
ctx
.
Input
<
Tensor
>
(
"grad"
);
auto
param_out
=
ctx
.
Output
<
Tensor
>
(
0
);
...
...
paddle/operators/sigmoid_op.cc
浏览文件 @
95440685
...
...
@@ -13,19 +13,21 @@
limitations under the License. */
#include "paddle/operators/sigmoid_op.h"
namespace
paddle
{
namespace
operators
{
class
SigmoidOp
:
public
OperatorWithKernel
{
class
SigmoidOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
"Y"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
class
SigmoidOpMaker
:
public
OpProtoAndCheckerMaker
{
class
SigmoidOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
SigmoidOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
SigmoidOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"sigmoid input"
);
AddOutput
(
"Y"
,
"sigmoid output"
);
...
...
@@ -33,9 +35,9 @@ class SigmoidOpMaker : public OpProtoAndCheckerMaker {
}
};
class
SigmoidOpGrad
:
public
OperatorWithKernel
{
class
SigmoidOpGrad
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
}
};
...
...
@@ -43,9 +45,11 @@ class SigmoidOpGrad : public OperatorWithKernel {
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
sigmoid
,
ops
::
SigmoidOp
,
ops
::
SigmoidOpMaker
);
REGISTER_GRADIENT_OP
(
sigmoid
,
sigmoid_grad
,
ops
::
SigmoidOpGrad
);
REGISTER_OP_CPU_KERNEL
(
sigmoid
,
ops
::
SigmoidKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
sigmoid_grad
,
ops
::
SigmoidGradKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
sigmoid
,
ops
::
SigmoidKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
sigmoid_grad
,
ops
::
SigmoidGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/sigmoid_op.cu
浏览文件 @
95440685
...
...
@@ -15,6 +15,9 @@
#define EIGEN_USE_GPU
#include "paddle/operators/sigmoid_op.h"
REGISTER_OP_GPU_KERNEL
(
sigmoid
,
ops
::
SigmoidKernel
<
ops
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
sigmoid_grad
,
ops
::
SigmoidGradKernel
<
ops
::
GPUPlace
,
float
>
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
sigmoid
,
ops
::
SigmoidKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
sigmoid_grad
,
ops
::
SigmoidGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/sigmoid_op.h
浏览文件 @
95440685
...
...
@@ -13,16 +13,21 @@
limitations under the License. */
#pragma once
#include "paddle/
operators/type_alias
.h"
#include "paddle/framework/eigen.h"
#include "paddle/
framework/op_registry
.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
SigmoidKernel
:
public
OpKernel
{
class
SigmoidKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
input
=
context
.
Input
<
Tensor
>
(
0
);
auto
output
=
context
.
Output
<
Tensor
>
(
0
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
@@ -37,9 +42,9 @@ class SigmoidKernel : public OpKernel {
};
template
<
typename
Place
,
typename
T
>
class
SigmoidGradKernel
:
public
OpKernel
{
class
SigmoidGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
Y_t
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
dY_t
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
dX_t
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
...
...
paddle/operators/softmax_op.cc
浏览文件 @
95440685
...
...
@@ -17,18 +17,19 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
class
SoftmaxOp
:
public
OperatorWithKernel
{
class
SoftmaxOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
()
==
2UL
,
"The input of softmax op must be matrix"
);
ctx
.
Output
<
Tensor
>
(
"Y"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
class
SoftmaxOpMaker
:
public
OpProtoAndCheckerMaker
{
class
SoftmaxOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
SoftmaxOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
SoftmaxOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"input of softmax"
);
AddOutput
(
"Y"
,
"output of softmax"
);
...
...
@@ -36,12 +37,12 @@ class SoftmaxOpMaker : public OpProtoAndCheckerMaker {
}
};
class
SoftmaxOpGrad
:
public
OperatorWithKernel
{
class
SoftmaxOpGrad
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
InputVar
(
"Y"
)
!=
nullptr
,
"Input(Y) should not be null"
);
PADDLE_ENFORCE
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
))
!=
nullptr
,
"Input(Y@GRAD) should not be null"
);
PADDLE_ENFORCE
_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
))
,
"Input(Y@GRAD) should not be null"
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
()
==
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
))
->
dims
(),
"the shape of Input(0) and Input(1) should be the same"
);
...
...
@@ -53,8 +54,11 @@ class SoftmaxOpGrad : public OperatorWithKernel {
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
softmax
,
ops
::
SoftmaxOp
,
ops
::
SoftmaxOpMaker
);
REGISTER_OP_CPU_KERNEL
(
softmax
,
ops
::
SoftmaxKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
softmax
,
ops
::
SoftmaxKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
softmax
,
softmax_grad
,
ops
::
SoftmaxOpGrad
);
REGISTER_OP_CPU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/softmax_op.cu
浏览文件 @
95440685
/* Copyright (c) 2016 PaddlePaddle Authors
.
All Rights Reserve.
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -13,9 +13,11 @@
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/framework/op_registry.h"
#include "paddle/operators/softmax_op.h"
REGISTER_OP_GPU_KERNEL
(
softmax
,
ops
::
SoftmaxKernel
<
ops
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradKernel
<
ops
::
GPUPlace
,
float
>
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
softmax
,
ops
::
SoftmaxKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/softmax_op.h
浏览文件 @
95440685
...
...
@@ -13,19 +13,21 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/ddim.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/type_alias.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
SoftmaxKernel
:
public
OpKernel
{
class
SoftmaxKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
output
=
context
.
Output
<
Tensor
>
(
"Y"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
@@ -62,9 +64,9 @@ class SoftmaxKernel : public OpKernel {
};
template
<
typename
Place
,
typename
T
>
class
SoftmaxGradKernel
:
public
OpKernel
{
class
SoftmaxGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
std
::
shared_ptr
<
Tensor
>
scale_
=
std
::
make_shared
<
Tensor
>
();
auto
Y
=
context
.
Input
<
Tensor
>
(
"Y"
);
...
...
paddle/operators/uniform_random_op.cc
0 → 100644
浏览文件 @
95440685
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <random>
#include <type_traits>
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
namespace
paddle
{
namespace
operators
{
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template
<
typename
T
>
class
CPUUniformRandomKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
0
);
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
op_
.
GetAttr
<
int
>
(
"seed"
));
std
::
minstd_rand
engine
;
if
(
seed
==
0
)
{
seed
=
std
::
random_device
()();
}
engine
.
seed
(
seed
);
std
::
uniform_real_distribution
<
T
>
dist
(
static_cast
<
T
>
(
context
.
op_
.
GetAttr
<
float
>
(
"min"
)),
static_cast
<
T
>
(
context
.
op_
.
GetAttr
<
float
>
(
"max"
)));
for
(
ssize_t
i
=
0
;
i
<
framework
::
product
(
tensor
->
dims
());
++
i
)
{
data
[
i
]
=
dist
(
engine
);
}
}
};
class
UniformRandomOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
GetAttr
<
float
>
(
"min"
)
<
GetAttr
<
float
>
(
"max"
),
"uniform_random's min must less then max"
);
auto
*
tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
0
);
auto
dims
=
GetAttr
<
std
::
vector
<
int
>>
(
"dims"
);
tensor
->
Resize
(
framework
::
make_ddim
(
dims
));
}
};
class
UniformRandomOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
UniformRandomOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddOutput
(
"Out"
,
"The output tensor of uniform random op"
);
AddComment
(
R"DOC(Uniform random operator.
Used to initialize tensor with uniform random generator.
)DOC"
);
AddAttr
<
std
::
vector
<
int
>>
(
"dims"
,
"the dimension of random tensor"
);
AddAttr
<
float
>
(
"min"
,
"Minimum value of uniform random"
).
SetDefault
(
-
1.0
f
);
AddAttr
<
float
>
(
"max"
,
"Maximun value of uniform random"
).
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
"Random seed of uniform random. "
"0 means generate a seed by system"
)
.
SetDefault
(
0
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP
(
uniform_random
,
paddle
::
operators
::
UniformRandomOp
,
paddle
::
operators
::
UniformRandomOpMaker
);
REGISTER_OP_CPU_KERNEL
(
uniform_random
,
paddle
::
operators
::
CPUUniformRandomKernel
<
float
>
);
paddle/operators/
type_alias.h
→
paddle/operators/
uniform_random_op.cu
浏览文件 @
95440685
...
...
@@ -12,44 +12,59 @@
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/framework/op_registry.h"
#include "paddle/
operators/net_op
.h"
#include "paddle/
framework/operator
.h"
namespace
paddle
{
namespace
operators
{
using
OpKernel
=
framework
::
OpKernel
;
using
OperatorBase
=
framework
::
OperatorBase
;
using
InferShapeContext
=
framework
::
InferShapeContext
;
using
ExecutionContext
=
framework
::
ExecutionContext
;
using
Variable
=
framework
::
Variable
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenScalar
=
framework
::
EigenScalar
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
using
Tensor
=
framework
::
Tensor
;
using
Scope
=
framework
::
Scope
;
using
OperatorWithKernel
=
framework
::
OperatorWithKernel
;
using
OperatorBase
=
framework
::
OperatorBase
;
using
OpProtoAndCheckerMaker
=
framework
::
OpProtoAndCheckerMaker
;
using
OpProto
=
framework
::
OpProto
;
using
OpAttrChecker
=
framework
::
OpAttrChecker
;
using
CPUPlace
=
platform
::
CPUPlace
;
using
GPUPlace
=
platform
::
GPUPlace
;
using
OpRegistry
=
framework
::
OpRegistry
;
template
<
typename
T
>
struct
UniformGenerator
{
T
min_
,
max_
;
unsigned
int
seed_
;
__host__
__device__
UniformGenerator
(
T
min
,
T
max
,
int
seed
)
:
min_
(
min
),
max_
(
max
),
seed_
(
seed
)
{}
__host__
__device__
T
operator
()(
const
unsigned
int
n
)
const
{
thrust
::
minstd_rand
rng
;
rng
.
seed
(
seed_
);
thrust
::
uniform_real_distribution
<
T
>
dist
(
min_
,
max_
);
rng
.
discard
(
n
);
return
dist
(
rng
);
}
};
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template
<
typename
T
>
class
GPUUniformRandomKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
0
);
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
op_
.
GetAttr
<
int
>
(
"seed"
));
if
(
seed
==
0
)
{
seed
=
std
::
random_device
()();
}
T
min
=
static_cast
<
T
>
(
context
.
op_
.
GetAttr
<
float
>
(
"min"
));
T
max
=
static_cast
<
T
>
(
context
.
op_
.
GetAttr
<
float
>
(
"max"
));
thrust
::
counting_iterator
<
unsigned
int
>
index_sequence_begin
(
0
);
ssize_t
N
=
framework
::
product
(
tensor
->
dims
());
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
N
,
thrust
::
device_ptr
<
T
>
(
data
),
UniformGenerator
<
T
>
(
min
,
max
,
seed
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
uniform_random
,
paddle
::
operators
::
GPUUniformRandomKernel
<
float
>
);
paddle/parameter/Argument.cpp
浏览文件 @
95440685
...
...
@@ -666,4 +666,24 @@ void Argument::subArgFrom(const Argument& input,
}
}
void
Argument
::
reorganizeSeqInfo
(
const
ICpuGpuVectorPtr
seqStartPos
,
const
ICpuGpuVectorPtr
subSeqStartPos
,
std
::
vector
<
std
::
vector
<
int
>>&
reorganizedSeqInfo
)
{
int
*
seqStarts
=
seqStartPos
->
getMutableData
(
false
);
int
*
subSeqStarts
=
subSeqStartPos
->
getMutableData
(
false
);
int
seqNum
=
seqStartPos
->
getSize
()
-
1
;
reorganizedSeqInfo
.
resize
(
seqNum
,
std
::
vector
<
int
>
());
int
seqIdx
=
0
;
for
(
size_t
i
=
0
;
i
<
subSeqStartPos
->
getSize
();
++
i
)
{
reorganizedSeqInfo
[
seqIdx
].
push_back
(
subSeqStarts
[
i
]);
if
(
subSeqStarts
[
i
]
==
seqStarts
[
seqIdx
+
1
])
{
seqIdx
++
;
if
(
seqIdx
==
seqNum
)
return
;
reorganizedSeqInfo
[
seqIdx
].
push_back
(
subSeqStarts
[
i
]);
}
}
}
}
// namespace paddle
paddle/parameter/Argument.h
浏览文件 @
95440685
...
...
@@ -317,6 +317,30 @@ struct Argument {
*/
void
printValueString
(
std
::
ostream
&
stream
,
const
std
::
string
&
prefix
=
""
)
const
;
/**
* @brief reorganizeSeqInfo will reorganize sequenceStartPositions and
* subSequenceStartPositions into a 2 dimensional arrary: reorganizedSeqInfo.
*
* @param seqStartPos: sequenceStartPositions of an Argument.
* @param subSeqStartPos: subSequenceStartPositions of an Argument.
* @param the reorganized sequence start position information.
*
* Examples:
* seqStartPos: [0, 4, 15, 20, 28]
* subSeqStartPos: [0, 3, 4, 5, 7, 10, 15, 20, 22, 23, 25, 28]
* reorganizedSeqInfo:
* [
* [0,3,4],
* [4,5,7,10,15],
* [15,20],
* [20,22,23,25,28]
* ]
*/
static
void
reorganizeSeqInfo
(
const
ICpuGpuVectorPtr
seqStartPos
,
const
ICpuGpuVectorPtr
subSeqStartPos
,
std
::
vector
<
std
::
vector
<
int
>>&
reorganizedSeqInfo
);
};
}
// namespace paddle
paddle/platform/enforce.h
浏览文件 @
95440685
...
...
@@ -187,13 +187,9 @@ inline void throw_on_error(T e) {
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, <, >=, __VA_ARGS__)
#define PADDLE_ENFORCE_LE(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, <=, >, __VA_ARGS__)
// if two values have different data types, choose a compatible type for them.
template
<
typename
T1
,
typename
T2
>
struct
CompatibleType
{
static
const
bool
t1_to_t2
=
std
::
is_convertible
<
T1
,
T2
>::
value
;
typedef
typename
std
::
conditional
<
t1_to_t2
,
T2
,
T1
>::
type
type
;
};
#define PADDLE_ENFORCE_NOT_NULL(__VAL, ...) \
PADDLE_ENFORCE(nullptr != (__VAL), #__VAL " should not be null\n%s", \
paddle::string::Sprintf("" __VA_ARGS__));
template
<
typename
T
>
inline
std
::
string
enforce_to_string
(
const
T
&
val
)
{
...
...
@@ -211,17 +207,12 @@ inline std::string enforce_to_string(const char* const& val) {
}
#define __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, __CMP, __INV_CMP, ...) \
PADDLE_ENFORCE(__COMPATIBLE_TYPE(__VAL0, __VAL1, __VAL0) \
__CMP __COMPATIBLE_TYPE(__VAL0, __VAL1, __VAL1), \
PADDLE_ENFORCE(__VAL0 __CMP __VAL1, \
"enforce %s " #__CMP " %s failed, %s " #__INV_CMP " %s\n%s", \
#__VAL0, #__VAL1, \
paddle::platform::enforce_to_string(__VAL0), \
paddle::platform::enforce_to_string(__VAL1), \
paddle::string::Sprintf("" __VA_ARGS__));
#define __COMPATIBLE_TYPE(__VAL0, __VAL1, __VAL) \
typename paddle::platform::CompatibleType<decltype(__VAL0), \
decltype(__VAL1)>::type(__VAL)
}
// namespace platform
}
// namespace paddle
paddle/platform/enforce_test.cc
浏览文件 @
95440685
...
...
@@ -9,8 +9,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/platform/enforce.h"
#include <memory>
#include "gtest/gtest.h"
#include "paddle/platform/enforce.h"
TEST
(
ENFORCE
,
OK
)
{
PADDLE_ENFORCE
(
true
,
"Enforce is ok %d now %f"
,
123
,
0.345
);
...
...
@@ -196,3 +198,27 @@ TEST(ENFORCE_LT, FAIL) {
ASSERT_TRUE
(
in_catch
);
}
TEST
(
ENFORCE_NOT_NULL
,
OK
)
{
int
*
a
=
new
int
;
PADDLE_ENFORCE_NOT_NULL
(
a
);
delete
a
;
}
TEST
(
ENFORCE_NOT_NULL
,
FAIL
)
{
bool
in_catch
=
false
;
int
*
a
{
nullptr
};
try
{
PADDLE_ENFORCE_NOT_NULL
(
a
);
}
catch
(
paddle
::
platform
::
EnforceNotMet
error
)
{
in_catch
=
true
;
const
std
::
string
msg
=
"a should not be null"
;
const
char
*
what
=
error
.
what
();
for
(
size_t
i
=
0
;
i
<
msg
.
length
();
++
i
)
{
ASSERT_EQ
(
what
[
i
],
msg
[
i
]);
}
}
ASSERT_TRUE
(
in_catch
);
}
paddle/pybind/CMakeLists.txt
已删除
100644 → 0
浏览文件 @
d97a2b42
cc_library
(
paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
fc_op
sgd_op
add_op
mean_op
cross_entropy_op
recurrent_op
fill_zeros_like_op
)
paddle/scripts/docker/build.sh
浏览文件 @
95440685
...
...
@@ -33,6 +33,9 @@ Configuring cmake in /paddle/build ...
-DWITH_AVX=
${
WITH_AVX
:-
OFF
}
-DWITH_GOLANG=
${
WITH_GOLANG
:-
OFF
}
-DWITH_SWIG_PY=ON
-DWITH_C_API=
${
WITH_C_API
:-
OFF
}
-DWITH_PYTHON=
${
WITH_PYTHON
:-
ON
}
-DWITH_SWIG_PY=
${
WITH_SWIG_PY
:-
ON
}
-DCUDNN_ROOT=/usr/
-DWITH_STYLE_CHECK=
${
WITH_STYLE_CHECK
:-
OFF
}
-DWITH_TESTING=
${
WITH_TESTING
:-
OFF
}
...
...
@@ -49,7 +52,9 @@ cmake .. \
-DWITH_GPU
=
${
WITH_GPU
:-
OFF
}
\
-DWITH_AVX
=
${
WITH_AVX
:-
OFF
}
\
-DWITH_GOLANG
=
${
WITH_GOLANG
:-
OFF
}
\
-DWITH_SWIG_PY
=
ON
\
-DWITH_SWIG_PY
=
${
WITH_SWIG_PY
:-
ON
}
\
-DWITH_C_API
=
${
WITH_C_API
:-
OFF
}
\
-DWITH_PYTHON
=
${
WITH_PYTHON
:-
ON
}
\
-DCUDNN_ROOT
=
/usr/
\
-DWITH_STYLE_CHECK
=
${
WITH_STYLE_CHECK
:-
OFF
}
\
-DWITH_TESTING
=
${
WITH_TESTING
:-
OFF
}
\
...
...
paddle/scripts/travis/build_doc.sh
浏览文件 @
95440685
...
...
@@ -5,15 +5,9 @@ set -e
mkdir
-p
$TRAVIS_BUILD_DIR
/build
cd
$TRAVIS_BUILD_DIR
/build
# Compile paddle binaries first
cmake ..
-DCMAKE_BUILD_TYPE
=
Debug
-DWITH_GPU
=
OFF
-DWITH_DOC
=
OFF
-DWITH_MKLDNN
=
OFF
-DWITH_MKLML
=
OFF
-DWITH_GOLANG
=
ON
-DWITH_STYLE_CHECK
=
OFF
mkdir
output
make
-j
`
nproc
`
find ..
-name
'*whl'
| xargs pip
install
# install all wheels.
rm
-rf
*
# Compile Documentation only.
cmake ..
-DCMAKE_BUILD_TYPE
=
Debug
-DWITH_GPU
=
OFF
-DWITH_MKLDNN
=
OFF
-DWITH_MKLML
=
OFF
-DWITH_DOC
=
ON
make
-j
`
nproc
`
gen_proto_py
make
-j
`
nproc
`
paddle_docs paddle_docs_cn
# check websites for broken links
...
...
@@ -35,6 +29,7 @@ TARGET_BRANCH="gh-pages"
SOURCE_BRANCH
=
"master"
# Clone the repo to output directory
mkdir
output
git clone
$REPO
output
cd
output
...
...
proto/CMakeLists.txt
浏览文件 @
95440685
...
...
@@ -17,7 +17,7 @@ foreach(filename ${proto_filenames})
COMMAND
${
PROTOBUF_PROTOC_EXECUTABLE
}
ARGS
"--python_out=
${
PROJ_ROOT
}
/python/paddle/proto"
"-I"
${
CMAKE_CURRENT_SOURCE_DIR
}
${
ABS_FIL
}
DEPENDS
${
ABS_FIL
}
${
external_project_dependencies
}
)
DEPENDS
${
ABS_FIL
}
protoc
)
endforeach
()
add_custom_target
(
gen_proto_py ALL DEPENDS
${
PROTO_GEN_PY
}
)
python/paddle/trainer/config_parser.py
浏览文件 @
95440685
...
...
@@ -2657,6 +2657,31 @@ class SubSequenceLayer(LayerBase):
self
.
create_bias_parameter
(
bias
,
size
)
@
config_layer
(
'sub_nested_seq'
)
class
SubNestedSequenceLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
selected_indices
,
bias
=
False
,
**
xargs
):
if
isinstance
(
inputs
,
list
):
assert
len
(
inputs
)
==
1
,
(
'the first input of sub_nested_seq '
'layer is a single nested sequence.'
)
inputs
=
inputs
[
0
]
if
isinstance
(
selected_indices
,
list
):
assert
len
(
selected_indices
)
==
1
,
(
'the second input of '
'sub_nested_seq layer is a single layer which is a '
'set of selected indices.'
)
selected_indices
=
selected_indices
[
0
]
super
(
SubNestedSequenceLayer
,
self
).
__init__
(
name
,
'sub_nested_seq'
,
0
,
inputs
=
[
inputs
,
selected_indices
],
**
xargs
)
input_layer0
=
self
.
get_input_layer
(
0
)
size
=
input_layer0
.
size
self
.
set_layer_size
(
size
)
@
config_layer
(
'out_prod'
)
class
OuterProdLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
...
...
@@ -3223,6 +3248,16 @@ class CTCLayer(LayerBase):
config_assert
(
len
(
self
.
inputs
)
==
2
,
'CTCLayer must have 2 inputs'
)
@
config_layer
(
'kmax_seq_score'
)
class
KmaxSeqScoreLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
beam_size
,
**
xargs
):
super
(
KmaxSeqScoreLayer
,
self
).
__init__
(
name
,
'kmax_seq_score'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'KmaxSeqScoreLayer has only one input.'
)
self
.
config
.
beam_size
=
beam_size
@
config_layer
(
'warp_ctc'
)
class
WarpCTCLayer
(
LayerBase
):
def
__init__
(
self
,
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
95440685
...
...
@@ -129,8 +129,10 @@ __all__ = [
'prelu_layer'
,
'gated_unit_layer'
,
'crop_layer'
,
'sub_nested_seq_layer'
,
'clip_layer'
,
'slice_projection'
,
'kmax_sequence_score_layer'
,
]
...
...
@@ -224,8 +226,11 @@ class LayerType(object):
PRELU
=
'prelu'
CROP_LAYER
=
'crop'
SUB_NESTED_SEQ
=
'sub_nested_seq'
CLIP_LAYER
=
'clip'
KMAX_SEQ_SCORE
=
'kmax_seq_score'
@
staticmethod
def
is_layer_type
(
type_name
):
"""
...
...
@@ -6088,6 +6093,53 @@ def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
size
=
l
.
config
.
size
)
@
wrap_name_default
()
@
layer_support
()
def
sub_nested_seq_layer
(
input
,
selected_indices
,
name
=
None
):
"""
The sub_nested_seq_layer accepts two inputs: the first one is a nested
sequence; the second one is a set of selceted indices in the nested sequence.
Then sub_nest_seq_layer trims the first nested sequence input according
to the selected indices to form a new output. This layer is useful in
beam training.
The example usage is:
.. code-block:: python
sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
:param input: A nested sequence.
:type input: LayerOutput
:param selected_indices: a set of sequence indices in the nested sequence.
:type input: LayerOutput
:param name: name of this layer.
:type name: basestring
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert
isinstance
(
input
,
LayerOutput
),
(
'The first input of '
'sub_nested_seq_layer must be a Paddle layer.'
)
assert
isinstance
(
selected_indices
,
LayerOutput
),
(
'The second input of '
'sub_nested_seq_layer must be a Paddle layer.'
)
l
=
Layer
(
inputs
=
input
.
name
,
selected_indices
=
selected_indices
.
name
,
name
=
name
,
type
=
LayerType
.
SUB_NESTED_SEQ
)
return
LayerOutput
(
name
=
name
,
layer_type
=
LayerType
.
SUB_NESTED_SEQ
,
parents
=
input
,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"clip"
)
def
clip_layer
(
input
,
min
,
max
,
name
=
None
):
"""
...
...
@@ -6109,7 +6161,8 @@ def clip_layer(input, min, max, name=None):
:type min: double
:param max: The upper threshold for clipping.
:type max: double
:return: LayerOutput
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer
(
name
=
name
,
...
...
@@ -6119,3 +6172,41 @@ def clip_layer(input, min, max, name=None):
max
=
max
)
return
LayerOutput
(
name
,
LayerType
.
CLIP_LAYER
,
parents
=
[
input
],
size
=
input
.
size
)
@
wrap_name_default
()
@
layer_support
()
def
kmax_sequence_score_layer
(
input
,
name
=
None
,
beam_size
=
1
):
"""
This layer accepts one input which are scores over a sequence or a nested
sequence, and returns indices of beam_size sequences with highest scores.
.. code-block:: python
kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)
:param name: The Layer Name.
:type name: basestring
:param input: The input layer. It stores scores over a sequence or a nested
sequence and its size must be 1.
:type input: LayerOutput.
:param beam_size: squence indices with top beam_size scores are returned.
:type beam_size: double
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert
isinstance
(
input
,
LayerOutput
),
(
"kmax_sequence_score_layer "
"accepts only one input."
)
assert
input
.
size
==
1
,
(
"input of kmax_sequence_score_layer is a score"
"over a sequence or a nested sequence, so its width must be 1."
)
Layer
(
name
=
name
,
type
=
LayerType
.
KMAX_SEQ_SCORE
,
inputs
=
[
input
.
name
],
beam_size
=
beam_size
)
return
LayerOutput
(
name
,
LayerType
.
KMAX_SEQ_SCORE
,
parents
=
[
input
],
size
=
input
.
size
)
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
浏览文件 @
95440685
...
...
@@ -7,6 +7,7 @@ test_rnn_group shared_fc shared_lstm shared_gru test_cost_layers_with_weight
test_spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops
test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer
test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_layer
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
)
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_kmax_seq_socre_layer test_seq_select_layers
)
export
whole_configs
=(
test_split_datasource
)
python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr
0 → 100644
浏览文件 @
95440685
type: "nn"
layers {
name: "input"
type: "data"
size: 300
active_type: ""
}
layers {
name: "data"
type: "data"
size: 128
active_type: ""
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 1
active_type: "exponential"
inputs {
input_layer_name: "data"
input_parameter_name: "___fc_layer_0__.w0"
}
bias_parameter_name: "___fc_layer_0__.wbias"
}
layers {
name: "__kmax_sequence_score_layer_0__"
type: "kmax_seq_score"
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
}
beam_size: 5
}
parameters {
name: "___fc_layer_0__.w0"
size: 128
initial_mean: 0.0
initial_std: 0.0883883476483
dims: 128
dims: 1
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___fc_layer_0__.wbias"
size: 1
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 1
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
output_layer_names: "__kmax_sequence_score_layer_0__"
sub_models {
name: "root"
layer_names: "input"
layer_names: "data"
layer_names: "__fc_layer_0__"
layer_names: "__kmax_sequence_score_layer_0__"
input_layer_names: "data"
output_layer_names: "__kmax_sequence_score_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_seq_select_layers.protostr
0 → 100644
浏览文件 @
95440685
type: "nn"
layers {
name: "input_seq"
type: "data"
size: 300
active_type: ""
}
layers {
name: "input"
type: "data"
size: 5
active_type: ""
}
layers {
name: "__sub_nested_seq_layer_0__"
type: "sub_nested_seq"
size: 300
active_type: ""
inputs {
input_layer_name: "input_seq"
}
inputs {
input_layer_name: "input"
}
}
input_layer_names: "input_seq"
output_layer_names: "__sub_nested_seq_layer_0__"
sub_models {
name: "root"
layer_names: "input_seq"
layer_names: "input"
layer_names: "__sub_nested_seq_layer_0__"
input_layer_names: "input_seq"
output_layer_names: "__sub_nested_seq_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py
0 → 100644
浏览文件 @
95440685
#!/usr/bin/env python
#coding=utf-8
from
paddle.trainer_config_helpers
import
*
data
=
data_layer
(
name
=
'input'
,
size
=
300
)
data
=
data_layer
(
name
=
"data"
,
size
=
128
)
scores
=
fc_layer
(
input
=
data
,
size
=
1
,
act
=
ExpActivation
())
kmax_seq_id
=
kmax_sequence_score_layer
(
input
=
scores
,
beam_size
=
5
)
outputs
(
kmax_seq_id
)
python/paddle/trainer_config_helpers/tests/configs/test_seq_select_layers.py
0 → 100644
浏览文件 @
95440685
#!/usr/bin/env python
#coding=utf-8
from
paddle.trainer_config_helpers
import
*
beam_size
=
5
data
=
data_layer
(
name
=
'input_seq'
,
size
=
300
)
selected_ids
=
data_layer
(
name
=
'input'
,
size
=
beam_size
)
sub_nest_seq
=
sub_nested_seq_layer
(
input
=
data
,
selected_indices
=
selected_ids
)
outputs
(
sub_nest_seq
)
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
95440685
...
...
@@ -13,6 +13,7 @@ py_test(test_protobuf SRCS test_protobuf.py)
py_test
(
test_add_two_op SRCS test_add_two_op.py
)
py_test
(
test_sigmoid_op SRCS test_sigmoid_op.py
)
py_test
(
test_softmax_op SRCS test_softmax_op.py
)
py_test
(
test_cross_entropy_op SRCS test_cross_entropy_op.py
)
py_test
(
test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py
)
py_test
(
gradient_checker SRCS gradient_checker.py
)
...
...
@@ -21,3 +22,4 @@ py_test(test_rowwise_add_op SRCS test_rowwise_add_op.py)
py_test
(
test_default_scope_funcs SRCS test_default_scope_funcs.py
)
py_test
(
test_operator SRCS test_operator.py
)
py_test
(
test_uniform_random_op SRCS test_uniform_random_op.py
)
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
95440685
import
unittest
import
numpy
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
import
numpy
import
unittest
__all__
=
[
'get_numeric_gradient'
]
def
create_op
(
op_type
):
kwargs
=
dict
()
for
in_name
in
Operator
.
get_op_input_names
(
op_type
):
kwargs
[
in_name
]
=
in_name
for
out_name
in
Operator
.
get_op_output_names
(
op_type
):
kwargs
[
out_name
]
=
out_name
return
Operator
(
op_type
,
**
kwargs
)
def
grad_var_name
(
var_name
):
return
var_name
+
"@GRAD"
def
get_numeric_gradient
(
op
,
input_values
,
output_name
,
input_to_check
,
delta
=
1e-2
,
delta
=
0.005
,
local_scope
=
None
):
"""
Get Numeric Gradient for an operator's input.
...
...
@@ -76,6 +91,113 @@ def get_numeric_gradient(op,
return
gradient_flat
.
reshape
(
tensor_to_check
.
get_dims
())
class
GradientChecker
(
unittest
.
TestCase
):
def
__is_close
(
self
,
numeric_grads
,
scope
,
max_relative_error
):
for
name
in
numeric_grads
:
op_grad
=
numpy
.
array
(
scope
.
find_var
(
grad_var_name
(
name
)).
get_tensor
())
is_close
=
numpy
.
allclose
(
numeric_grads
[
name
],
op_grad
,
rtol
=
max_relative_error
,
atol
=
100
)
if
not
is_close
:
return
False
return
True
def
check_grad
(
self
,
forward_op
,
input_vars
,
inputs_to_check
,
output_name
,
no_grad_set
=
None
,
only_cpu
=
False
,
max_relative_error
=
0.005
):
"""
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: output name that used to
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
:return:
"""
if
no_grad_set
is
None
:
no_grad_set
=
set
()
tmp_outs
=
forward_op
.
temp_outputs
()
no_tmp_out
=
filter
(
lambda
name
:
name
not
in
tmp_outs
,
forward_op
.
outputs
())
if
len
(
no_tmp_out
)
!=
1
:
raise
ValueError
(
"non temp out_names should be 1"
)
in_names
=
forward_op
.
inputs
()
for
no_grad
in
no_grad_set
:
if
no_grad
not
in
in_names
:
raise
ValueError
(
"no_grad should be in in_names"
)
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
no_grad_set
)
places
=
[
core
.
CPUPlace
()]
if
not
only_cpu
and
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
numeric_grad
=
dict
()
# get numeric gradient
for
check_name
in
inputs_to_check
:
numeric_grad
[
check_name
]
=
\
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
check_name
)
# get operator gradient according to different device
for
place
in
places
:
scope
=
core
.
Scope
()
ctx
=
core
.
DeviceContext
.
create
(
place
)
# create input var and set value
for
name
,
value
in
input_vars
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
" not in op.inputs_"
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# create output var
for
out_name
in
forward_op
.
outputs
():
scope
.
new_var
(
out_name
).
get_tensor
()
# infer the shape of output var and compute/set value of output var
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# create output grad var
# set shape as the output var
# set value of this grad to ones
for
name
in
forward_op
.
outputs
():
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
1.0
*
numpy
.
ones
(
out_tensor
.
shape
())
grad_tensor
.
set
(
data
,
place
)
# create input grad var
for
name
in
backward_op
.
outputs
():
scope
.
new_var
(
name
).
get_tensor
()
# infer the shape of input gradient var and compute/set it's value
# with backward op
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
if
isinstance
(
place
,
core
.
CPUPlace
):
msg
=
"CPU kernel gradient is not close to numeric gradient"
else
:
if
isinstance
(
place
,
core
.
GPUPlace
):
msg
=
"GPU kernel gradient is not close to numeric gradient"
else
:
raise
ValueError
(
"unknown place "
+
type
(
place
))
self
.
assertTrue
(
self
.
__is_close
(
numeric_grad
,
scope
,
max_relative_error
),
msg
)
if
__name__
==
'__main__'
:
class
GetNumericGradientTest
(
unittest
.
TestCase
):
...
...
@@ -87,4 +209,28 @@ if __name__ == '__main__':
arr
=
get_numeric_gradient
(
add_op
,
{
'X'
:
x
,
"Y"
:
y
},
'Z'
,
'X'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-2
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
numpy
.
max
(
x
)
exps
=
numpy
.
exp
(
shiftx
)
return
exps
/
numpy
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
numpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
'Y'
,
'X'
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
unittest
.
main
()
python/paddle/v2/framework/tests/op_test_util.py
浏览文件 @
95440685
import
paddle.v2.framework.core
as
core
import
unittest
import
numpy
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
...
...
@@ -24,7 +23,7 @@ class OpTestMeta(type):
scope
=
core
.
Scope
()
kwargs
=
dict
()
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compile_gpu
()
and
core
.
Operator
.
support_gpu
(
self
.
type
)
:
if
core
.
is_compile_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
for
place
in
places
:
...
...
@@ -53,6 +52,8 @@ class OpTestMeta(type):
kwargs
[
attr_name
]
=
self
.
attrs
[
attr_name
]
op
=
Operator
(
self
.
type
,
**
kwargs
)
if
isinstance
(
place
,
core
.
GPUPlace
)
and
not
op
.
support_gpu
():
return
op
.
infer_shape
(
scope
)
...
...
python/paddle/v2/framework/tests/test_cross_entropy_op.py
浏览文件 @
95440685
import
unittest
import
numpy
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
class
Test
SGD
(
unittest
.
TestCase
):
class
Test
CrossEntropy
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
...
...
@@ -20,7 +21,18 @@ class TestSGD(unittest.TestCase):
self
.
outputs
=
{
'Y'
:
numpy
.
array
(
Y
).
astype
(
"float32"
)}
# TODO(superjom) add gradient check
class
CrossEntropyGradOpTest
(
GradientChecker
):
def
test_softmax_grad
(
self
):
op
=
create_op
(
"onehot_cross_entropy"
)
batch_size
=
100
class_num
=
10
inputs
=
{
"X"
:
numpy
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
),
"label"
:
(
class_num
/
2
)
*
numpy
.
ones
(
batch_size
).
astype
(
"int32"
)
}
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Y"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_softmax_op.py
浏览文件 @
95440685
import
unittest
import
numpy
as
np
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
...
...
@@ -25,62 +24,11 @@ class TestSoftmaxOp(unittest.TestCase):
}
class
TestSoftmaxGradOp
(
unittest
.
TestCase
):
def
test_softmax_grad
(
self
):
op
=
Operator
(
'softmax'
,
X
=
"X"
,
Y
=
"Y"
)
backward_op
=
core
.
Operator
.
backward
(
op
,
set
())
self
.
assertEqual
(
backward_op
.
type
(),
"softmax_grad"
)
expected
=
'''Op(softmax_grad), inputs:(X, Y, Y@GRAD), outputs:(X@GRAD).'''
self
.
assertEqual
(
expected
,
str
(
backward_op
))
batch_size
=
3
class_num
=
5
# Initialize X and add 1e-2 for numerical stability
Y
=
np
.
random
.
rand
(
batch_size
,
class_num
).
astype
(
np
.
float32
)
Y
=
Y
+
1e-2
dY
=
np
.
random
.
rand
(
batch_size
,
class_num
).
astype
(
np
.
float32
)
# Reference implementation of cross entropy with soft labels
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
batch_size
):
d
=
np
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
expected
=
label_softmax_grad
(
Y
,
dY
)
scope
=
core
.
Scope
()
places
=
[]
places
.
append
(
core
.
CPUPlace
())
if
core
.
is_compile_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
for
place
in
places
:
y
=
scope
.
new_var
(
"Y"
)
y_tensor
=
y
.
get_tensor
()
y_tensor
.
set_dims
([
batch_size
,
class_num
])
y_tensor
.
alloc_float
(
place
)
y_tensor
.
set
(
Y
,
place
)
dy
=
scope
.
new_var
(
"Y@GRAD"
)
dy_tensor
=
dy
.
get_tensor
()
dy_tensor
.
set_dims
([
batch_size
,
class_num
])
dy_tensor
.
alloc_float
(
place
)
dy_tensor
.
set
(
dY
,
place
)
x
=
scope
.
new_var
(
"X"
)
dx
=
scope
.
new_var
(
"X@GRAD"
)
tensor
=
scope
.
find_var
(
"X@GRAD"
).
get_tensor
()
backward_op
.
infer_shape
(
scope
)
self
.
assertEqual
([
batch_size
,
class_num
],
tensor
.
shape
())
ctx
=
core
.
DeviceContext
.
create
(
place
)
backward_op
.
run
(
scope
,
ctx
)
actual
=
np
.
array
(
tensor
)
np
.
testing
.
assert_almost_equal
(
actual
,
expected
,
decimal
=
3
)
class
SoftmaxGradOpTest
(
GradientChecker
):
def
test_softmax
(
self
):
op
=
create_op
(
"softmax"
)
inputs
=
{
"X"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Y"
)
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/framework/tests/test_uniform_random_op.py
0 → 100644
浏览文件 @
95440685
import
unittest
from
paddle.v2.framework.op
import
Operator
import
paddle.v2.framework.core
as
core
import
numpy
class
UniformRandomTest
(
unittest
.
TestCase
):
def
test_uniform_random_cpu
(
self
):
self
.
uniform_random_test
(
place
=
core
.
CPUPlace
())
def
test_uniform_random_gpu
(
self
):
if
core
.
is_compile_gpu
():
self
.
uniform_random_test
(
place
=
core
.
GPUPlace
(
0
))
def
uniform_random_test
(
self
,
place
):
scope
=
core
.
Scope
()
scope
.
new_var
(
"X"
).
get_tensor
()
op
=
Operator
(
"uniform_random"
,
Out
=
"X"
,
dims
=
[
1000
,
784
],
min
=-
5.0
,
max
=
10.0
,
seed
=
10
)
op
.
infer_shape
(
scope
)
ctx
=
core
.
DeviceContext
.
create
(
place
)
op
.
run
(
scope
,
ctx
)
tensor
=
numpy
.
array
(
scope
.
find_var
(
"X"
).
get_tensor
())
self
.
assertAlmostEqual
(
tensor
.
mean
(),
2.5
,
delta
=
0.1
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录