提交 94e442d4 编写于 作者: T tensor-tang

add cpp file of MKLDNNLayer

上级 9e38dafa
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNLayer.h"
using namespace mkldnn; // NOLINT
typedef memory::format format;
namespace paddle {
bool MKLDNNLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn."
<< "Please set WITH_MKLDNN=ON "
<< "and set use_mkldnn=True";
CHECK(!useGpu_) << "Do not support GPU yet";
// set device id before Layer::init
setDevice(MKLDNN_DEVICE);
// change param device to MKLDNN device
setParamsDevice(MKLDNN_DEVICE, parameterMap);
if (!Layer::init(layerMap, parameterMap)) {
return false;
}
setOutputMap();
checkCPUOutputsNumber();
stream_.reset(new MKLDNNStream());
engine_ = CPUEngine::Instance().getEngine();
return true;
}
void MKLDNNLayer::forward(PassType passType) {
passType_ = passType;
{
REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
CHECK(!inputLayers_.empty());
copySeqInfoToOutputs();
size_t elemenCnt = inputLayers_[0]->getOutputValue()->getElementCnt();
if (inputElemenCnt_ != elemenCnt) {
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
// reset when input total sizes changed, not only the batchsize
inputElemenCnt_ = elemenCnt;
pipelineFwd_.clear();
reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
// all cpu device output grad or value share output's
shareCPUDevice();
resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
// MKLDNNLayer output value should be MKLDNNMatrix
// so external output value is necessary.
// then external input value is not necessary,
// since input may be mkldnn internal buffer.
CHECK(extOutVal_) << "external output value is necessary";
output_.value = std::dynamic_pointer_cast<Matrix>(extOutVal_);
CHECK(inVal_ && outVal_) << "internal memories are necessary";
if (cvtInVal_) {
pipelineFwd_.insert(pipelineFwd_.begin(), *cvtInVal_);
}
if (cvtOutVal_) {
pipelineFwd_.push_back(*cvtOutVal_);
}
convertWeightsFromPaddle();
printSizeInfo();
printValueFormat();
needResetBwd_ = true;
}
if (inputLayers_[0]->getType() == "data") {
// Update input value data when input layer is "data" type,
// since the input value data address might be changed.
CHECK(extInVal_);
extInVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}
if (!outputOnlyMKLDNN_) {
clearGrads();
}
stream_->submit(pipelineFwd_);
}
{
REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
forwardActivation();
}
}
void MKLDNNLayer::backward(const UpdateCallback& callback) {
if (needResetBwd_) {
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
pipelineBwd_.clear();
pipelineMergeGrad_.clear();
mergeGrad_ = nullptr;
resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
// external output grad is not necessary
// since output may be mkldnn internal buffer or merge them directly.
CHECK(outGrad_) << "internal output grad is necessary";
if (cvtOutGrad_) {
pipelineBwd_.insert(pipelineBwd_.begin(), *cvtOutGrad_);
}
if (cvtInGrad_) {
pipelineBwd_.push_back(*cvtInGrad_);
}
printGradFormat();
needResetBwd_ = false;
}
// merge grad must before backward activation
if (mergeGrad_) {
REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str());
stream_->submit(pipelineMergeGrad_);
}
{
REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
backwardActivation();
}
{
REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
stream_->submit(pipelineBwd_);
}
{
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
updateWeights(callback);
}
}
void MKLDNNLayer::reshapeInput(int& batchsize, int& height, int& width) {
const Argument& input = inputLayers_[0]->getOutput();
batchsize = input.getBatchSize();
int h = input.getFrameHeight();
int w = input.getFrameWidth();
if (h != 0) {
height = h;
}
if (w != 0) {
width = w;
}
}
void MKLDNNLayer::reshapeOutput(size_t height, size_t width) {
output_.setFrameHeight(height);
output_.setFrameWidth(width);
for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
outputOtherDevice_[i].setFrameHeight(height);
outputOtherDevice_[i].setFrameWidth(width);
}
}
void MKLDNNLayer::resetWithMatrix(MKLDNNMatrixPtr& dnn,
const MatrixPtr& mat,
memory::primitive_desc pd) {
dnn = nullptr;
if (mat == nullptr) {
return;
}
dnn = MKLDNNMatrix::create(pd, mat);
}
void MKLDNNLayer::resetInValue(
MKLDNNMatrixPtr& in, const std::shared_ptr<memory::primitive_desc>& intPD) {
cvtInVal_ = nullptr;
extInVal_ = nullptr;
in = nullptr;
CHECK_GT(bs_ * ic_ * ih_ * iw_, 0);
auto extPD = MKLDNNMatrix::createPrimitiveDesc(
{bs_, ic_, ih_, iw_}, format::nchw, engine_);
const MatrixPtr& inMat = inputLayers_[0]->getOutputValue();
in = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
CHECK_EQ(inputIsOnlyMKLDNN(), in != nullptr);
if (in == nullptr || in->getFormat() == format::nc) {
in = MKLDNNMatrix::create(extPD, inMat);
}
extInVal_ = isPaddleFormat(in->getFormat()) ? in : nullptr;
if (in->getFormat() == format::nc) {
CHECK(ih_ == 1 && iw_ == 1);
}
if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) {
return;
}
// need create reorder
in = MKLDNNMatrix::create(*intPD);
extInVal_ = extInVal_ ? extInVal_ : MKLDNNMatrix::create(extPD, inMat);
cvtInVal_ = MKLDNNMatrix::createReorder(extInVal_, in);
CHECK(cvtInVal_) << "should not be emptry";
}
void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out,
memory::primitive_desc intPD) {
cvtOutVal_ = nullptr;
out = MKLDNNMatrix::create(intPD, output_.value);
extOutVal_ = out;
if (outputIsOnlyMKLDNN() || isPaddleFormat(extOutVal_->getFormat())) {
return;
}
// need create reorder
CHECK_GT(bs_ * oc_ * oh_ * ow_, 0);
extOutVal_ = MKLDNNMatrix::create(
memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_, output_.value);
out = MKLDNNMatrix::create(intPD);
cvtOutVal_ = MKLDNNMatrix::createReorder(out, extOutVal_);
CHECK(cvtOutVal_) << "should not be empty";
}
void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in,
memory::primitive_desc intPD) {
cvtInGrad_ = nullptr;
extInGrad_ = nullptr;
in = nullptr;
LayerPtr& input = inputLayers_[0];
if (input->getOutputGrad() == nullptr) {
// no need input grad
return;
}
CHECK(inputIsOnlyMKLDNN() || input->getOutputMapSize() <= 1)
<< "only support input is MKLDNN layer or only have one output layer";
// when input is a mkldnn branch node,
// this layer will save input grad to a internal buffer,
// and the mkldnn input layer will merge them to actual prev->output_.grad
const MatrixPtr& inMat =
input->getOutputMapSize() <= 1 ? input->getOutputGrad() : nullptr;
in = MKLDNNMatrix::create(intPD, inMat);
Argument& arg = input->getOutput(this->getName());
arg.grad = std::dynamic_pointer_cast<Matrix>(in);
CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD)
<< "should have internal input value and primitive desc must equal";
if (inputIsOnlyMKLDNN()) {
return;
}
extInGrad_ = in;
if (isPaddleFormat(extInGrad_->getFormat())) {
return;
}
// need create reorder
CHECK(extInVal_ != nullptr && isPaddleFormat(extInVal_->getFormat()))
<< "should have external input value and the format must be nchw(nc)";
extInGrad_ = MKLDNNMatrix::create(extInVal_->getPrimitiveDesc(), inMat);
CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD)
<< "should have internal input value and primitive desc must equal";
in = MKLDNNMatrix::create(intPD);
cvtInGrad_ = MKLDNNMatrix::createReorder(in, extInGrad_);
CHECK(cvtInGrad_);
}
void MKLDNNLayer::resetOutGrad(MKLDNNMatrixPtr& out,
memory::primitive_desc intPD) {
cvtOutGrad_ = nullptr;
extOutGrad_ = nullptr;
out = nullptr;
MatrixPtr& outMat = output_.grad;
out = MKLDNNMatrix::create(intPD, outMat);
resetMergeGrad(out);
if (outputIsOnlyMKLDNN()) {
return;
}
CHECK_LE(outputMap_.size(), 1U) << "do not support mixed with cpu device";
extOutGrad_ = out;
if (isPaddleFormat(extOutGrad_->getFormat())) {
return;
}
// need create reorder
CHECK(extOutVal_ != nullptr && isPaddleFormat(extOutVal_->getFormat()))
<< "should have external output value and the format must be nchw(nc)";
extOutGrad_ = MKLDNNMatrix::create(extOutVal_->getPrimitiveDesc(), outMat);
CHECK(outVal_ != nullptr && outVal_->getPrimitiveDesc() == intPD)
<< "should have internal output value and primitive desc must equal";
out = MKLDNNMatrix::create(intPD);
cvtOutGrad_ = MKLDNNMatrix::createReorder(extOutGrad_, out);
CHECK(cvtOutGrad_);
}
void MKLDNNLayer::resetMergeGrad(MKLDNNMatrixPtr& out) {
mergeGrad_ = nullptr;
pipelineMergeGrad_.clear();
if (outputMap_.size() <= 1 || !outputIsOnlyMKLDNN()) {
// do not merge when output is not all MKLDNN or only one output
return;
}
CHECK(out) << "should have reset internal ouput grad";
std::vector<double> scales(outputMap_.size(), 1.0);
std::vector<memory::primitive_desc> srcPDs;
std::vector<primitive::at> srcs;
for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) {
MKLDNNMatrixPtr src =
std::dynamic_pointer_cast<MKLDNNMatrix>(it->second->grad);
VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first;
CHECK(src) << "should be MKLDNNMatrix";
auto srcDims = src->getDims();
auto dstDims = out->getDims();
CHECK_EQ(srcDims.size(), dstDims.size());
for (size_t i = 0; i < srcDims.size(); ++i) {
CHECK_EQ(srcDims[i], dstDims[i]);
}
srcPDs.push_back(src->getPrimitiveDesc());
srcs.push_back(*src);
}
// TODO(TJ): remove me when mkldnn sum support different formats
for (size_t i = 1; i < srcPDs.size(); ++i) {
CHECK(srcPDs[0] == srcPDs[i]);
}
tmpOutGrad_ = out;
tmpCvt_ = nullptr;
if (out->getPrimitiveDesc() != srcPDs[0]) {
tmpOutGrad_ = MKLDNNMatrix::create(srcPDs[0]);
tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out);
CHECK(tmpCvt_);
pipelineMergeGrad_.push_back(*tmpCvt_);
}
auto sumPD =
sum::primitive_desc(tmpOutGrad_->getMemoryDesc(), scales, srcPDs);
mergeGrad_.reset(new sum(sumPD, srcs, *tmpOutGrad_));
pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_);
}
} // namespace paddle
...@@ -119,119 +119,9 @@ public: ...@@ -119,119 +119,9 @@ public:
~MKLDNNLayer() {} ~MKLDNNLayer() {}
virtual bool init(const LayerMap& layerMap, virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
const ParameterMap& parameterMap) { void forward(PassType passType) override;
CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn." void backward(const UpdateCallback& callback) override;
<< "Please set WITH_MKLDNN=ON "
<< "and set use_mkldnn=True";
CHECK(!useGpu_) << "Do not support GPU yet";
// set device id before Layer::init
setDevice(MKLDNN_DEVICE);
// change param device to MKLDNN device
setParamsDevice(MKLDNN_DEVICE, parameterMap);
if (!Layer::init(layerMap, parameterMap)) {
return false;
}
setOutputMap();
checkCPUOutputsNumber();
stream_.reset(new MKLDNNStream());
engine_ = CPUEngine::Instance().getEngine();
return true;
}
void forward(PassType passType) override {
passType_ = passType;
{
REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
CHECK(!inputLayers_.empty());
copySeqInfoToOutputs();
size_t elemenCnt = inputLayers_[0]->getOutputValue()->getElementCnt();
if (inputElemenCnt_ != elemenCnt) {
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
// reset when input total sizes changed, not only the batchsize
inputElemenCnt_ = elemenCnt;
pipelineFwd_.clear();
reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
// all cpu device output grad or value share output's
shareCPUDevice();
resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
// MKLDNNLayer output value should be MKLDNNMatrix
// so external output value is necessary.
// then external input value is not necessary,
// since input may be mkldnn internal buffer.
CHECK(extOutVal_) << "external output value is necessary";
output_.value = std::dynamic_pointer_cast<Matrix>(extOutVal_);
CHECK(inVal_ && outVal_) << "internal memories are necessary";
if (cvtInVal_) {
pipelineFwd_.insert(pipelineFwd_.begin(), *cvtInVal_);
}
if (cvtOutVal_) {
pipelineFwd_.push_back(*cvtOutVal_);
}
convertWeightsFromPaddle();
printValueFormat();
needResetBwd_ = true;
}
if (inputLayers_[0]->getType() == "data") {
// Update input value data when input layer is "data" type,
// since the input value data address might be changed.
CHECK(extInVal_);
extInVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}
if (!outputOnlyMKLDNN_) {
clearGrads();
}
stream_->submit(pipelineFwd_);
}
{
REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
forwardActivation();
}
}
void backward(const UpdateCallback& callback) override {
if (needResetBwd_) {
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
pipelineBwd_.clear();
pipelineMergeGrad_.clear();
mergeGrad_ = nullptr;
resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
// external output grad is not necessary
// since output may be mkldnn internal buffer or merge them directly.
CHECK(outGrad_) << "internal output grad is necessary";
if (cvtOutGrad_) {
pipelineBwd_.insert(pipelineBwd_.begin(), *cvtOutGrad_);
}
if (cvtInGrad_) {
pipelineBwd_.push_back(*cvtInGrad_);
}
printGradFormat();
needResetBwd_ = false;
}
// merge grad must before backward activation
if (mergeGrad_) {
REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str());
stream_->submit(pipelineMergeGrad_);
}
{
REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
backwardActivation();
}
{
REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
stream_->submit(pipelineBwd_);
}
{
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
updateWeights(callback);
}
}
/** /**
* reshape the input image sizes * reshape the input image sizes
...@@ -287,30 +177,12 @@ protected: ...@@ -287,30 +177,12 @@ protected:
/** /**
* reshape the input image sizes and input batchsize * reshape the input image sizes and input batchsize
*/ */
virtual void reshapeInput(int& batchsize, int& height, int& width) { void reshapeInput(int& batchsize, int& height, int& width);
const Argument& input = inputLayers_[0]->getOutput();
batchsize = input.getBatchSize();
int h = input.getFrameHeight();
int w = input.getFrameWidth();
if (h != 0) {
height = h;
}
if (w != 0) {
width = w;
}
}
/** /**
* reshape output image sizes * reshape output image sizes
*/ */
virtual void reshapeOutput(size_t height, size_t width) { void reshapeOutput(size_t height, size_t width);
output_.setFrameHeight(height);
output_.setFrameWidth(width);
for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
outputOtherDevice_[i].setFrameHeight(height);
outputOtherDevice_[i].setFrameWidth(width);
}
}
/** /**
* reset MKLDNNMatrix from Matrix and internal primitive desc. * reset MKLDNNMatrix from Matrix and internal primitive desc.
...@@ -318,13 +190,7 @@ protected: ...@@ -318,13 +190,7 @@ protected:
*/ */
void resetWithMatrix(MKLDNNMatrixPtr& dnn, void resetWithMatrix(MKLDNNMatrixPtr& dnn,
const MatrixPtr& mat, const MatrixPtr& mat,
mkldnn::memory::primitive_desc pd) { mkldnn::memory::primitive_desc pd);
dnn = nullptr;
if (mat == nullptr) {
return;
}
dnn = MKLDNNMatrix::create(pd, mat);
}
/** /**
* reset input value from input MKLDNNMatrix and internal primitive desc. * reset input value from input MKLDNNMatrix and internal primitive desc.
...@@ -332,99 +198,20 @@ protected: ...@@ -332,99 +198,20 @@ protected:
*/ */
void resetInValue( void resetInValue(
MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& in,
const std::shared_ptr<mkldnn::memory::primitive_desc>& intPD = nullptr) { const std::shared_ptr<mkldnn::memory::primitive_desc>& intPD = nullptr);
cvtInVal_ = nullptr;
extInVal_ = nullptr;
in = nullptr;
CHECK_GT(bs_ * ic_ * ih_ * iw_, 0);
auto extPD = MKLDNNMatrix::createPrimitiveDesc(
{bs_, ic_, ih_, iw_}, mkldnn::memory::format::nchw, engine_);
const MatrixPtr& inMat = inputLayers_[0]->getOutputValue();
in = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
CHECK_EQ(inputIsOnlyMKLDNN(), in != nullptr);
if (in == nullptr || in->getFormat() == mkldnn::memory::format::nc) {
in = MKLDNNMatrix::create(extPD, inMat);
}
extInVal_ = isPaddleFormat(in->getFormat()) ? in : nullptr;
if (in->getFormat() == mkldnn::memory::format::nc) {
CHECK(ih_ == 1 && iw_ == 1);
}
if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) {
return;
}
// need create reorder
in = MKLDNNMatrix::create(*intPD);
extInVal_ = extInVal_ ? extInVal_ : MKLDNNMatrix::create(extPD, inMat);
cvtInVal_ = MKLDNNMatrix::createReorder(extInVal_, in);
CHECK(cvtInVal_) << "should not be emptry";
}
/** /**
* reset output value from internal primitive desc. * reset output value from internal primitive desc.
* reset both internal and external buffer and create reorder if necessary. * reset both internal and external buffer and create reorder if necessary.
*/ */
void resetOutValue(MKLDNNMatrixPtr& out, void resetOutValue(MKLDNNMatrixPtr& out,
mkldnn::memory::primitive_desc intPD) { mkldnn::memory::primitive_desc intPD);
cvtOutVal_ = nullptr;
out = MKLDNNMatrix::create(intPD, output_.value);
extOutVal_ = out;
if (outputIsOnlyMKLDNN() || isPaddleFormat(extOutVal_->getFormat())) {
return;
}
// need create reorder
CHECK_GT(bs_ * oc_ * oh_ * ow_, 0);
extOutVal_ = MKLDNNMatrix::create(mkldnn::memory::dims{bs_, oc_, oh_, ow_},
mkldnn::memory::format::nchw,
engine_,
output_.value);
out = MKLDNNMatrix::create(intPD);
cvtOutVal_ = MKLDNNMatrix::createReorder(out, extOutVal_);
CHECK(cvtOutVal_) << "should not be empty";
}
/** /**
* reset input grad from internal primitive desc. * reset input grad from internal primitive desc.
* reset both internal and external buffer and create reorder if necessary. * reset both internal and external buffer and create reorder if necessary.
*/ */
void resetInGrad(MKLDNNMatrixPtr& in, mkldnn::memory::primitive_desc intPD) { void resetInGrad(MKLDNNMatrixPtr& in, mkldnn::memory::primitive_desc intPD);
cvtInGrad_ = nullptr;
extInGrad_ = nullptr;
in = nullptr;
LayerPtr& input = inputLayers_[0];
if (input->getOutputGrad() == nullptr) {
// no need input grad
return;
}
CHECK(inputIsOnlyMKLDNN() || input->getOutputMapSize() <= 1)
<< "only support input is MKLDNN layer or only have one output layer";
// when input is a mkldnn branch node,
// this layer will save input grad to a internal buffer,
// and the mkldnn input layer will merge them to actual prev->output_.grad
const MatrixPtr& inMat =
input->getOutputMapSize() <= 1 ? input->getOutputGrad() : nullptr;
in = MKLDNNMatrix::create(intPD, inMat);
Argument& arg = input->getOutput(this->getName());
arg.grad = std::dynamic_pointer_cast<Matrix>(in);
CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD)
<< "should have internal input value and primitive desc must equal";
if (inputIsOnlyMKLDNN()) {
return;
}
extInGrad_ = in;
if (isPaddleFormat(extInGrad_->getFormat())) {
return;
}
// need create reorder
CHECK(extInVal_ != nullptr && isPaddleFormat(extInVal_->getFormat()))
<< "should have external input value and the format must be nchw(nc)";
extInGrad_ = MKLDNNMatrix::create(extInVal_->getPrimitiveDesc(), inMat);
CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD)
<< "should have internal input value and primitive desc must equal";
in = MKLDNNMatrix::create(intPD);
cvtInGrad_ = MKLDNNMatrix::createReorder(in, extInGrad_);
CHECK(cvtInGrad_);
}
/** /**
* reset output grad from internal primitive desc. * reset output grad from internal primitive desc.
...@@ -434,81 +221,59 @@ protected: ...@@ -434,81 +221,59 @@ protected:
* it could not be mixed with cpu device, * it could not be mixed with cpu device,
* since it can not get memory desc from cpu device. * since it can not get memory desc from cpu device.
*/ */
void resetOutGrad(MKLDNNMatrixPtr& out, void resetOutGrad(MKLDNNMatrixPtr& out, mkldnn::memory::primitive_desc intPD);
mkldnn::memory::primitive_desc intPD) {
cvtOutGrad_ = nullptr;
extOutGrad_ = nullptr;
out = nullptr;
MatrixPtr& outMat = output_.grad;
out = MKLDNNMatrix::create(intPD, outMat);
resetMergeGrad(out);
if (outputIsOnlyMKLDNN()) {
return;
}
CHECK_LE(outputMap_.size(), 1U) << "do not support mixed with cpu device";
extOutGrad_ = out;
if (isPaddleFormat(extOutGrad_->getFormat())) {
return;
}
// need create reorder
CHECK(extOutVal_ != nullptr && isPaddleFormat(extOutVal_->getFormat()))
<< "should have external output value and the format must be nchw(nc)";
extOutGrad_ = MKLDNNMatrix::create(extOutVal_->getPrimitiveDesc(), outMat);
CHECK(outVal_ != nullptr && outVal_->getPrimitiveDesc() == intPD)
<< "should have internal output value and primitive desc must equal";
out = MKLDNNMatrix::create(intPD);
cvtOutGrad_ = MKLDNNMatrix::createReorder(extOutGrad_, out);
CHECK(cvtOutGrad_);
}
/** /**
* reset the merge grad primitive if necessary. * reset the merge grad primitive if necessary.
* note: do not support the grads are mixed with cpu device, * note: do not support the grads are mixed with cpu device,
* since it can not get memory desc from cpu device. * since it can not get memory desc from cpu device.
*/ */
virtual void resetMergeGrad(MKLDNNMatrixPtr& out) { void resetMergeGrad(MKLDNNMatrixPtr& out);
mergeGrad_ = nullptr;
pipelineMergeGrad_.clear(); protected:
if (outputMap_.size() <= 1 || !outputIsOnlyMKLDNN()) { /**
// do not merge when output is not all MKLDNN or only one output * Set deviceId of this layer.
return; */
} void setDevice(int id) { deviceId_ = id; }
CHECK(out) << "should have reset internal ouput grad";
std::vector<double> scales(outputMap_.size(), 1.0);
std::vector<mkldnn::memory::primitive_desc> srcPDs;
std::vector<mkldnn::primitive::at> srcs;
for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) {
MKLDNNMatrixPtr src =
std::dynamic_pointer_cast<MKLDNNMatrix>(it->second->grad);
VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first;
CHECK(src) << "should be MKLDNNMatrix";
auto srcDims = src->getDims();
auto dstDims = out->getDims();
CHECK_EQ(srcDims.size(), dstDims.size());
for (size_t i = 0; i < srcDims.size(); ++i) {
CHECK_EQ(srcDims[i], dstDims[i]);
}
srcPDs.push_back(src->getPrimitiveDesc());
srcs.push_back(*src);
}
// TODO(TJ): remove me when mkldnn sum support different formats /**
for (size_t i = 1; i < srcPDs.size(); ++i) { * check the format is nchw or nc,
CHECK(srcPDs[0] == srcPDs[i]); * which is supported by Paddle default memory layout
*/
bool isPaddleFormat(mkldnn::memory::format fmt) {
if (fmt == mkldnn::memory::format::nchw ||
fmt == mkldnn::memory::format::nc) {
return true;
} else {
return false;
} }
tmpOutGrad_ = out; }
tmpCvt_ = nullptr;
if (out->getPrimitiveDesc() != srcPDs[0]) { /**
tmpOutGrad_ = MKLDNNMatrix::create(srcPDs[0]); * If input only has MKLDNN device.
tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out); * Otherwise, only support the previous layer using CPU device.
CHECK(tmpCvt_); */
pipelineMergeGrad_.push_back(*tmpCvt_); bool inputIsOnlyMKLDNN(int index = 0) {
int prevDevice = getPrev(index)->getDeviceId();
if (prevDevice == MKLDNN_DEVICE) {
return true;
} else {
CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet";
return false;
} }
}
auto sumPD = mkldnn::sum::primitive_desc( /**
tmpOutGrad_->getMemoryDesc(), scales, srcPDs); * If output only has MKLDNN device.
mergeGrad_.reset(new mkldnn::sum(sumPD, srcs, *tmpOutGrad_)); * Otherwise, other devices should only using CPU device.
pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_); */
bool outputIsOnlyMKLDNN() {
for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE)
<< "Only support other device is CPU yet";
}
outputOnlyMKLDNN_ = outputOtherDevice_.size() == 0;
return outputOnlyMKLDNN_;
} }
/** /**
...@@ -568,54 +333,7 @@ protected: ...@@ -568,54 +333,7 @@ protected:
} }
} }
protected:
/**
* If input only has MKLDNN device.
* Otherwise, only support the previous layer using CPU device.
*/
bool inputIsOnlyMKLDNN(int index = 0) {
int prevDevice = getPrev(index)->getDeviceId();
if (prevDevice == MKLDNN_DEVICE) {
return true;
} else {
// do not support GPU yet
CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet";
return false;
}
}
/**
* If output only has MKLDNN device.
* Otherwise, other devices should only using CPU device.
*/
bool outputIsOnlyMKLDNN() {
for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE)
<< "Only support other device is CPU yet";
}
outputOnlyMKLDNN_ = outputOtherDevice_.size() == 0;
return outputOnlyMKLDNN_;
}
/**
* Set deviceId of this layer.
*/
void setDevice(int id) { deviceId_ = id; }
private: private:
/**
* check the format is nchw or nc,
* which is supported by Paddle default memory layout
*/
bool isPaddleFormat(mkldnn::memory::format fmt) {
if (fmt == mkldnn::memory::format::nchw ||
fmt == mkldnn::memory::format::nc) {
return true;
} else {
return false;
}
}
/** /**
* clear all grad * clear all grad
*/ */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册