Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
93db58bb
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
93db58bb
编写于
9月 27, 2017
作者:
T
Tao Luo
提交者:
GitHub
9月 27, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4418 from jacquesqiao/reduce-elementwise-warning
Reduce elementwise warning
上级
a703a246
729b2152
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
218 addition
and
191 deletion
+218
-191
paddle/operators/elementwise_add_op.cc
paddle/operators/elementwise_add_op.cc
+1
-0
paddle/operators/elementwise_add_op.h
paddle/operators/elementwise_add_op.h
+1
-1
paddle/operators/elementwise_div_op.cc
paddle/operators/elementwise_div_op.cc
+1
-0
paddle/operators/elementwise_div_op.h
paddle/operators/elementwise_div_op.h
+1
-1
paddle/operators/elementwise_mul_op.cc
paddle/operators/elementwise_mul_op.cc
+1
-0
paddle/operators/elementwise_mul_op.h
paddle/operators/elementwise_mul_op.h
+1
-1
paddle/operators/elementwise_op.h
paddle/operators/elementwise_op.h
+10
-187
paddle/operators/elementwise_op_function.h
paddle/operators/elementwise_op_function.h
+200
-0
paddle/operators/elementwise_sub_op.cc
paddle/operators/elementwise_sub_op.cc
+1
-0
paddle/operators/elementwise_sub_op.h
paddle/operators/elementwise_sub_op.h
+1
-1
未找到文件。
paddle/operators/elementwise_add_op.cc
浏览文件 @
93db58bb
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
limitations under the License. */
limitations under the License. */
#include "paddle/operators/elementwise_add_op.h"
#include "paddle/operators/elementwise_add_op.h"
#include "paddle/operators/elementwise_op.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
...
paddle/operators/elementwise_add_op.h
浏览文件 @
93db58bb
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
#pragma once
#pragma once
#include "paddle/operators/elementwise_op.h"
#include "paddle/operators/elementwise_op
_function
.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
...
paddle/operators/elementwise_div_op.cc
浏览文件 @
93db58bb
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
limitations under the License. */
limitations under the License. */
#include "paddle/operators/elementwise_div_op.h"
#include "paddle/operators/elementwise_div_op.h"
#include "paddle/operators/elementwise_op.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
...
paddle/operators/elementwise_div_op.h
浏览文件 @
93db58bb
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
#pragma once
#pragma once
#include "paddle/operators/elementwise_op.h"
#include "paddle/operators/elementwise_op
_function
.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
...
paddle/operators/elementwise_mul_op.cc
浏览文件 @
93db58bb
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
limitations under the License. */
limitations under the License. */
#include "paddle/operators/elementwise_mul_op.h"
#include "paddle/operators/elementwise_mul_op.h"
#include "paddle/operators/elementwise_op.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
...
paddle/operators/elementwise_mul_op.h
浏览文件 @
93db58bb
...
@@ -13,7 +13,7 @@
...
@@ -13,7 +13,7 @@
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include "paddle/operators/elementwise_op.h"
#include "paddle/operators/elementwise_op
_function
.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
...
paddle/operators/elementwise_op.h
浏览文件 @
93db58bb
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include <iostream>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/op_registry.h"
#include "paddle/
operators/math/math_function
.h"
#include "paddle/
framework/operator
.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
/*
* Out = X ⊙ Y
* If Y's shape does not match X' shape, they will be reshaped.
* For example:
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
* pre=2, n=3*4, post=5
* x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
* x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
*/
inline
void
get_mid_dims
(
const
framework
::
DDim
&
x_dims
,
const
framework
::
DDim
&
y_dims
,
const
int
axis
,
int
&
pre
,
int
&
n
,
int
&
post
)
{
pre
=
1
;
n
=
1
;
post
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
pre
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
i
+
axis
],
y_dims
[
i
],
"Broadcast dimension mismatch."
);
n
*=
y_dims
[
i
];
}
for
(
int
i
=
axis
+
y_dims
.
size
();
i
<
x_dims
.
size
();
++
i
)
{
post
*=
x_dims
[
i
];
}
}
#define EIGEN_FUNCTOR(name, eigen_op) \
struct Eigen##name##Functor { \
template <typename Place, typename T> \
inline void Run(const framework::Tensor* x, const framework::Tensor* y, \
framework::Tensor* z, \
const framework::ExecutionContext& ctx) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_e); \
} \
template <typename Place, typename T> \
inline void RunBroadCast(const framework::Tensor* x, \
const framework::Tensor* y, framework::Tensor* z, \
const framework::ExecutionContext& ctx, int pre, \
int n) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n)) \
.broadcast(Eigen::DSizes<int, 2>(pre, 1)) \
.reshape(Eigen::DSizes<int, 1>(x_e.size())); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast); \
} \
template <typename Place, typename T> \
inline void RunBroadCast2(const framework::Tensor* x, \
const framework::Tensor* y, \
framework::Tensor* z, \
const framework::ExecutionContext& ctx, int pre, \
int n, int post) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1)) \
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post)) \
.reshape(Eigen::DSizes<int, 1>(x_e.size())); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast); \
} \
}
template
<
class
functor
,
typename
Place
,
typename
T
>
void
ElementwiseCompute
(
const
framework
::
ExecutionContext
&
ctx
)
{
using
Tensor
=
framework
::
Tensor
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
y_dims
.
size
(),
"Rank of first input must >= rank of second input."
)
if
(
x_dims
==
y_dims
||
product
(
y_dims
)
==
1
)
{
functor
f
;
f
.
template
Run
<
Place
,
T
>(
x
,
y
,
z
,
ctx
);
return
;
}
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
PADDLE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
"Axis should be in range [0, x_dims)"
);
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
if
(
post
==
1
)
{
functor
f
;
f
.
template
RunBroadCast
<
Place
,
T
>(
x
,
y
,
z
,
ctx
,
pre
,
n
);
return
;
}
else
{
functor
f
;
f
.
template
RunBroadCast2
<
Place
,
T
>(
x
,
y
,
z
,
ctx
,
pre
,
n
,
post
);
return
;
}
}
#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR
(
Add
,
EIGEN_ADD
);
#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR
(
Sub
,
EIGEN_SUB
);
#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR
(
Mul
,
EIGEN_MUL
);
#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR
(
Div
,
EIGEN_DIV
);
template
<
typename
Place
,
typename
T
,
typename
functor
,
typename
functor1
,
typename
broadcastfunctor
,
typename
broadcast2functor
>
void
ElementwiseGradCompute
(
const
framework
::
ExecutionContext
&
ctx
)
{
using
Tensor
=
framework
::
Tensor
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
if
(
dx
)
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
dy
)
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
x_dims
==
y_dims
)
{
functor
f
;
f
(
place
,
x
,
y
,
out
,
dx
,
dy
,
dout
);
return
;
}
if
(
product
(
y_dims
)
==
1
)
{
functor1
f
;
f
(
place
,
x
,
y
,
out
,
dx
,
dy
,
dout
);
return
;
}
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
if
(
post
==
1
)
{
broadcastfunctor
f
;
f
(
place
,
x
,
y
,
out
,
dx
,
dy
,
dout
,
pre
,
n
);
return
;
}
else
{
broadcast2functor
f
;
f
(
place
,
x
,
y
,
out
,
dx
,
dy
,
dout
,
pre
,
n
,
post
);
return
;
}
}
class
ElementwiseOp
:
public
framework
::
OperatorWithKernel
{
class
ElementwiseOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
paddle/operators/elementwise_op_function.h
0 → 100644
浏览文件 @
93db58bb
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
/*
* Out = X ⊙ Y
* If Y's shape does not match X' shape, they will be reshaped.
* For example:
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
* pre=2, n=3*4, post=5
* x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
* x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
*/
inline
void
get_mid_dims
(
const
framework
::
DDim
&
x_dims
,
const
framework
::
DDim
&
y_dims
,
const
int
axis
,
int
&
pre
,
int
&
n
,
int
&
post
)
{
pre
=
1
;
n
=
1
;
post
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
pre
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
i
+
axis
],
y_dims
[
i
],
"Broadcast dimension mismatch."
);
n
*=
y_dims
[
i
];
}
for
(
int
i
=
axis
+
y_dims
.
size
();
i
<
x_dims
.
size
();
++
i
)
{
post
*=
x_dims
[
i
];
}
}
#define EIGEN_FUNCTOR(name, eigen_op) \
struct Eigen##name##Functor { \
template <typename Place, typename T> \
inline void Run(const framework::Tensor* x, const framework::Tensor* y, \
framework::Tensor* z, \
const framework::ExecutionContext& ctx) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_e); \
} \
template <typename Place, typename T> \
inline void RunBroadCast(const framework::Tensor* x, \
const framework::Tensor* y, framework::Tensor* z, \
const framework::ExecutionContext& ctx, int pre, \
int n) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n)) \
.broadcast(Eigen::DSizes<int, 2>(pre, 1)) \
.reshape(Eigen::DSizes<int, 1>(x_e.size())); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast); \
} \
template <typename Place, typename T> \
inline void RunBroadCast2(const framework::Tensor* x, \
const framework::Tensor* y, \
framework::Tensor* z, \
const framework::ExecutionContext& ctx, int pre, \
int n, int post) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1)) \
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post)) \
.reshape(Eigen::DSizes<int, 1>(x_e.size())); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast); \
} \
}
template
<
class
functor
,
typename
Place
,
typename
T
>
void
ElementwiseCompute
(
const
framework
::
ExecutionContext
&
ctx
)
{
using
Tensor
=
framework
::
Tensor
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
y_dims
.
size
(),
"Rank of first input must >= rank of second input."
)
if
(
x_dims
==
y_dims
||
product
(
y_dims
)
==
1
)
{
functor
f
;
f
.
template
Run
<
Place
,
T
>(
x
,
y
,
z
,
ctx
);
return
;
}
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
PADDLE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
"Axis should be in range [0, x_dims)"
);
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
if
(
post
==
1
)
{
functor
f
;
f
.
template
RunBroadCast
<
Place
,
T
>(
x
,
y
,
z
,
ctx
,
pre
,
n
);
return
;
}
else
{
functor
f
;
f
.
template
RunBroadCast2
<
Place
,
T
>(
x
,
y
,
z
,
ctx
,
pre
,
n
,
post
);
return
;
}
}
#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR
(
Add
,
EIGEN_ADD
);
#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR
(
Sub
,
EIGEN_SUB
);
#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR
(
Mul
,
EIGEN_MUL
);
#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR
(
Div
,
EIGEN_DIV
);
template
<
typename
Place
,
typename
T
,
typename
functor
,
typename
functor1
,
typename
broadcastfunctor
,
typename
broadcast2functor
>
void
ElementwiseGradCompute
(
const
framework
::
ExecutionContext
&
ctx
)
{
using
Tensor
=
framework
::
Tensor
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
if
(
dx
)
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
dy
)
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
x_dims
==
y_dims
)
{
functor
f
;
f
(
place
,
x
,
y
,
out
,
dx
,
dy
,
dout
);
return
;
}
if
(
product
(
y_dims
)
==
1
)
{
functor1
f
;
f
(
place
,
x
,
y
,
out
,
dx
,
dy
,
dout
);
return
;
}
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
if
(
post
==
1
)
{
broadcastfunctor
f
;
f
(
place
,
x
,
y
,
out
,
dx
,
dy
,
dout
,
pre
,
n
);
return
;
}
else
{
broadcast2functor
f
;
f
(
place
,
x
,
y
,
out
,
dx
,
dy
,
dout
,
pre
,
n
,
post
);
return
;
}
}
}
// namespace operators
}
// namespace paddle
paddle/operators/elementwise_sub_op.cc
浏览文件 @
93db58bb
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
limitations under the License. */
limitations under the License. */
#include "paddle/operators/elementwise_sub_op.h"
#include "paddle/operators/elementwise_sub_op.h"
#include "paddle/operators/elementwise_op.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
...
paddle/operators/elementwise_sub_op.h
浏览文件 @
93db58bb
...
@@ -13,7 +13,7 @@
...
@@ -13,7 +13,7 @@
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include "paddle/operators/elementwise_op.h"
#include "paddle/operators/elementwise_op
_function
.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录