未验证 提交 91631492 编写于 作者: H houj04 提交者: GitHub

[XPU] move rnn op to phi. (#45822)

上级 a9cc0274
此差异已折叠。
...@@ -31,3 +31,9 @@ if(WITH_ASCEND_CL) ...@@ -31,3 +31,9 @@ if(WITH_ASCEND_CL)
SRCS npu_op_runner.cc SRCS npu_op_runner.cc
DEPS operator npu_info) DEPS operator npu_info)
endif() endif()
# every source file that includes "dnnl.h" must depends on mkldnn
# or, the first one should depends on mkldnn
if(WITH_MKLDNN)
add_dependencies(npu_collective_helper mkldnn)
endif()
...@@ -67,6 +67,19 @@ template struct SetConstant<paddle::platform::XPUDeviceContext, ...@@ -67,6 +67,19 @@ template struct SetConstant<paddle::platform::XPUDeviceContext,
phi::dtype::complex<float>>; phi::dtype::complex<float>>;
template struct SetConstant<paddle::platform::XPUDeviceContext, template struct SetConstant<paddle::platform::XPUDeviceContext,
phi::dtype::complex<double>>; phi::dtype::complex<double>>;
template struct SetConstant<phi::XPUContext, phi::dtype::float16>;
template struct SetConstant<phi::XPUContext, phi::dtype::bfloat16>;
template struct SetConstant<phi::XPUContext, float>;
template struct SetConstant<phi::XPUContext, double>;
template struct SetConstant<phi::XPUContext, uint8_t>;
template struct SetConstant<phi::XPUContext, int16_t>;
template struct SetConstant<phi::XPUContext, int>;
template struct SetConstant<phi::XPUContext, int64_t>;
template struct SetConstant<phi::XPUContext, bool>;
template struct SetConstant<phi::XPUContext, phi::dtype::complex<float>>;
template struct SetConstant<phi::XPUContext, phi::dtype::complex<double>>;
#endif #endif
#define DEFINE_CPU_TRANS(RANK) \ #define DEFINE_CPU_TRANS(RANK) \
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/rnn_grad_kernel.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/xpu/rnn_util.h"
namespace phi {
template <typename T, typename Context>
void RnnGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<const DenseTensor*>& pre_state,
const std::vector<const DenseTensor*>& weight_list,
const paddle::optional<DenseTensor>& sequence_length,
const DenseTensor& out,
const DenseTensor& dropout_state,
const DenseTensor& reserve,
const DenseTensor& out_grad,
const std::vector<const DenseTensor*>& state_grad,
float dropout_prob,
bool is_bidirec,
int input_size,
int hidden_size,
int num_layers,
const std::string& mode,
int seed,
bool is_test,
DenseTensor* x_grad,
std::vector<DenseTensor*> pre_state_grad,
std::vector<DenseTensor*> weight_grad_list) {
using XPUTyp = typename XPUTypeTrait<T>::Type;
PADDLE_ENFORCE_EQ(
mode,
"LSTM",
errors::InvalidArgument(
"XPU only support LSTM mode now, current mode is %s", mode));
auto init_h = pre_state[0];
auto init_c = pre_state[1];
auto last_h_grad = state_grad[0];
auto last_c_grad = state_grad[1];
// get the tensor pointer for the output
DenseTensor* init_h_grad = nullptr;
DenseTensor* init_c_grad = nullptr;
if (pre_state_grad.size() > 0) { // has gradient
init_h_grad = pre_state_grad[0];
init_c_grad = pre_state_grad[1];
}
// check shape
const int& seq_len = x.dims()[0];
const int& batch_size = x.dims()[1];
const int& input_dim = x.dims()[2];
const int& direction_num = is_bidirec ? 2 : 1;
PADDLE_ENFORCE_EQ(
init_h->dims()[0],
num_layers * direction_num,
errors::InvalidArgument("The num_layers of in RNN layer must"
" be the same as first dim of init "
"hidden, but received num_layers:%d,"
" dim:%d",
num_layers,
init_h->dims()[0]));
PADDLE_ENFORCE_EQ(
init_c->dims()[0],
num_layers * direction_num,
errors::InvalidArgument(
"The num_layers of in RNN layer must"
" be the same as first dim of cell state hidden, but received"
" num_layers:%d, dim:%d",
num_layers,
init_c->dims()[0]));
std::vector<std::vector<const T*>> parameter_lists;
parameter_lists.resize(num_layers);
reset_parameter_vector(weight_list, num_layers, is_bidirec, &parameter_lists);
for (unsigned int i = 0; i < weight_grad_list.size(); ++i) {
dev_ctx.template Alloc<T>(weight_grad_list[i]);
}
std::vector<std::vector<T*>> parameter_lists_grad;
parameter_lists_grad.resize(num_layers);
reset_parameter_vector(
weight_grad_list, num_layers, is_bidirec, &parameter_lists_grad);
// allocate the memory and initization the x_grad
x_grad->Resize(x.dims());
dev_ctx.template Alloc<T>(x_grad);
phi::funcs::SetConstant<phi::XPUContext, T> zero;
zero(dev_ctx, x_grad, static_cast<T>(0.0));
DenseTensor a, b;
DenseTensor* dynamic_grad_pre_h = &a;
DenseTensor* dynamic_grad_pre_c = &b;
if (init_h_grad) {
init_h_grad->Resize(last_h_grad->dims());
dev_ctx.template Alloc<T>(init_h_grad);
zero(dev_ctx, init_h_grad, static_cast<T>(0.0));
} else {
dynamic_grad_pre_h->Resize(last_h_grad->dims());
dev_ctx.template Alloc<T>(dynamic_grad_pre_h);
zero(dev_ctx, dynamic_grad_pre_h, static_cast<T>(0.0));
init_h_grad = dynamic_grad_pre_h;
}
if (init_c_grad) {
init_c_grad->Resize(last_c_grad->dims());
dev_ctx.template Alloc<T>(init_c_grad);
} else {
dynamic_grad_pre_c->Resize(last_h_grad->dims());
dev_ctx.template Alloc<T>(dynamic_grad_pre_c);
init_c_grad = dynamic_grad_pre_c;
}
DenseTensor temp_input_grad_1, temp_input_grad_2;
T* input_grad_1_ptr = nullptr;
T* input_grad_2_ptr = nullptr;
if (num_layers >= 2) {
temp_input_grad_1.Resize(x_grad->dims());
input_grad_1_ptr = dev_ctx.template Alloc<T>(&temp_input_grad_1);
}
if (num_layers >= 3) {
temp_input_grad_2.Resize(x_grad->dims());
input_grad_2_ptr = dev_ctx.template Alloc<T>(&temp_input_grad_2);
}
// get ptr from tensor
auto x_data = x.data<T>();
auto init_h_ptr = init_h->data<T>();
auto init_c_ptr = init_c->data<T>();
auto y = out.data<T>();
auto y_grad = out_grad.data<T>();
auto last_h_grad_ptr = last_h_grad->data<T>();
auto last_c_grad_ptr = last_c_grad->data<T>();
auto x_grad_data = x_grad->data<T>();
auto init_h_grad_ptr = init_h_grad->data<T>();
auto init_c_grad_ptr = init_c_grad->data<T>();
const int& block_size = direction_num * seq_len * batch_size * hidden_size;
auto i_f_g_o_ptr = reserve.data<T>();
auto c_ptr = i_f_g_o_ptr + num_layers * block_size * 4;
auto hidden_data_ptr = c_ptr + num_layers * block_size * 1;
int state_offset = pre_state[0]->dims()[1] * pre_state[0]->dims()[2];
bool has_seq_length = sequence_length.is_initialized();
std::vector<int> seq_len_tensor(batch_size, seq_len);
if (has_seq_length) {
seq_len_tensor =
paddle::operators::GetDataFromTensor<int>(sequence_length.get_ptr());
}
for (int i = num_layers - 1; i >= 0; --i) {
// the layer input output had saved, just use the data
auto w_x = parameter_lists[i][0];
auto w_h = parameter_lists[i][1];
auto bw_x = parameter_lists[i][4];
auto bw_h = parameter_lists[i][5];
auto i_f_g_o = i_f_g_o_ptr + i * block_size * 4;
auto c = c_ptr + i * block_size;
DenseTensor layer_input_t;
auto layer_input = x_data;
if (i > 0) {
layer_input_t.Resize(out.dims());
layer_input = dev_ctx.template Alloc<T>(&layer_input_t);
float scale = static_cast<float>(1.0f - dropout_prob);
auto hidden_data = hidden_data_ptr + (i - 1) * block_size;
int r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUTyp*>(hidden_data),
const_cast<XPUTyp*>(layer_input),
out.numel(),
false,
scale,
0.0f);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
} else {
layer_input = x_data;
}
auto layer_output = y;
if (i == num_layers - 1) {
layer_output = y;
} else {
layer_output = hidden_data_ptr + i * block_size;
}
const T* cur_input_ptr = nullptr;
if (i == num_layers - 1) {
cur_input_ptr = y_grad;
} else if (i % 2 != 0) {
cur_input_ptr = input_grad_2_ptr;
} else {
cur_input_ptr = input_grad_1_ptr;
}
T* cur_output_ptr = nullptr;
int cur_xdim = -1;
if (i == 0) {
cur_output_ptr = x_grad_data;
cur_xdim = input_dim;
} else if (i % 2 != 0) {
cur_output_ptr = input_grad_1_ptr;
cur_xdim = is_bidirec ? 2 * hidden_size : hidden_size;
} else {
cur_output_ptr = input_grad_2_ptr;
cur_xdim = is_bidirec ? 2 * hidden_size : hidden_size;
}
auto w_x_grad = parameter_lists_grad[i][0];
auto w_h_grad = parameter_lists_grad[i][1];
auto b_x_grad = parameter_lists_grad[i][2];
auto b_h_grad = parameter_lists_grad[i][3];
auto h_0 = init_h_ptr + direction_num * i * state_offset;
auto c_0 = init_c_ptr + direction_num * i * state_offset;
auto h_0_grad = init_h_grad_ptr + direction_num * i * state_offset;
auto c_0_grad = init_c_grad_ptr + direction_num * i * state_offset;
auto h_t_grad = last_h_grad_ptr + direction_num * i * state_offset;
auto c_t_grad = last_c_grad_ptr + direction_num * i * state_offset;
if (is_bidirec) {
auto bw_x_grad = parameter_lists_grad[i][4];
auto bw_h_grad = parameter_lists_grad[i][5];
auto bb_x_grad = parameter_lists_grad[i][6];
auto bb_h_grad = parameter_lists_grad[i][7];
int r =
xpu::bilstm_grad<T, T, int16_t>(dev_ctx.x_context(),
(const T*)layer_input,
(const T*)h_0,
(const T*)c_0,
(const T*)w_x,
(const T*)w_h,
(const T*)bw_x,
(const T*)bw_h,
(const T*)layer_output,
(const T*)cur_input_ptr,
(const T*)h_t_grad,
(const T*)c_t_grad,
reinterpret_cast<T*>(cur_output_ptr),
reinterpret_cast<T*>(h_0_grad),
reinterpret_cast<T*>(c_0_grad),
w_x_grad,
w_h_grad,
b_x_grad,
b_h_grad,
bw_x_grad,
bw_h_grad,
bb_x_grad,
bb_h_grad,
batch_size,
cur_xdim,
hidden_size,
seq_len,
seq_len_tensor,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
i_f_g_o,
c);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "bilstm_grad");
} else {
int r =
xpu::lstm_grad<T, T, int16_t>(dev_ctx.x_context(),
(const T*)layer_input,
(const T*)h_0,
(const T*)c_0,
(const T*)w_x,
(const T*)w_h,
(const T*)layer_output,
(const T*)cur_input_ptr,
(const T*)h_t_grad,
(const T*)c_t_grad,
reinterpret_cast<T*>(cur_output_ptr),
reinterpret_cast<T*>(h_0_grad),
reinterpret_cast<T*>(c_0_grad),
w_x_grad,
w_h_grad,
b_x_grad,
b_h_grad,
batch_size,
cur_xdim,
hidden_size,
seq_len,
seq_len_tensor,
nullptr,
nullptr,
nullptr,
nullptr,
i_f_g_o,
c);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "lstm_grad");
}
}
}
} // namespace phi
PD_REGISTER_KERNEL(rnn_grad, XPU, ALL_LAYOUT, phi::RnnGradKernel, float) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/rnn_kernel.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/xpu/rnn_util.h"
namespace phi {
template <typename T, typename Context>
void RnnKernel(const Context& dev_ctx,
const DenseTensor& x,
const std::vector<const DenseTensor*>& pre_state,
const std::vector<const DenseTensor*>& weight_list,
const paddle::optional<DenseTensor>& sequence_length,
float dropout_prob,
bool is_bidirec,
int input_size,
int hidden_size,
int num_layers,
const std::string& mode,
int seed,
bool is_test,
DenseTensor* out,
DenseTensor* dropout_state,
std::vector<DenseTensor*> state,
DenseTensor* reserve) {
using XPUTyp = typename XPUTypeTrait<T>::Type;
if (dropout_state->IsInitialized()) {
if (dropout_state->numel() != out->numel()) dropout_state->clear();
}
dropout_state->Resize(out->dims());
dev_ctx.template Alloc<T>(dropout_state);
phi::funcs::SetConstant<phi::XPUContext, uint8_t> ones;
ones(dev_ctx, dropout_state, static_cast<uint8_t>(1));
PADDLE_ENFORCE_EQ(
mode,
"LSTM",
errors::InvalidArgument(
"XPU only support LSTM mode now, current mode is %s", mode));
auto init_h = pre_state[0];
auto init_c = pre_state[1];
auto last_h = state[0];
auto last_c = state[1];
// check shape
const int& seq_len = x.dims()[0]; // time_step
const int& batch_size = x.dims()[1];
const int& input_dim = x.dims()[2];
const int& direction_num = is_bidirec ? 2 : 1;
PADDLE_ENFORCE_EQ(
init_h->dims()[0],
num_layers * direction_num,
errors::InvalidArgument("The num_layers of in RNN layer must"
" be the same as first dim of init "
"hidden, but received num_layers:%d,"
" dim:%d",
num_layers,
init_h->dims()[0]));
PADDLE_ENFORCE_EQ(
init_c->dims()[0],
num_layers * direction_num,
errors::InvalidArgument(
"The num_layers of in RNN layer must"
" be the same as first dim of cell state hidden, but received"
" num_layers:%d, dim:%d",
num_layers,
init_c->dims()[0]));
// weightlist
std::vector<std::vector<const T*>> parameter_lists;
parameter_lists.resize(num_layers);
reset_parameter_vector(weight_list, num_layers, is_bidirec, &parameter_lists);
// init the output and allocate the memory
dev_ctx.template Alloc<T>(out);
dev_ctx.template Alloc<T>(last_h);
dev_ctx.template Alloc<T>(last_c);
int gate_num = 4;
int hidden_data_idx = (num_layers - 1);
hidden_data_idx += (gate_num + 1) * num_layers;
const int& block_size = direction_num * seq_len * batch_size * hidden_size;
reserve->Resize({hidden_data_idx, block_size});
dev_ctx.template Alloc<T>(reserve);
// get ptr from tensor
auto x_data = x.data<T>();
auto init_h_ptr = init_h->data<T>();
auto init_c_ptr = init_c->data<T>();
auto y = out->data<T>();
auto last_h_ptr = last_h->data<T>();
auto last_c_ptr = last_c->data<T>();
auto i_f_g_o_ptr = reserve->data<T>();
auto c_ptr =
i_f_g_o_ptr + num_layers * block_size * 4; // 4 for i_f_g_o offset
auto hidden_data_ptr = c_ptr + num_layers * block_size * 1; // 1 for c offset
std::vector<int> seq_len_tensor(batch_size, seq_len);
bool has_seq_length = sequence_length.is_initialized();
if (has_seq_length) {
seq_len_tensor =
paddle::operators::GetDataFromTensor<int>(sequence_length.get_ptr());
}
int state_offset = pre_state[0]->dims()[1] * pre_state[0]->dims()[2];
const T* cur_input_ptr = nullptr;
int cur_xdim = -1;
T* cur_output_ptr = y;
for (int i = 0; i < num_layers; i++) {
auto i_f_g_o = i_f_g_o_ptr + i * block_size * 4;
auto c = c_ptr + i * block_size;
cur_output_ptr = y;
if (i < num_layers - 1 && num_layers > 1) {
cur_output_ptr = hidden_data_ptr + i * block_size;
}
if (i == 0) {
cur_input_ptr = x_data;
cur_xdim = input_dim;
} else {
cur_input_ptr = hidden_data_ptr + (i - 1) * block_size;
cur_xdim = is_bidirec ? 2 * hidden_size : hidden_size;
}
auto h_0 = init_h_ptr + direction_num * i * state_offset;
auto c_0 = init_c_ptr + direction_num * i * state_offset;
auto last_h = last_h_ptr + direction_num * i * state_offset;
auto last_c = last_c_ptr + direction_num * i * state_offset;
auto w_x = parameter_lists[i][0];
auto w_h = parameter_lists[i][1];
auto b_x = parameter_lists[i][2];
auto b_h = parameter_lists[i][3];
if (is_bidirec) {
auto bw_x = parameter_lists[i][4];
auto bw_h = parameter_lists[i][5];
auto bb_x = parameter_lists[i][6];
auto bb_h = parameter_lists[i][7];
int r =
xpu::bilstm_train<T, T, int16_t>(dev_ctx.x_context(),
(const T*)cur_input_ptr,
(const T*)h_0,
(const T*)c_0,
(const T*)w_x,
(const T*)w_h,
(const T*)b_x,
(const T*)b_h,
(const T*)bw_x,
(const T*)bw_h,
(const T*)bb_x,
(const T*)bb_h,
reinterpret_cast<T*>(cur_output_ptr),
reinterpret_cast<T*>(last_h),
reinterpret_cast<T*>(last_c),
batch_size,
cur_xdim,
hidden_size,
seq_len,
seq_len_tensor,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
reinterpret_cast<T*>(i_f_g_o),
reinterpret_cast<T*>(c));
PADDLE_ENFORCE_XDNN_SUCCESS(r, "bilstm_train");
} else {
int r =
xpu::lstm_train<T, T, int16_t>(dev_ctx.x_context(),
(const T*)cur_input_ptr,
(const T*)h_0,
(const T*)c_0,
(const T*)w_x,
(const T*)w_h,
(const T*)b_x,
(const T*)b_h,
reinterpret_cast<T*>(cur_output_ptr),
reinterpret_cast<T*>(last_h),
reinterpret_cast<T*>(last_c),
batch_size,
cur_xdim,
hidden_size,
seq_len,
seq_len_tensor,
nullptr,
nullptr,
nullptr,
nullptr,
reinterpret_cast<T*>(i_f_g_o),
reinterpret_cast<T*>(c),
xpu::Activation_t::TANH,
xpu::Activation_t::SIGMOID);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "lstm_train");
}
}
}
} // namespace phi
PD_REGISTER_KERNEL(rnn, XPU, ALL_LAYOUT, phi::RnnKernel, float) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
namespace phi {
template <typename TensorType, typename T>
void reset_parameter_vector(const std::vector<TensorType>& raw_params_vec,
const int& num_layers,
const bool& is_bidirec,
std::vector<std::vector<T*>>* params_vec) {
// the parameter raw seuquence is [FWhi, FWhh, BWhi, BWhh] * num_layers
// + [FBhi, FBhh, BBhi, BBhh] * num_layers, we will reset the parameter to
// ([FWhi, FWhh, FBhi, FBhh] + [BWhi, BWhh, BBhi, BBhh]) * num_layers
const int& direction_num = is_bidirec ? 2 : 1;
const int& layer_weight_size = 4 * direction_num;
const int& all_weight_size = num_layers * layer_weight_size;
const int& bias_start_idx = all_weight_size / 2;
for (int i = 0; i < num_layers; i++) {
params_vec->at(i).resize(layer_weight_size);
for (int j = 0; j < layer_weight_size; j++) {
int k = j % 4;
const int& section = j / 4;
int tensor_idx = i * 2 * direction_num + section * 2 + k % 2;
if (k >= 2) {
tensor_idx += bias_start_idx;
}
using remove_cv_t = typename std::remove_cv<T>::type;
params_vec->at(i)[j] =
raw_params_vec[tensor_idx]->template data<remove_cv_t>();
}
}
}
} // namespace phi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册