Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
8f7b5883
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8f7b5883
编写于
3月 29, 2019
作者:
T
Tao Luo
提交者:
GitHub
3月 29, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16529 from lidanqing-intel/lidanqing/preprocess-data
preprocess with PIL the full val dataset and save binary
上级
5b240023
0d656996
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
162 addition
and
0 deletion
+162
-0
paddle/fluid/inference/tests/api/full_ILSVRC2012_val_preprocess.py
...uid/inference/tests/api/full_ILSVRC2012_val_preprocess.py
+162
-0
未找到文件。
paddle/fluid/inference/tests/api/full_ILSVRC2012_val_preprocess.py
0 → 100644
浏览文件 @
8f7b5883
# copyright (c) 2019 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
unittest
import
os
import
numpy
as
np
import
time
import
sys
import
random
import
functools
import
contextlib
from
PIL
import
Image
,
ImageEnhance
import
math
from
paddle.dataset.common
import
download
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
DATA_DIM
=
224
SIZE_FLOAT32
=
4
SIZE_INT64
=
8
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
resized_width
=
int
(
round
(
img
.
size
[
0
]
*
percent
))
resized_height
=
int
(
round
(
img
.
size
[
1
]
*
percent
))
img
=
img
.
resize
((
resized_width
,
resized_height
),
Image
.
LANCZOS
)
return
img
def
crop_image
(
img
,
target_size
,
center
):
width
,
height
=
img
.
size
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
/
2
h_start
=
(
height
-
size
)
/
2
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
.
crop
((
w_start
,
h_start
,
w_end
,
h_end
))
return
img
def
process_image
(
img_path
,
mode
,
color_jitter
,
rotate
):
img
=
Image
.
open
(
img_path
)
img
=
resize_short
(
img
,
target_size
=
256
)
img
=
crop_image
(
img
,
target_size
=
DATA_DIM
,
center
=
True
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img
=
np
.
array
(
img
).
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
img
-=
img_mean
img
/=
img_std
return
img
def
download_unzip
():
int8_download
=
'int8/download'
target_name
=
'data'
cache_folder
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset/'
+
int8_download
)
target_folder
=
os
.
path
.
join
(
cache_folder
,
target_name
)
data_urls
=
[]
data_md5s
=
[]
data_urls
.
append
(
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
)
data_md5s
.
append
(
'60f6525b0e1d127f345641d75d41f0a8'
)
data_urls
.
append
(
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
)
data_md5s
.
append
(
'1e9f15f64e015e58d6f9ec3210ed18b5'
)
file_names
=
[]
for
i
in
range
(
0
,
len
(
data_urls
)):
download
(
data_urls
[
i
],
cache_folder
,
data_md5s
[
i
])
file_names
.
append
(
data_urls
[
i
].
split
(
'/'
)[
-
1
])
zip_path
=
os
.
path
.
join
(
cache_folder
,
'full_imagenet_val.tar.gz'
)
if
not
os
.
path
.
exists
(
zip_path
):
cat_command
=
'cat'
for
file_name
in
file_names
:
cat_command
+=
' '
+
os
.
path
.
join
(
cache_folder
,
file_name
)
cat_command
+=
' > '
+
zip_path
os
.
system
(
cat_command
)
print
(
'Data is downloaded at {0}
\n
'
).
format
(
zip_path
)
if
not
os
.
path
.
exists
(
target_folder
):
cmd
=
'mkdir {0} && tar xf {1} -C {0}'
.
format
(
target_folder
,
zip_path
)
os
.
system
(
cmd
)
print
(
'Data is unzipped at {0}
\n
'
.
format
(
target_folder
))
data_dir
=
os
.
path
.
join
(
target_folder
,
'ILSVRC2012'
)
print
(
'ILSVRC2012 full val set at {0}
\n
'
.
format
(
data_dir
))
return
data_dir
def
reader
():
data_dir
=
download_unzip
()
file_list
=
os
.
path
.
join
(
data_dir
,
'val_list.txt'
)
output_file
=
os
.
path
.
join
(
data_dir
,
'int8_full_val.bin'
)
with
open
(
file_list
)
as
flist
:
lines
=
[
line
.
strip
()
for
line
in
flist
]
num_images
=
len
(
lines
)
if
not
os
.
path
.
exists
(
output_file
):
print
(
'Preprocessing to binary file...<num_images><all images><all labels>...
\n
'
)
with
open
(
output_file
,
"w+b"
)
as
of
:
#save num_images(int64_t) to file
of
.
seek
(
0
)
num
=
np
.
array
(
int
(
num_images
)).
astype
(
'int64'
)
of
.
write
(
num
.
tobytes
())
for
idx
,
line
in
enumerate
(
lines
):
img_path
,
label
=
line
.
split
()
img_path
=
os
.
path
.
join
(
data_dir
,
img_path
)
if
not
os
.
path
.
exists
(
img_path
):
continue
#save image(float32) to file
img
=
process_image
(
img_path
,
'val'
,
color_jitter
=
False
,
rotate
=
False
)
np_img
=
np
.
array
(
img
)
of
.
seek
(
SIZE_INT64
+
SIZE_FLOAT32
*
DATA_DIM
*
DATA_DIM
*
3
*
idx
)
of
.
write
(
np_img
.
astype
(
'float32'
).
tobytes
())
#save label(int64_t) to file
label_int
=
(
int
)(
label
)
np_label
=
np
.
array
(
label_int
)
of
.
seek
(
SIZE_INT64
+
SIZE_FLOAT32
*
DATA_DIM
*
DATA_DIM
*
3
*
num_images
+
idx
*
SIZE_INT64
)
of
.
write
(
np_label
.
astype
(
'int64'
).
tobytes
())
print
(
'The preprocessed binary file path {}
\n
'
.
format
(
output_file
))
if
__name__
==
'__main__'
:
reader
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录