Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
8f469ddd
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8f469ddd
编写于
4月 18, 2022
作者:
Z
zhangkaihuo
提交者:
GitHub
4月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add sparse kernel coalesced (#41784)
上级
c31dd04c
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
861 addition
and
149 deletion
+861
-149
paddle/phi/kernels/funcs/sparse/flatten_indices.cu.h
paddle/phi/kernels/funcs/sparse/flatten_indices.cu.h
+57
-0
paddle/phi/kernels/funcs/sparse/flatten_indices.h
paddle/phi/kernels/funcs/sparse/flatten_indices.h
+93
-0
paddle/phi/kernels/funcs/sparse/scatter.cu.h
paddle/phi/kernels/funcs/sparse/scatter.cu.h
+63
-0
paddle/phi/kernels/funcs/sparse/utils.cu.h
paddle/phi/kernels/funcs/sparse/utils.cu.h
+31
-0
paddle/phi/kernels/sparse/coalesced_kernel.h
paddle/phi/kernels/sparse/coalesced_kernel.h
+30
-0
paddle/phi/kernels/sparse/cpu/coalesced_kernel.cc
paddle/phi/kernels/sparse/cpu/coalesced_kernel.cc
+121
-0
paddle/phi/kernels/sparse/cpu/sparse_mask_kernel.cc
paddle/phi/kernels/sparse/cpu/sparse_mask_kernel.cc
+6
-4
paddle/phi/kernels/sparse/gpu/coalesced_kernel.cu
paddle/phi/kernels/sparse/gpu/coalesced_kernel.cu
+189
-0
paddle/phi/kernels/sparse/gpu/convolution.cu.h
paddle/phi/kernels/sparse/gpu/convolution.cu.h
+4
-51
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
+13
-11
paddle/phi/kernels/sparse/gpu/convolution_kernel.cu
paddle/phi/kernels/sparse/gpu/convolution_kernel.cu
+12
-10
paddle/phi/kernels/sparse/gpu/sparse_mask_kernel.cu
paddle/phi/kernels/sparse/gpu/sparse_mask_kernel.cu
+21
-35
paddle/phi/kernels/sparse/sparse_utils_kernel.h
paddle/phi/kernels/sparse/sparse_utils_kernel.h
+4
-3
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
+153
-31
python/paddle/sparse/creation.py
python/paddle/sparse/creation.py
+63
-4
python/paddle/utils/code_gen/sparse_api.yaml
python/paddle/utils/code_gen/sparse_api.yaml
+1
-0
未找到文件。
paddle/phi/kernels/funcs/sparse/flatten_indices.cu.h
0 → 100644
浏览文件 @
8f469ddd
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/kernels/funcs/sparse/flatten_indices.h"
namespace
phi
{
namespace
funcs
{
namespace
sparse
{
template
<
typename
IntT
>
__global__
void
FlattenIndicesKernel
(
const
IntT
*
indices
,
const
IntT
*
sparse_offsets
,
const
int64_t
non_zero_num
,
const
int64_t
sparse_dim
,
IntT
*
out
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
phi
::
funcs
::
sparse
::
FlattenIndices
<
IntT
>
(
indices
,
sparse_offsets
,
non_zero_num
,
sparse_dim
,
tid
,
gridDim
.
x
*
blockDim
.
x
,
out
);
}
template
<
typename
IntT
>
__global__
void
IndexToCoordinateKernel
(
const
IntT
*
indexs
,
const
Dim
<
DDim
::
kMaxRank
>
dims
,
const
int64_t
non_zero_num
,
const
int64_t
sparse_dim
,
IntT
*
indices
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
IndexToCoordinate
(
indexs
,
dims
,
non_zero_num
,
sparse_dim
,
tid
,
gridDim
.
x
*
blockDim
.
x
,
indices
);
}
}
// namespace sparse
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/funcs/sparse/flatten_indices.h
0 → 100644
浏览文件 @
8f469ddd
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stdint.h>
#include "paddle/phi/core/ddim.h"
namespace
phi
{
namespace
funcs
{
namespace
sparse
{
template
<
typename
IntT
>
inline
const
IntT
HOSTDEVICE
CoordinateToIndex
(
const
IntT
*
indices
,
const
IntT
*
sparse_offsets
,
const
int64_t
non_zero_num
,
const
int64_t
sparse_dim
,
const
int
i
)
{
IntT
index
=
0
;
for
(
IntT
j
=
0
;
j
<
sparse_dim
;
j
++
)
{
index
+=
indices
[
j
*
non_zero_num
+
i
]
*
sparse_offsets
[
j
];
}
return
index
;
}
template
<
typename
IntT
>
inline
void
HOSTDEVICE
FlattenIndices
(
const
IntT
*
indices
,
const
IntT
*
sparse_offsets
,
const
int64_t
non_zero_num
,
const
int64_t
sparse_dim
,
const
int64_t
start
,
const
int64_t
stride
,
IntT
*
out
)
{
for
(
int64_t
i
=
start
;
i
<
non_zero_num
;
i
+=
stride
)
{
out
[
i
]
=
CoordinateToIndex
(
indices
,
sparse_offsets
,
non_zero_num
,
sparse_dim
,
i
);
}
}
// 1. indices.dims().size() == 2
template
<
typename
IntT
>
inline
void
CalcOffsetsPerDim
(
const
DDim
&
dims
,
const
int64_t
sparse_dim
,
IntT
*
offsets
)
{
IntT
offset
=
1
;
for
(
IntT
i
=
sparse_dim
-
1
;
i
>=
0
;
i
--
)
{
offsets
[
i
]
=
offset
;
offset
*=
dims
[
i
];
}
}
template
<
typename
IntT
>
inline
void
HOSTDEVICE
IndexToCoordinate
(
const
IntT
index
,
const
Dim
<
DDim
::
kMaxRank
>&
dims
,
const
int64_t
non_zero_num
,
const
int64_t
sparse_dim
,
const
int
indices_offset
,
IntT
*
indices
)
{
IntT
tmp_index
=
index
;
for
(
int
j
=
sparse_dim
-
1
;
j
>=
0
;
j
--
)
{
indices
[
j
*
non_zero_num
+
indices_offset
]
=
tmp_index
%
dims
[
j
];
tmp_index
/=
dims
[
j
];
}
}
template
<
typename
IntT
>
inline
void
HOSTDEVICE
IndexToCoordinate
(
const
IntT
*
indexs
,
const
Dim
<
DDim
::
kMaxRank
>&
dims
,
const
int64_t
non_zero_num
,
const
int64_t
sparse_dim
,
const
int64_t
start
,
const
int64_t
stride
,
IntT
*
indices
)
{
for
(
int64_t
i
=
start
;
i
<
non_zero_num
;
i
+=
stride
)
{
IntT
tmp_index
=
indexs
[
i
];
IndexToCoordinate
(
tmp_index
,
dims
,
non_zero_num
,
sparse_dim
,
i
,
indices
);
}
}
}
// namespace sparse
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/funcs/sparse/scatter.cu.h
0 → 100644
浏览文件 @
8f469ddd
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace
phi
{
namespace
funcs
{
namespace
sparse
{
/**
* brief: scatter add
* input: the inputs
* unique_value: refer to UpdateIndexKernel notes
* out_index: the output feature index
* non_zero_num: the number of output features
* rulebook_len: the length of rulebook
* channels: the output channel size
* out: the outputs
**/
template
<
typename
T
>
__global__
void
ScatterKernel
(
const
T
*
input
,
const
int
*
unique_value
,
const
int
*
out_index
,
const
int
non_zero_num
,
const
int
rulebook_len
,
const
int
channels
,
T
*
out
,
const
bool
subm
=
false
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
for
(
int
i
=
tid
;
i
<
non_zero_num
*
channels
;
i
+=
gridDim
.
x
*
blockDim
.
x
)
{
int
indices_i
=
i
/
channels
;
int
channels_i
=
i
-
indices_i
*
channels
;
int
start
=
unique_value
[
indices_i
];
int
end
=
indices_i
==
non_zero_num
-
1
?
rulebook_len
:
unique_value
[
indices_i
+
1
];
// max(end-start) = kernel_size
T
sum
=
static_cast
<
T
>
(
0
);
if
(
subm
)
{
sum
=
out
[
indices_i
*
channels
+
channels_i
];
}
for
(
int
j
=
start
;
j
<
end
;
j
++
)
{
const
int
out_feature_i
=
out_index
[
j
];
sum
+=
input
[
out_feature_i
*
channels
+
channels_i
];
}
out
[
indices_i
*
channels
+
channels_i
]
=
sum
;
}
}
}
// namespace sparse
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/funcs/sparse/utils.cu.h
0 → 100644
浏览文件 @
8f469ddd
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace
phi
{
namespace
funcs
{
namespace
sparse
{
// brief: calculation the distance between start and end
template
<
typename
T
>
__global__
void
DistanceKernel
(
const
T
*
start
,
const
T
*
end
,
T
*
distance
)
{
if
(
threadIdx
.
x
==
0
)
{
*
distance
=
end
-
start
;
}
}
}
// namespace sparse
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/sparse/coalesced_kernel.h
0 → 100644
浏览文件 @
8f469ddd
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
CoalescedKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
SparseCooTensor
*
out
);
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/cpu/coalesced_kernel.cc
0 → 100644
浏览文件 @
8f469ddd
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/coalesced_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/funcs/sparse/flatten_indices.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
IntT
>
void
CoalescedCPUKernel
(
const
CPUContext
&
dev_ctx
,
const
SparseCooTensor
&
x
,
SparseCooTensor
*
out
)
{
const
DenseTensor
&
x_indices
=
x
.
non_zero_indices
();
const
DenseTensor
&
x_values
=
x
.
non_zero_elements
();
DenseTensor
out_indices
=
phi
::
EmptyLike
<
IntT
>
(
dev_ctx
,
x_indices
);
DenseTensor
out_values
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
x_values
);
const
int64_t
sparse_dim
=
x
.
non_zero_indices
().
dims
()[
0
];
std
::
vector
<
IntT
>
sparse_offsets
(
sparse_dim
),
x_indexs
(
x
.
nnz
());
phi
::
funcs
::
sparse
::
CalcOffsetsPerDim
<
IntT
>
(
x
.
dims
(),
sparse_dim
,
sparse_offsets
.
data
());
phi
::
funcs
::
sparse
::
FlattenIndices
(
x
.
non_zero_indices
().
data
<
IntT
>
(),
sparse_offsets
.
data
(),
x
.
nnz
(),
sparse_dim
,
0
,
1
,
x_indexs
.
data
());
const
T
*
x_values_ptr
=
x_values
.
data
<
T
>
();
const
int64_t
stride
=
x
.
dims
().
size
()
==
sparse_dim
?
1
:
x
.
dims
().
size
()
-
sparse_dim
;
std
::
map
<
IntT
,
std
::
vector
<
int64_t
>>
indices_to_index
;
for
(
uint64_t
i
=
0
;
i
<
x_indexs
.
size
();
i
++
)
{
IntT
index
=
x_indexs
[
i
];
if
(
indices_to_index
.
find
(
index
)
==
indices_to_index
.
end
())
{
std
::
vector
<
int64_t
>
indexs
;
indexs
.
push_back
(
i
);
indices_to_index
[
index
]
=
indexs
;
}
else
{
indices_to_index
[
index
].
push_back
(
i
);
}
}
const
int64_t
out_nnz
=
indices_to_index
.
size
();
out_indices
.
Resize
({
x_indices
.
dims
()[
0
],
out_nnz
});
if
(
out_values
.
dims
().
size
()
==
1
)
{
out_values
.
Resize
(
phi
::
make_ddim
({
out_nnz
}));
}
else
{
out_values
.
Resize
(
phi
::
make_ddim
({
out_nnz
,
x_values
.
dims
()[
1
]}));
}
IntT
*
out_indices_ptr
=
out_indices
.
data
<
IntT
>
();
T
*
out_values_ptr
=
out_values
.
data
<
T
>
();
auto
iter
=
indices_to_index
.
begin
();
Dim
<
DDim
::
kMaxRank
>
const_dims
;
for
(
int
i
=
0
;
i
<
x
.
dims
().
size
();
i
++
)
{
const_dims
[
i
]
=
x
.
dims
()[
i
];
}
for
(
int
i
=
0
;
iter
!=
indices_to_index
.
end
();
iter
++
,
i
++
)
{
phi
::
funcs
::
sparse
::
IndexToCoordinate
(
iter
->
first
,
const_dims
,
out_nnz
,
sparse_dim
,
i
,
out_indices_ptr
);
memcpy
(
out_values_ptr
+
i
*
stride
,
x_values_ptr
+
iter
->
second
[
0
]
*
stride
,
stride
*
sizeof
(
T
));
for
(
uint64_t
j
=
1
;
j
<
iter
->
second
.
size
();
j
++
)
{
for
(
int
k
=
0
;
k
<
stride
;
k
++
)
{
out_values_ptr
[
i
*
stride
+
k
]
+=
x_values_ptr
[
iter
->
second
[
j
]
*
stride
+
k
];
}
}
}
out
->
SetMember
(
out_indices
,
out_values
,
x
.
dims
(),
true
);
}
template
<
typename
T
,
typename
Context
>
void
CoalescedKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
SparseCooTensor
*
out
)
{
PD_VISIT_INTEGRAL_TYPES
(
x
.
non_zero_indices
().
dtype
(),
"CoalescedCPUKernel"
,
([
&
]
{
CoalescedCPUKernel
<
T
,
data_t
>
(
dev_ctx
,
x
,
out
);
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sort
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CoalescedKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
uint8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
paddle/phi/kernels/sparse/cpu/sparse_mask_kernel.cc
浏览文件 @
8f469ddd
...
...
@@ -20,7 +20,9 @@ limitations under the License. */
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
#include "paddle/phi/kernels/funcs/sparse/flatten_indices.h"
#include "paddle/phi/api/ext/dispatch.h"
namespace
phi
{
namespace
sparse
{
...
...
@@ -56,10 +58,10 @@ void SparseMaskCPUKernel(const CPUContext& dev_ctx,
std
::
vector
<
IntT
>
out_indexs
(
non_zero_num
),
sparse_offsets
(
sparse_dim
);
phi
::
funcs
::
sparse
::
CalcOffsetsPerDim
<
IntT
>
(
dims
,
sparse_dim
,
&
sparse_offsets
);
dims
,
sparse_dim
,
sparse_offsets
.
data
()
);
for
(
int64_t
i
=
0
;
i
<
non_zero_num
;
i
++
)
{
int64_t
index
=
phi
::
funcs
::
sparse
::
Indices
ToIndex
<
IntT
>
(
int64_t
index
=
phi
::
funcs
::
sparse
::
Coordinate
ToIndex
<
IntT
>
(
indices_ptr
,
sparse_offsets
.
data
(),
non_zero_num
,
sparse_dim
,
i
);
memcpy
(
out_values_ptr
+
i
*
cols
,
x_ptr
+
index
*
cols
,
cols
*
sizeof
(
T
));
}
...
...
@@ -98,7 +100,7 @@ void SparseMaskHelperCPUKernel(const CPUContext& dev_ctx,
std
::
vector
<
IntT
>
sparse_offsets
(
sparse_dim
),
x_indexs
(
x
.
nnz
()),
mask_indexs
(
mask_indices
.
dims
()[
1
]);
phi
::
funcs
::
sparse
::
CalcOffsetsPerDim
<
IntT
>
(
x
.
dims
(),
sparse_dim
,
&
sparse_offsets
);
x
.
dims
(),
sparse_dim
,
sparse_offsets
.
data
()
);
phi
::
funcs
::
sparse
::
FlattenIndices
(
x
.
non_zero_indices
().
data
<
IntT
>
(),
sparse_offsets
.
data
(),
...
...
paddle/phi/kernels/sparse/gpu/coalesced_kernel.cu
0 → 100644
浏览文件 @
8f469ddd
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
#include "paddle/phi/kernels/funcs/sparse/flatten_indices.cu.h"
#include "paddle/phi/kernels/funcs/sparse/scatter.cu.h"
#include "paddle/phi/kernels/funcs/sparse/utils.cu.h"
#include "paddle/phi/kernels/sparse/coalesced_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
IntT
>
void
CoalescedGPUKernel
(
const
GPUContext
&
dev_ctx
,
const
SparseCooTensor
&
x
,
SparseCooTensor
*
out
)
{
const
DenseTensor
&
x_indices
=
x
.
non_zero_indices
();
const
DenseTensor
&
x_values
=
x
.
non_zero_elements
();
DenseTensor
out_indices
=
phi
::
EmptyLike
<
IntT
>
(
dev_ctx
,
x_indices
);
DenseTensor
out_values
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
x_values
);
const
int64_t
nnz
=
x
.
nnz
();
const
int64_t
sparse_dim
=
x
.
non_zero_indices
().
dims
()[
0
];
std
::
vector
<
IntT
>
sparse_offsets
(
sparse_dim
);
phi
::
funcs
::
sparse
::
CalcOffsetsPerDim
<
IntT
>
(
x
.
dims
(),
sparse_dim
,
sparse_offsets
.
data
());
DenseTensorMeta
sparse_offset_meta
(
paddle
::
experimental
::
CppTypeToDataType
<
IntT
>::
Type
(),
{
sparse_dim
},
DataLayout
::
NCHW
);
DenseTensor
d_sparse_offsets
=
phi
::
Empty
<
GPUContext
>
(
dev_ctx
,
std
::
move
(
sparse_offset_meta
));
DenseTensor
indexs
=
phi
::
Empty
(
dev_ctx
,
DenseTensorMeta
(
x_indices
.
dtype
(),
{
nnz
},
x_indices
.
layout
()));
IntT
*
indexs_ptr
=
indexs
.
data
<
IntT
>
();
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
d_sparse_offsets
.
data
<
IntT
>
(),
sparse_offsets
.
data
(),
sizeof
(
IntT
)
*
sparse_dim
,
#ifdef PADDLE_WITH_HIP
hipMemcpyHostToDevice
,
#else
cudaMemcpyHostToDevice
,
#endif
dev_ctx
.
stream
());
// 1. flatten indices
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
nnz
,
1
);
phi
::
funcs
::
sparse
::
FlattenIndicesKernel
<<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
x
.
non_zero_indices
().
data
<
IntT
>
(),
d_sparse_offsets
.
data
<
IntT
>
(),
indexs
.
numel
(),
sparse_dim
,
indexs_ptr
);
// 2. get the address of each non-zero values
const
T
*
x_values_ptr
=
x_values
.
data
<
T
>
();
const
int64_t
stride
=
x
.
dims
().
size
()
==
sparse_dim
?
1
:
x
.
dims
().
size
()
-
sparse_dim
;
DenseTensor
values_indexs
=
phi
::
Empty
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT32
,
{
nnz
},
DataLayout
::
NCHW
));
int
*
values_indexs_ptr
=
values_indexs
.
data
<
int
>
();
DenseTensor
public_indexs
=
phi
::
EmptyLike
<
int
>
(
dev_ctx
,
values_indexs
);
// values_indexs = [0,1,2,,,nnz-1]
phi
::
IndexKernel
<
int
,
kps
::
IdentityFunctor
<
int
>>
(
dev_ctx
,
&
values_indexs
,
kps
::
IdentityFunctor
<
int
>
());
phi
::
IndexKernel
<
int
,
kps
::
IdentityFunctor
<
int
>>
(
dev_ctx
,
&
public_indexs
,
kps
::
IdentityFunctor
<
int
>
());
// 3. sort (indices, values index)
#ifdef PADDLE_WITH_HIP
thrust
::
sort_by_key
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
thrust
::
sort_by_key
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
indexs_ptr
,
indexs_ptr
+
nnz
,
values_indexs_ptr
);
// 4. unique index
thrust
::
pair
<
IntT
*
,
int
*>
new_end
=
#ifdef PADDLE_WITH_HIP
thrust
::
unique_by_key
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
thrust
::
unique_by_key
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
indexs_ptr
,
indexs_ptr
+
nnz
,
public_indexs
.
data
<
int
>
());
phi
::
funcs
::
sparse
::
DistanceKernel
<<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
indexs_ptr
,
new_end
.
first
,
out_indices
.
data
<
IntT
>
());
IntT
out_nnz
=
0
;
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
out_nnz
,
out_indices
.
data
<
IntT
>
(),
sizeof
(
IntT
),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost
,
#else
cudaMemcpyDeviceToHost
,
#endif
dev_ctx
.
stream
());
dev_ctx
.
Wait
();
out_indices
.
Resize
({
x_indices
.
dims
()[
0
],
out_nnz
});
if
(
out_values
.
dims
().
size
()
==
1
)
{
out_values
.
Resize
(
phi
::
make_ddim
({
out_nnz
}));
}
else
{
out_values
.
Resize
(
phi
::
make_ddim
({
out_nnz
,
x_values
.
dims
()[
1
]}));
}
// 5. scatter the values
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
nnz
*
stride
,
1
);
phi
::
funcs
::
sparse
::
ScatterKernel
<
T
><<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
x_values_ptr
,
public_indexs
.
data
<
int
>
(),
values_indexs_ptr
,
out_nnz
,
nnz
,
stride
,
out_values
.
data
<
T
>
());
// 6. convert index to coordinate
Dim
<
DDim
::
kMaxRank
>
const_dims
;
for
(
int
i
=
0
;
i
<
x
.
dims
().
size
();
i
++
)
{
const_dims
[
i
]
=
x
.
dims
()[
i
];
}
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
out_nnz
,
1
);
phi
::
funcs
::
sparse
::
IndexToCoordinateKernel
<<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
indexs_ptr
,
const_dims
,
out_nnz
,
sparse_dim
,
out_indices
.
data
<
IntT
>
());
out
->
SetMember
(
out_indices
,
out_values
,
x
.
dims
(),
true
);
}
template
<
typename
T
,
typename
Context
>
void
CoalescedKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
SparseCooTensor
*
out
)
{
PD_VISIT_INTEGRAL_TYPES
(
x
.
non_zero_indices
().
dtype
(),
"CoalescedGPUKernel"
,
([
&
]
{
CoalescedGPUKernel
<
T
,
data_t
>
(
dev_ctx
,
x
,
out
);
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sort
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CoalescedKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
uint8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
paddle/phi/kernels/sparse/gpu/convolution.cu.h
浏览文件 @
8f469ddd
...
...
@@ -26,6 +26,7 @@ limitations under the License. */
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/sparse/utils.cu.h"
#include "paddle/phi/kernels/primitive/compute_primitives.h"
#include "paddle/phi/kernels/sparse/convolution_kernel.h"
...
...
@@ -60,46 +61,6 @@ __global__ void GatherKernel(const T* params,
}
}
/**
* brief: scatter add
* input: the inputs
* unique_value: refer to UpdateIndexKernel notes
* out_index: the output feature index
* non_zero_num: the number of output features
* rulebook_len: the length of rulebook
* channels: the output channel size
* out: the outputs
**/
template
<
typename
T
>
__global__
void
ScatterKernel
(
const
T
*
input
,
const
int
*
unique_value
,
const
int
*
out_index
,
const
int
non_zero_num
,
const
int
rulebook_len
,
const
int
channels
,
T
*
out
,
const
bool
subm
=
false
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
for
(
int
i
=
tid
;
i
<
non_zero_num
*
channels
;
i
+=
gridDim
.
x
*
blockDim
.
x
)
{
int
indices_i
=
i
/
channels
;
int
channels_i
=
i
-
indices_i
*
channels
;
int
start
=
unique_value
[
indices_i
];
int
end
=
indices_i
==
non_zero_num
-
1
?
rulebook_len
:
unique_value
[
indices_i
+
1
];
// max(end-start) = kernel_size
T
sum
=
static_cast
<
T
>
(
0
);
if
(
subm
)
{
sum
=
out
[
indices_i
*
channels
+
channels_i
];
}
for
(
int
j
=
start
;
j
<
end
;
j
++
)
{
const
int
out_feature_i
=
out_index
[
j
];
sum
+=
input
[
out_feature_i
*
channels
+
channels_i
];
}
out
[
indices_i
*
channels
+
channels_i
]
=
sum
;
}
}
template
<
typename
Context
,
typename
IntT
=
int
>
inline
IntT
*
SortedAndUniqueIndex
(
const
Context
&
dev_ctx
,
const
IntT
*
rulebook_ptr
,
...
...
@@ -186,14 +147,6 @@ __global__ void UpdateIndexKernel(const T* unique_keys,
}
}
// brief: calculation the distance between start and end
template
<
typename
T
>
__global__
void
DistanceKernel
(
const
T
*
start
,
const
T
*
end
,
T
*
distance
)
{
if
(
threadIdx
.
x
==
0
)
{
*
distance
=
end
-
start
;
}
}
template
<
typename
IntT
>
__global__
void
UpdateOutIndexAndCounterAfterLowerBound
(
const
IntT
*
x_indexs
,
...
...
@@ -402,7 +355,7 @@ int ProductRuleBook(const Context& dev_ctx,
rulebook_ptr
+
rulebook_rows
*
rulebook_cols
,
-
1
);
DistanceKernel
<
IntT
><<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
phi
::
funcs
::
sparse
::
DistanceKernel
<
IntT
><<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
rulebook_ptr
,
last
,
rulebook_ptr
+
3
*
kernel_size
*
non_zero_num
-
1
);
IntT
rulebook_len
=
0
;
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
...
...
@@ -468,7 +421,7 @@ int ProductRuleBook(const Context& dev_ctx,
rulebook_ptr
,
rulebook_ptr
+
3
*
rulebook_len
,
-
1
);
DistanceKernel
<
IntT
><<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
phi
::
funcs
::
sparse
::
DistanceKernel
<
IntT
><<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
rulebook_ptr
,
last
,
bound_ptr
);
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
rulebook_len
,
bound_ptr
,
...
...
@@ -536,7 +489,7 @@ int ProductRuleBook(const Context& dev_ctx,
// thrust::distance doesn't support stream parameters
// const int out_non_zero_num = thrust::distance(unique_key_ptr,
// new_end.first);
DistanceKernel
<
IntT
><<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
phi
::
funcs
::
sparse
::
DistanceKernel
<
IntT
><<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
unique_key_ptr
,
new_end
,
rulebook_ptr
+
rulebook_rows
*
rulebook_cols
-
1
);
...
...
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
浏览文件 @
8f469ddd
...
...
@@ -22,6 +22,7 @@ limitations under the License. */
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/sparse/scatter.cu.h"
#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
#include "paddle/phi/kernels/sparse/gpu/convolution.cu.h"
...
...
@@ -222,17 +223,18 @@ void Conv3dGradGPUKernel(const GPUContext& dev_ctx,
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
rulebook_len
*
in_channels
,
1
);
ScatterKernel
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
d_x_features_ptr
,
unique_value
.
data
<
int
>
(),
out_index
.
data
<
int
>
(),
x
.
nnz
(),
rulebook_len
,
in_channels
,
x_grad_values_ptr
,
subm
);
phi
::
funcs
::
sparse
::
ScatterKernel
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
d_x_features_ptr
,
unique_value
.
data
<
int
>
(),
out_index
.
data
<
int
>
(),
x
.
nnz
(),
rulebook_len
,
in_channels
,
x_grad_values_ptr
,
subm
);
}
template
<
typename
T
,
typename
Context
>
...
...
paddle/phi/kernels/sparse/gpu/convolution_kernel.cu
浏览文件 @
8f469ddd
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/scatter.cu.h"
#include "paddle/phi/kernels/funcs/sparse/scatter.cu.h"
#include "paddle/phi/kernels/sparse/convolution_kernel.h"
#include "paddle/phi/kernels/sparse/gpu/convolution.cu.h"
...
...
@@ -169,16 +170,17 @@ void Conv3dGPUKernel(const GPUContext& dev_ctx,
}
else
{
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
out
->
nnz
()
*
out_channels
,
1
);
ScatterKernel
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
out_features_ptr
,
unique_value
.
data
<
int
>
(),
out_index
.
data
<
int
>
(),
out
->
nnz
(),
n
,
out_channels
,
out_values_ptr
);
phi
::
funcs
::
sparse
::
ScatterKernel
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
out_features_ptr
,
unique_value
.
data
<
int
>
(),
out_index
.
data
<
int
>
(),
out
->
nnz
(),
n
,
out_channels
,
out_values_ptr
);
}
}
/**
...
...
paddle/phi/kernels/sparse/gpu/sparse_mask_kernel.cu
浏览文件 @
8f469ddd
...
...
@@ -23,7 +23,7 @@ limitations under the License. */
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/sparse/
common_shape
.h"
#include "paddle/phi/kernels/funcs/sparse/
flatten_indices.cu
.h"
#include "paddle/phi/kernels/sparse/sparse_mask_kernel.h"
namespace
phi
{
...
...
@@ -123,23 +123,6 @@ void SparseMaskKernel(const Context& dev_ctx,
}));
}
// TODO(zhangkaihuo): Use an op to realize the function of FlattenIndices
template
<
typename
IntT
>
__global__
void
FlattenIndicesKernel
(
const
IntT
*
indices
,
const
IntT
*
sparse_offsets
,
const
int64_t
non_zero_num
,
const
int64_t
sparse_dim
,
IntT
*
out
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
phi
::
funcs
::
sparse
::
FlattenIndices
<
IntT
>
(
indices
,
sparse_offsets
,
non_zero_num
,
sparse_dim
,
tid
,
gridDim
.
x
*
blockDim
.
x
,
out
);
}
template
<
typename
T
,
typename
IntT
>
__global__
void
SparseMaskCopyKernel
(
const
IntT
*
x_indexs
,
const
IntT
*
mask_indexs
,
...
...
@@ -192,7 +175,8 @@ void SparseMaskHelperGPUKernel(const GPUContext& dev_ctx,
IntT
*
bound_out_ptr
=
bound_out
.
data
<
IntT
>
();
// 1. calc the offsets of per dim
phi
::
funcs
::
sparse
::
CalcOffsetsPerDim
(
x
.
dims
(),
sparse_dim
,
&
sparse_offsets
);
phi
::
funcs
::
sparse
::
CalcOffsetsPerDim
(
x
.
dims
(),
sparse_dim
,
sparse_offsets
.
data
());
// 2. copy sparse_offsets to device
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
d_sparse_offsets
.
data
<
IntT
>
(),
sparse_offsets
.
data
(),
...
...
@@ -207,25 +191,27 @@ void SparseMaskHelperGPUKernel(const GPUContext& dev_ctx,
// 3. flatten x indices and mask indices
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
x_indexs
.
numel
(),
1
);
FlattenIndicesKernel
<<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
x
.
non_zero_indices
().
data
<
IntT
>
(),
d_sparse_offsets
.
data
<
IntT
>
(),
x_indexs
.
numel
(),
sparse_dim
,
x_indexs_ptr
);
phi
::
funcs
::
sparse
::
FlattenIndicesKernel
<<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
x
.
non_zero_indices
().
data
<
IntT
>
(),
d_sparse_offsets
.
data
<
IntT
>
(),
x_indexs
.
numel
(),
sparse_dim
,
x_indexs_ptr
);
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
mask_indexs
.
numel
(),
1
);
FlattenIndicesKernel
<<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
mask_indices
.
data
<
IntT
>
(),
d_sparse_offsets
.
data
<
IntT
>
(),
mask_indexs
.
numel
(),
sparse_dim
,
mask_indexs_ptr
);
phi
::
funcs
::
sparse
::
FlattenIndicesKernel
<<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
mask_indices
.
data
<
IntT
>
(),
d_sparse_offsets
.
data
<
IntT
>
(),
mask_indexs
.
numel
(),
sparse_dim
,
mask_indexs_ptr
);
// 4. call thrust::lower_bound
#ifdef PADDLE_WITH_HIP
thrust
::
lower_bound
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
...
...
paddle/phi/kernels/sparse/sparse_utils_kernel.h
浏览文件 @
8f469ddd
...
...
@@ -20,6 +20,7 @@ limitations under the License. */
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/sparse/coalesced_kernel.h"
namespace
phi
{
namespace
sparse
{
...
...
@@ -154,9 +155,9 @@ void SparseCooTensorKernel(const Context& dev_ctx,
const
DenseTensor
&
indices
,
const
IntArray
&
dense_shape
,
SparseCooTensor
*
out
)
{
*
out
=
SparseCooTensor
(
indices
,
values
,
phi
::
make_ddim
(
dense_shape
.
GetData
()));
// TODO(zhangkaihuo): sort and merge the dumplicate indices
SparseCooTensor
before_coalesced
(
indices
,
values
,
phi
::
make_ddim
(
dense_shape
.
GetData
()));
CoalescedKernel
<
T
,
Context
>
(
dev_ctx
,
before_coalesced
,
out
);
}
}
// namespace sparse
...
...
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
浏览文件 @
8f469ddd
...
...
@@ -19,6 +19,8 @@ import paddle
import
paddle.fluid.core
as
core
from
paddle.fluid.framework
import
_test_eager_guard
devices
=
[
'cpu'
,
'gpu'
]
class
TestSparseCreate
(
unittest
.
TestCase
):
def
test_create_coo_by_tensor
(
self
):
...
...
@@ -30,6 +32,8 @@ class TestSparseCreate(unittest.TestCase):
dense_elements
=
paddle
.
to_tensor
(
values
,
dtype
=
'float32'
)
coo
=
paddle
.
sparse
.
sparse_coo_tensor
(
dense_indices
,
dense_elements
,
dense_shape
,
stop_gradient
=
False
)
# test the to_string.py
print
(
coo
)
assert
np
.
array_equal
(
indices
,
coo
.
indices
().
numpy
())
assert
np
.
array_equal
(
values
,
coo
.
values
().
numpy
())
...
...
@@ -37,7 +41,7 @@ class TestSparseCreate(unittest.TestCase):
with
_test_eager_guard
():
indices
=
[[
0
,
1
,
2
],
[
1
,
2
,
0
]]
values
=
[
1.0
,
2.0
,
3.0
]
dense_shape
=
[
2
,
3
]
dense_shape
=
[
3
,
3
]
coo
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
,
dense_shape
)
assert
np
.
array_equal
(
indices
,
coo
.
indices
().
numpy
())
assert
np
.
array_equal
(
values
,
coo
.
values
().
numpy
())
...
...
@@ -67,6 +71,8 @@ class TestSparseCreate(unittest.TestCase):
dense_shape
=
[
3
,
4
]
csr
=
paddle
.
sparse
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
dense_shape
)
# test the to_string.py
print
(
csr
)
assert
np
.
array_equal
(
crows
,
csr
.
crows
().
numpy
())
assert
np
.
array_equal
(
cols
,
csr
.
cols
().
numpy
())
assert
np
.
array_equal
(
values
,
csr
.
values
().
numpy
())
...
...
@@ -205,38 +211,154 @@ class TestSparseConvert(unittest.TestCase):
def
test_sparse_coo_tensor_grad
(
self
):
with
_test_eager_guard
():
indices
=
[[
0
,
1
],
[
0
,
1
]]
values
=
[
1
,
2
]
indices
=
paddle
.
to_tensor
(
indices
,
dtype
=
'int32'
)
values
=
paddle
.
to_tensor
(
values
,
dtype
=
'float32'
,
stop_gradient
=
False
)
sparse_x
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
,
shape
=
[
2
,
2
],
stop_gradient
=
False
)
grad_indices
=
[[
0
,
1
],
[
1
,
1
]]
grad_values
=
[
2
,
3
]
grad_indices
=
paddle
.
to_tensor
(
grad_indices
,
dtype
=
'int32'
)
grad_values
=
paddle
.
to_tensor
(
grad_values
,
dtype
=
'float32'
)
sparse_out_grad
=
paddle
.
sparse
.
sparse_coo_tensor
(
grad_indices
,
grad_values
,
shape
=
[
2
,
2
])
sparse_x
.
backward
(
sparse_out_grad
)
correct_values_grad
=
[
0
,
3
]
assert
np
.
array_equal
(
correct_values_grad
,
values
.
grad
.
numpy
())
for
device
in
devices
:
if
device
==
'cpu'
or
(
device
==
'gpu'
and
paddle
.
is_compiled_with_cuda
()):
paddle
.
device
.
set_device
(
device
)
indices
=
[[
0
,
1
],
[
0
,
1
]]
values
=
[
1
,
2
]
indices
=
paddle
.
to_tensor
(
indices
,
dtype
=
'int32'
)
values
=
paddle
.
to_tensor
(
values
,
dtype
=
'float32'
,
stop_gradient
=
False
)
sparse_x
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
,
shape
=
[
2
,
2
],
stop_gradient
=
False
)
grad_indices
=
[[
0
,
1
],
[
1
,
1
]]
grad_values
=
[
2
,
3
]
grad_indices
=
paddle
.
to_tensor
(
grad_indices
,
dtype
=
'int32'
)
grad_values
=
paddle
.
to_tensor
(
grad_values
,
dtype
=
'float32'
)
sparse_out_grad
=
paddle
.
sparse
.
sparse_coo_tensor
(
grad_indices
,
grad_values
,
shape
=
[
2
,
2
])
sparse_x
.
backward
(
sparse_out_grad
)
correct_values_grad
=
[
0
,
3
]
assert
np
.
array_equal
(
correct_values_grad
,
values
.
grad
.
numpy
())
place
=
core
.
CPUPlace
()
indices_cpu
=
paddle
.
to_tensor
(
indices
,
dtype
=
'int32'
,
place
=
place
)
values_cpu
=
paddle
.
to_tensor
(
values
,
dtype
=
'float32'
,
place
=
place
,
stop_gradient
=
False
)
sparse_x_cpu
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices_cpu
,
values_cpu
,
shape
=
[
2
,
2
],
place
=
place
,
stop_gradient
=
False
)
def
test_sparse_coo_tensor_sorted
(
self
):
with
_test_eager_guard
():
for
device
in
devices
:
if
device
==
'cpu'
or
(
device
==
'gpu'
and
paddle
.
is_compiled_with_cuda
()):
paddle
.
device
.
set_device
(
device
)
#test unsorted and duplicate indices
indices
=
[[
1
,
0
,
0
],
[
0
,
1
,
1
]]
values
=
[
1.0
,
2.0
,
3.0
]
indices
=
paddle
.
to_tensor
(
indices
,
dtype
=
'int32'
)
values
=
paddle
.
to_tensor
(
values
,
dtype
=
'float32'
)
sparse_x
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
)
indices_sorted
=
[[
0
,
1
],
[
1
,
0
]]
values_sorted
=
[
5.0
,
1.0
]
assert
np
.
array_equal
(
indices_sorted
,
sparse_x
.
indices
().
numpy
())
assert
np
.
array_equal
(
values_sorted
,
sparse_x
.
values
().
numpy
())
class
TestCooError
(
unittest
.
TestCase
):
def
test_small_shape
(
self
):
with
_test_eager_guard
():
with
self
.
assertRaises
(
ValueError
):
indices
=
[[
2
,
3
],
[
0
,
2
]]
values
=
[
1
,
2
]
# 1. the shape too small
dense_shape
=
[
2
,
2
]
sparse_x
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
,
shape
=
dense_shape
)
def
test_same_nnz
(
self
):
with
_test_eager_guard
():
with
self
.
assertRaises
(
ValueError
):
# 2. test the nnz of indices must same as nnz of values
indices
=
[[
1
,
2
],
[
1
,
0
]]
values
=
[
1
,
2
,
3
]
sparse_x
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
)
def
test_same_dimensions
(
self
):
with
_test_eager_guard
():
with
self
.
assertRaises
(
ValueError
):
indices
=
[[
1
,
2
],
[
1
,
0
]]
values
=
[
1
,
2
,
3
]
shape
=
[
2
,
3
,
4
]
sparse_x
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
,
shape
=
shape
)
def
test_indices_dtype
(
self
):
with
_test_eager_guard
():
with
self
.
assertRaises
(
TypeError
):
indices
=
[[
1.0
,
2.0
],
[
0
,
1
]]
values
=
[
1
,
2
]
sparse_x
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
)
class
TestCsrError
(
unittest
.
TestCase
):
def
test_dimension1
(
self
):
with
_test_eager_guard
():
with
self
.
assertRaises
(
ValueError
):
crows
=
[
0
,
1
,
2
,
3
]
cols
=
[
0
,
1
,
2
]
values
=
[
1
,
2
,
3
]
shape
=
[
3
]
sparse_x
=
paddle
.
sparse
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
shape
)
def
test_dimension2
(
self
):
with
_test_eager_guard
():
with
self
.
assertRaises
(
ValueError
):
crows
=
[
0
,
1
,
2
,
3
]
cols
=
[
0
,
1
,
2
]
values
=
[
1
,
2
,
3
]
shape
=
[
3
,
3
,
3
,
3
]
sparse_x
=
paddle
.
sparse
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
shape
)
def
test_same_shape1
(
self
):
with
_test_eager_guard
():
with
self
.
assertRaises
(
ValueError
):
crows
=
[
0
,
1
,
2
,
3
]
cols
=
[
0
,
1
,
2
,
3
]
values
=
[
1
,
2
,
3
]
shape
=
[
3
,
4
]
sparse_x
=
paddle
.
sparse
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
shape
)
sparse_out_grad_cpu
=
paddle
.
sparse
.
sparse_coo_tensor
(
grad_indices
,
grad_values
,
shape
=
[
2
,
2
],
place
=
place
)
sparse_x_cpu
.
backward
(
sparse_out_grad_cpu
)
assert
np
.
array_equal
(
correct_values_grad
,
values_cpu
.
grad
.
numpy
())
def
test_same_shape2
(
self
):
with
_test_eager_guard
():
with
self
.
assertRaises
(
ValueError
):
crows
=
[
0
,
1
,
2
,
3
]
cols
=
[
0
,
1
,
2
,
3
]
values
=
[
1
,
2
,
3
,
4
]
shape
=
[
3
,
4
]
sparse_x
=
paddle
.
sparse
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
shape
)
def
test_same_shape3
(
self
):
with
_test_eager_guard
():
with
self
.
assertRaises
(
ValueError
):
crows
=
[
0
,
1
,
2
,
3
,
0
,
1
,
2
]
cols
=
[
0
,
1
,
2
,
3
,
0
,
1
,
2
]
values
=
[
1
,
2
,
3
,
4
,
0
,
1
,
2
]
shape
=
[
2
,
3
,
4
]
sparse_x
=
paddle
.
sparse
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
shape
)
def
test_crows_first_value
(
self
):
with
_test_eager_guard
():
with
self
.
assertRaises
(
ValueError
):
crows
=
[
1
,
1
,
2
,
3
]
cols
=
[
0
,
1
,
2
]
values
=
[
1
,
2
,
3
]
shape
=
[
3
,
4
]
sparse_x
=
paddle
.
sparse
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
shape
)
def
test_dtype
(
self
):
with
_test_eager_guard
():
with
self
.
assertRaises
(
TypeError
):
crows
=
[
0
,
1
,
2
,
3.0
]
cols
=
[
0
,
1
,
2
]
values
=
[
1
,
2
,
3
]
shape
=
[
3
]
sparse_x
=
paddle
.
sparse
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
shape
)
if
__name__
==
"__main__"
:
...
...
python/paddle/sparse/creation.py
浏览文件 @
8f469ddd
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
paddle
import
_C_ops
from
..framework
import
core
,
dygraph_only
from
..framework
import
_current_expected_place
,
_get_paddle_place
...
...
@@ -51,6 +52,13 @@ def _get_place(place):
return
place
def
_check_indices_dtype
(
dtype
):
if
dtype
not
in
[
paddle
.
int8
,
paddle
.
int16
,
paddle
.
int32
,
paddle
.
int64
]:
raise
TypeError
(
"the dtype of indices must be 'int8' or 'int16' or 'int32' or 'int64'"
)
@
dygraph_only
def
sparse_coo_tensor
(
indices
,
values
,
...
...
@@ -117,6 +125,18 @@ def sparse_coo_tensor(indices,
if
len
(
indices
.
shape
)
!=
2
:
raise
ValueError
(
"'indices' must be 2-D."
)
nnz
=
indices
.
shape
[
1
]
sparse_dim
=
indices
.
shape
[
0
]
_check_indices_dtype
(
indices
.
dtype
)
if
nnz
!=
values
.
shape
[
0
]:
raise
ValueError
(
"the indices and values must have same number of non-zero, but get {} and {}"
.
format
(
nnz
,
values
.
shape
[
0
]))
dense_dim
=
len
(
values
.
shape
)
-
1
if
not
indices
.
place
.
_equals
(
place
):
indices
=
indices
.
_copy_to
(
place
,
False
)
...
...
@@ -125,8 +145,17 @@ def sparse_coo_tensor(indices,
values
=
_handle_dtype
(
values
,
dtype
)
values
.
stop_gradient
=
stop_gradient
min_shape
=
_infer_dense_shape
(
indices
)
if
shape
is
None
:
shape
=
_infer_dense_shape
(
indices
)
shape
=
min_shape
else
:
if
shape
<
min_shape
:
raise
ValueError
(
"the minimun shape required is {}, but get {}"
.
format
(
min_shape
,
shape
))
if
len
(
shape
)
!=
sparse_dim
+
dense_dim
:
raise
ValueError
(
"the number of dimensions(len(shape) must be sparse_dim({}) + dense_dim({}), but get {}"
.
format
(
sparse_dim
,
dense_dim
,
len
(
shape
)))
return
_C_ops
.
final_state_sparse_create_sparse_coo_tensor
(
values
,
indices
,
shape
)
...
...
@@ -144,6 +173,7 @@ def sparse_csr_tensor(crows,
r
"""
Constructs a sparse ``paddle.Tensor`` in CSR(Compressed Sparse Row) format according to the
``crows``, ``cols`` and ``values``.
Currently, the crows and cols of each batch must be incrementd.
Args:
crows(list|tuple|ndarray|Tensor): 1-D array, each element in the rows represents the
...
...
@@ -202,10 +232,14 @@ def sparse_csr_tensor(crows,
cols
=
to_tensor
(
cols
,
dtype
=
None
,
place
=
place
,
stop_gradient
=
True
)
if
not
isinstance
(
values
,
core
.
eager
.
Tensor
):
values
=
to_tensor
(
values
,
dtype
,
place
,
stop_gradient
)
if
len
(
crows
.
shape
)
!=
1
or
len
(
cols
.
shape
)
!=
1
or
len
(
values
.
shape
)
!=
1
:
_check_indices_dtype
(
crows
.
dtype
)
_check_indices_dtype
(
cols
.
dtype
)
if
len
(
shape
)
!=
2
and
len
(
shape
)
!=
3
:
raise
ValueError
(
"SparseCsrTensor only support 2-D or 3-D matrix.
The 'crows', 'cols' and 'values' must be 1-D."
)
"SparseCsrTensor only support 2-D or 3-D matrix.
but get shape {}"
.
format
(
shape
)
)
if
not
crows
.
place
.
_equals
(
place
):
crows
=
crows
.
_copy_to
(
place
,
False
)
...
...
@@ -217,5 +251,30 @@ def sparse_csr_tensor(crows,
values
=
values
.
_copy_to
(
place
,
False
)
values
=
_handle_dtype
(
values
,
dtype
)
values
.
stop_gradient
=
stop_gradient
if
len
(
crows
.
shape
)
!=
1
or
len
(
cols
.
shape
)
!=
1
or
len
(
values
.
shape
)
!=
1
:
raise
ValueError
(
"The 'crows', 'cols' and 'values' must be 1-D."
)
if
(
len
(
cols
)
!=
len
(
values
)):
raise
ValueError
(
"the length of cols must be same as length of values"
)
if
len
(
shape
)
==
2
:
if
crows
.
shape
[
0
]
!=
shape
[
0
]
+
1
:
raise
ValueError
(
"The length({}) of crows must be equal to the rows({})+1 of matrix."
.
format
(
crows
.
shape
[
0
],
shape
[
0
]))
if
crows
[
0
]
!=
0
:
raise
ValueError
(
"the 0th value of crows must be 0"
)
if
crows
[
-
1
]
!=
values
.
shape
[
0
]:
raise
ValueError
(
"the last value of crows must be equal the number of non-zero"
)
else
:
if
crows
.
shape
[
0
]
%
(
shape
[
0
]
+
1
)
!=
0
:
raise
ValueError
(
"The length({}) of crows must be divisible the rows({})+1 of matrix."
.
format
(
crows
.
shape
[
0
],
shape
[
0
]))
# TODO(zkh2016): check whether the value in crows and cols is legal
return
core
.
eager
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
shape
,
stop_gradient
)
python/paddle/utils/code_gen/sparse_api.yaml
浏览文件 @
8f469ddd
...
...
@@ -27,6 +27,7 @@
kernel
:
func
:
sparse_coo_tensor
layout
:
values
data_type
:
values
backward
:
create_sparse_coo_tensor_grad
-
api
:
csr_values
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录