Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
8c1e3043
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8c1e3043
编写于
10月 29, 2018
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
差异文件
merge nn.py
上级
9dc28179
aa6b2bda
变更
70
隐藏空白更改
内联
并排
Showing
70 changed file
with
1473 addition
and
296 deletion
+1473
-296
.gitignore
.gitignore
+1
-0
CMakeLists.txt
CMakeLists.txt
+7
-0
Dockerfile
Dockerfile
+3
-3
cmake/external/xxhash.cmake
cmake/external/xxhash.cmake
+46
-0
cmake/inference_lib.cmake
cmake/inference_lib.cmake
+12
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+4
-2
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+3
-3
paddle/fluid/framework/ir/graph_helper.cc
paddle/fluid/framework/ir/graph_helper.cc
+12
-5
paddle/fluid/framework/lod_tensor_array.h
paddle/fluid/framework/lod_tensor_array.h
+77
-1
paddle/fluid/framework/mixed_vector.h
paddle/fluid/framework/mixed_vector.h
+27
-0
paddle/fluid/framework/naive_executor.cc
paddle/fluid/framework/naive_executor.cc
+0
-17
paddle/fluid/framework/naive_executor.h
paddle/fluid/framework/naive_executor.h
+0
-2
paddle/fluid/framework/op_proto_maker.cc
paddle/fluid/framework/op_proto_maker.cc
+2
-0
paddle/fluid/framework/op_proto_maker.h
paddle/fluid/framework/op_proto_maker.h
+6
-3
paddle/fluid/framework/scope.h
paddle/fluid/framework/scope.h
+2
-0
paddle/fluid/framework/threadpool.cc
paddle/fluid/framework/threadpool.cc
+9
-22
paddle/fluid/framework/threadpool.h
paddle/fluid/framework/threadpool.h
+0
-24
paddle/fluid/framework/threadpool_test.cc
paddle/fluid/framework/threadpool_test.cc
+10
-6
paddle/fluid/inference/CMakeLists.txt
paddle/fluid/inference/CMakeLists.txt
+2
-2
paddle/fluid/inference/analysis/analyzer.cc
paddle/fluid/inference/analysis/analyzer.cc
+3
-0
paddle/fluid/inference/analysis/analyzer.h
paddle/fluid/inference/analysis/analyzer.h
+0
-1
paddle/fluid/inference/api/CMakeLists.txt
paddle/fluid/inference/api/CMakeLists.txt
+15
-6
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+8
-0
paddle/fluid/inference/api/analysis_predictor.h
paddle/fluid/inference/api/analysis_predictor.h
+2
-0
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+5
-0
paddle/fluid/inference/api/api_impl.h
paddle/fluid/inference/api/api_impl.h
+3
-2
paddle/fluid/inference/api/demo_ci/CMakeLists.txt
paddle/fluid/inference/api/demo_ci/CMakeLists.txt
+7
-5
paddle/fluid/inference/api/demo_ci/run.sh
paddle/fluid/inference/api/demo_ci/run.sh
+10
-7
paddle/fluid/inference/api/details/reset_tensor_array.cc
paddle/fluid/inference/api/details/reset_tensor_array.cc
+50
-0
paddle/fluid/inference/api/details/reset_tensor_array.h
paddle/fluid/inference/api/details/reset_tensor_array.h
+37
-0
paddle/fluid/inference/api/paddle_inference_api.h
paddle/fluid/inference/api/paddle_inference_api.h
+1
-7
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
+1
-0
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+1
-0
paddle/fluid/operators/beam_search_decode_op.cc
paddle/fluid/operators/beam_search_decode_op.cc
+3
-0
paddle/fluid/operators/detection/generate_proposals_op.cc
paddle/fluid/operators/detection/generate_proposals_op.cc
+1
-1
paddle/fluid/operators/dropout_op.cc
paddle/fluid/operators/dropout_op.cc
+28
-2
paddle/fluid/operators/dropout_op.cu
paddle/fluid/operators/dropout_op.cu
+22
-7
paddle/fluid/operators/dropout_op.h
paddle/fluid/operators/dropout_op.h
+16
-3
paddle/fluid/operators/hash_op.cc
paddle/fluid/operators/hash_op.cc
+74
-0
paddle/fluid/operators/hash_op.h
paddle/fluid/operators/hash_op.h
+56
-0
paddle/fluid/operators/lookup_table_op.cc
paddle/fluid/operators/lookup_table_op.cc
+6
-0
paddle/fluid/operators/lookup_table_op.h
paddle/fluid/operators/lookup_table_op.h
+31
-19
paddle/fluid/operators/math/algorithm.h
paddle/fluid/operators/math/algorithm.h
+46
-0
paddle/fluid/operators/sequence_reverse_op.cc
paddle/fluid/operators/sequence_reverse_op.cc
+29
-0
paddle/fluid/operators/sequence_reverse_op.cu
paddle/fluid/operators/sequence_reverse_op.cu
+25
-0
paddle/fluid/operators/sequence_reverse_op.h
paddle/fluid/operators/sequence_reverse_op.h
+157
-0
paddle/fluid/operators/softmax_cudnn_op.cu.cc
paddle/fluid/operators/softmax_cudnn_op.cu.cc
+3
-1
paddle/fluid/operators/transpose_op.cc
paddle/fluid/operators/transpose_op.cc
+8
-5
paddle/fluid/operators/transpose_op.cu.cc
paddle/fluid/operators/transpose_op.cu.cc
+8
-5
paddle/fluid/train/demo/CMakeLists.txt
paddle/fluid/train/demo/CMakeLists.txt
+3
-1
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+7
-7
python/paddle/dataset/wmt16.py
python/paddle/dataset/wmt16.py
+1
-1
python/paddle/fluid/clip.py
python/paddle/fluid/clip.py
+5
-4
python/paddle/fluid/evaluator.py
python/paddle/fluid/evaluator.py
+1
-1
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+12
-3
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+119
-33
python/paddle/fluid/metrics.py
python/paddle/fluid/metrics.py
+183
-64
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+9
-4
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+2
-1
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-3
python/paddle/fluid/tests/unittests/dist_transformer.py
python/paddle/fluid/tests/unittests/dist_transformer.py
+1
-0
python/paddle/fluid/tests/unittests/test_dist_ctr.py
python/paddle/fluid/tests/unittests/test_dist_ctr.py
+2
-3
python/paddle/fluid/tests/unittests/test_dist_mnist.py
python/paddle/fluid/tests/unittests/test_dist_mnist.py
+1
-2
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
+1
-2
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
+1
-2
python/paddle/fluid/tests/unittests/test_dropout_op.py
python/paddle/fluid/tests/unittests/test_dropout_op.py
+63
-0
python/paddle/fluid/tests/unittests/test_hash_op.py
python/paddle/fluid/tests/unittests/test_hash_op.py
+57
-0
python/paddle/fluid/tests/unittests/test_metrics.py
python/paddle/fluid/tests/unittests/test_metrics.py
+49
-0
python/paddle/fluid/tests/unittests/test_sequence_reverse.py
python/paddle/fluid/tests/unittests/test_sequence_reverse.py
+69
-0
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+5
-2
未找到文件。
.gitignore
浏览文件 @
8c1e3043
...
@@ -28,3 +28,4 @@ third_party/
...
@@ -28,3 +28,4 @@ third_party/
build_*
build_*
# clion workspace.
# clion workspace.
cmake-build-*
cmake-build-*
model_test
CMakeLists.txt
浏览文件 @
8c1e3043
...
@@ -69,6 +69,7 @@ option(WITH_ANAKIN "Compile with Anakin library" OFF)
...
@@ -69,6 +69,7 @@ option(WITH_ANAKIN "Compile with Anakin library" OFF)
option
(
WITH_GRPC
"Use grpc as the default rpc framework"
${
WITH_DISTRIBUTE
}
)
option
(
WITH_GRPC
"Use grpc as the default rpc framework"
${
WITH_DISTRIBUTE
}
)
option
(
WITH_BRPC_RDMA
"Use brpc rdma as the rpc protocal"
OFF
)
option
(
WITH_BRPC_RDMA
"Use brpc rdma as the rpc protocal"
OFF
)
option
(
WITH_INFERENCE
"Compile fluid inference library"
ON
)
option
(
WITH_INFERENCE
"Compile fluid inference library"
ON
)
option
(
ON_INFER
"Turn on inference optimization."
OFF
)
option
(
WITH_INFERENCE_API_TEST
"Test fluid inference high-level api interface"
OFF
)
option
(
WITH_INFERENCE_API_TEST
"Test fluid inference high-level api interface"
OFF
)
option
(
WITH_SYSTEM_BLAS
"Use system blas library"
OFF
)
option
(
WITH_SYSTEM_BLAS
"Use system blas library"
OFF
)
option
(
PY_VERSION
"Compile PaddlePaddle with python3 support"
${
PY_VERSION
}
)
option
(
PY_VERSION
"Compile PaddlePaddle with python3 support"
${
PY_VERSION
}
)
...
@@ -179,6 +180,7 @@ include(external/eigen) # download eigen3
...
@@ -179,6 +180,7 @@ include(external/eigen) # download eigen3
include
(
external/pybind11
)
# download pybind11
include
(
external/pybind11
)
# download pybind11
include
(
external/cares
)
include
(
external/cares
)
include
(
external/cub
)
include
(
external/cub
)
include
(
external/xxhash
)
# download xxhash
if
(
NOT WIN32
)
if
(
NOT WIN32
)
# there is no official support of snappystream, warpctc, nccl, cupti in windows
# there is no official support of snappystream, warpctc, nccl, cupti in windows
...
@@ -301,3 +303,8 @@ if(WITH_DOC)
...
@@ -301,3 +303,8 @@ if(WITH_DOC)
find_python_module
(
recommonmark REQUIRED
)
find_python_module
(
recommonmark REQUIRED
)
add_subdirectory
(
doc
)
add_subdirectory
(
doc
)
endif
()
endif
()
if
(
ON_INFER
)
message
(
WARNING
"On inference mode, will take place some specific optimization."
)
add_definitions
(
-DPADDLE_ON_INFERENCE
)
endif
()
Dockerfile
浏览文件 @
8c1e3043
...
@@ -75,14 +75,14 @@ RUN pip3 install -U wheel && \
...
@@ -75,14 +75,14 @@ RUN pip3 install -U wheel && \
pip3
install
-U
docopt PyYAML
sphinx
==
1.5.6
&&
\
pip3
install
-U
docopt PyYAML
sphinx
==
1.5.6
&&
\
pip3
install
sphinx-rtd-theme
==
0.1.9 recommonmark
&&
\
pip3
install
sphinx-rtd-theme
==
0.1.9 recommonmark
&&
\
easy_install
-U
pip
&&
\
easy_install
-U
pip
&&
\
pip
install
-U
wheel
&&
\
pip
install
-U
pip setuptools
wheel
&&
\
pip
install
-U
docopt PyYAML
sphinx
==
1.5.6
&&
\
pip
install
-U
docopt PyYAML
sphinx
==
1.5.6
&&
\
pip
install
sphinx-rtd-theme
==
0.1.9 recommonmark
pip
install
sphinx-rtd-theme
==
0.1.9 recommonmark
RUN
pip3
install
pre-commit
'ipython==5.3.0'
&&
\
RUN
pip3
install
'pre-commit==1.10.4'
'ipython==5.3.0'
&&
\
pip3
install
'ipykernel==4.6.0'
'jupyter==1.0.0'
&&
\
pip3
install
'ipykernel==4.6.0'
'jupyter==1.0.0'
&&
\
pip3
install
opencv-python
&&
\
pip3
install
opencv-python
&&
\
pip
install
pre-commit
'ipython==5.3.0'
&&
\
pip
install
'pre-commit==1.10.4'
'ipython==5.3.0'
&&
\
pip
install
'ipykernel==4.6.0'
'jupyter==1.0.0'
&&
\
pip
install
'ipykernel==4.6.0'
'jupyter==1.0.0'
&&
\
pip
install
opencv-python
pip
install
opencv-python
...
...
cmake/external/xxhash.cmake
0 → 100644
浏览文件 @
8c1e3043
INCLUDE
(
ExternalProject
)
set
(
XXHASH_SOURCE_DIR
${
THIRD_PARTY_PATH
}
/xxhash
)
set
(
XXHASH_INSTALL_DIR
${
THIRD_PARTY_PATH
}
/install/xxhash
)
set
(
XXHASH_INCLUDE_DIR
"
${
XXHASH_INSTALL_DIR
}
/include"
)
IF
(
WITH_STATIC_LIB
)
SET
(
BUILD_CMD make lib
)
ELSE
()
SET
(
BUILD_CMD sed -i
"s/-Wstrict-prototypes -Wundef/-Wstrict-prototypes -Wundef -fPIC/g"
${
XXHASH_SOURCE_DIR
}
/src/extern_xxhash/Makefile && make lib
)
ENDIF
()
ExternalProject_Add
(
extern_xxhash
${
EXTERNAL_PROJECT_LOG_ARGS
}
GIT_REPOSITORY
"https://github.com/Cyan4973/xxHash"
GIT_TAG
"v0.6.5"
PREFIX
${
XXHASH_SOURCE_DIR
}
DOWNLOAD_NAME
"xxhash"
UPDATE_COMMAND
""
CONFIGURE_COMMAND
""
BUILD_IN_SOURCE 1
PATCH_COMMAND
BUILD_COMMAND
${
BUILD_CMD
}
INSTALL_COMMAND export PREFIX=
${
XXHASH_INSTALL_DIR
}
/ && make install
TEST_COMMAND
""
)
set
(
XXHASH_LIBRARIES
"
${
XXHASH_INSTALL_DIR
}
/lib/libxxhash.a"
)
INCLUDE_DIRECTORIES
(
${
XXHASH_INCLUDE_DIR
}
)
add_library
(
xxhash STATIC IMPORTED GLOBAL
)
set_property
(
TARGET xxhash PROPERTY IMPORTED_LOCATION
${
XXHASH_LIBRARIES
}
)
include_directories
(
${
XXHASH_INCLUDE_DIR
}
)
add_dependencies
(
xxhash extern_xxhash
)
LIST
(
APPEND external_project_dependencies xxhash
)
IF
(
WITH_C_API
)
INSTALL
(
DIRECTORY
${
XXHASH_INCLUDE_DIR
}
DESTINATION third_party/xxhash
)
IF
(
ANDROID
)
INSTALL
(
FILES
${
XXHASH_LIBRARIES
}
DESTINATION third_party/xxhash/lib/
${
ANDROID_ABI
}
)
ELSE
()
INSTALL
(
FILES
${
XXHASH_LIBRARIES
}
DESTINATION third_party/xxhash/lib
)
ENDIF
()
ENDIF
()
cmake/inference_lib.cmake
浏览文件 @
8c1e3043
...
@@ -14,6 +14,9 @@
...
@@ -14,6 +14,9 @@
# make package for paddle fluid shared and static library
# make package for paddle fluid shared and static library
function
(
copy TARGET
)
function
(
copy TARGET
)
if
(
NOT ON_INFER
)
message
(
WARNING
"Turn on the ON_INFER flag when building inference_lib only."
)
endif
()
set
(
options
""
)
set
(
options
""
)
set
(
oneValueArgs
""
)
set
(
oneValueArgs
""
)
set
(
multiValueArgs SRCS DSTS DEPS
)
set
(
multiValueArgs SRCS DSTS DEPS
)
...
@@ -31,7 +34,7 @@ function(copy TARGET)
...
@@ -31,7 +34,7 @@ function(copy TARGET)
foreach
(
index RANGE
${
len
}
)
foreach
(
index RANGE
${
len
}
)
list
(
GET copy_lib_SRCS
${
index
}
src
)
list
(
GET copy_lib_SRCS
${
index
}
src
)
list
(
GET copy_lib_DSTS
${
index
}
dst
)
list
(
GET copy_lib_DSTS
${
index
}
dst
)
add_custom_command
(
TARGET
${
TARGET
}
PRE_BUILD
add_custom_command
(
TARGET
${
TARGET
}
PRE_BUILD
COMMAND mkdir -p
"
${
dst
}
"
COMMAND mkdir -p
"
${
dst
}
"
COMMAND cp -r
"
${
src
}
"
"
${
dst
}
"
COMMAND cp -r
"
${
src
}
"
"
${
dst
}
"
COMMENT
"copying
${
src
}
->
${
dst
}
"
)
COMMENT
"copying
${
src
}
->
${
dst
}
"
)
...
@@ -67,6 +70,13 @@ copy(boost_lib
...
@@ -67,6 +70,13 @@ copy(boost_lib
DEPS boost
DEPS boost
)
)
set
(
dst_dir
"
${
FLUID_INSTALL_DIR
}
/third_party/install/xxhash"
)
copy
(
xxhash_lib
SRCS
${
XXHASH_INCLUDE_DIR
}
${
XXHASH_LIBRARIES
}
DSTS
${
dst_dir
}
${
dst_dir
}
/lib
DEPS xxhash
)
if
(
NOT PROTOBUF_FOUND
)
if
(
NOT PROTOBUF_FOUND
)
set
(
dst_dir
"
${
FLUID_INSTALL_DIR
}
/third_party/install/protobuf"
)
set
(
dst_dir
"
${
FLUID_INSTALL_DIR
}
/third_party/install/protobuf"
)
copy
(
protobuf_lib
copy
(
protobuf_lib
...
@@ -186,7 +196,7 @@ copy(cmake_cache
...
@@ -186,7 +196,7 @@ copy(cmake_cache
DSTS
${
FLUID_INSTALL_DIR
}
)
DSTS
${
FLUID_INSTALL_DIR
}
)
# This command generates a complete fluid library for both train and inference
# This command generates a complete fluid library for both train and inference
add_custom_target
(
fluid_lib_dist DEPENDS
${
fluid_lib_dist_dep
}
)
add_custom_target
(
fluid_lib_dist DEPENDS
${
fluid_lib_dist_dep
}
)
# Following commands generate a inference-only fluid library
# Following commands generate a inference-only fluid library
# third_party, version.txt and CMakeCache.txt are the same position with ${FLUID_INSTALL_DIR}
# third_party, version.txt and CMakeCache.txt are the same position with ${FLUID_INSTALL_DIR}
...
...
paddle/fluid/API.spec
浏览文件 @
8c1e3043
...
@@ -86,7 +86,7 @@ paddle.fluid.layers.reduce_prod ArgSpec(args=['input', 'dim', 'keep_dim', 'name'
...
@@ -86,7 +86,7 @@ paddle.fluid.layers.reduce_prod ArgSpec(args=['input', 'dim', 'keep_dim', 'name'
paddle.fluid.layers.sequence_first_step ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.sequence_first_step ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.sequence_last_step ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.sequence_last_step ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.sequence_slice ArgSpec(args=['input', 'offset', 'length', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_slice ArgSpec(args=['input', 'offset', 'length', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.dropout ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name'
], varargs=None, keywords=None, defaults=(False, None, None
))
paddle.fluid.layers.dropout ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name'
, 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer'
))
paddle.fluid.layers.split ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None))
paddle.fluid.layers.split ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None))
paddle.fluid.layers.ctc_greedy_decoder ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.ctc_greedy_decoder ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.edit_distance ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None))
paddle.fluid.layers.edit_distance ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None))
...
@@ -107,7 +107,7 @@ paddle.fluid.layers.softmax_with_cross_entropy ArgSpec(args=['logits', 'label',
...
@@ -107,7 +107,7 @@ paddle.fluid.layers.softmax_with_cross_entropy ArgSpec(args=['logits', 'label',
paddle.fluid.layers.smooth_l1 ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.smooth_l1 ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.one_hot ArgSpec(args=['input', 'depth'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.one_hot ArgSpec(args=['input', 'depth'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.autoincreased_step_counter ArgSpec(args=['counter_name', 'begin', 'step'], varargs=None, keywords=None, defaults=(None, 1, 1))
paddle.fluid.layers.autoincreased_step_counter ArgSpec(args=['counter_name', 'begin', 'step'], varargs=None, keywords=None, defaults=(None, 1, 1))
paddle.fluid.layers.reshape ArgSpec(args=['x', 'shape', 'actual_shape', 'act', 'inplace', 'name'], varargs=None, keywords=None, defaults=(None, None,
Tru
e, None))
paddle.fluid.layers.reshape ArgSpec(args=['x', 'shape', 'actual_shape', 'act', 'inplace', 'name'], varargs=None, keywords=None, defaults=(None, None,
Fals
e, None))
paddle.fluid.layers.squeeze ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.squeeze ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.unsqueeze ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.unsqueeze ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lod_reset ArgSpec(args=['x', 'y', 'target_lod'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.lod_reset ArgSpec(args=['x', 'y', 'target_lod'], varargs=None, keywords=None, defaults=(None, None))
...
@@ -174,7 +174,9 @@ paddle.fluid.layers.mean ArgSpec(args=['x', 'name'], varargs=None, keywords=None
...
@@ -174,7 +174,9 @@ paddle.fluid.layers.mean ArgSpec(args=['x', 'name'], varargs=None, keywords=None
paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None))
paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_reverse ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.affine_channel ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None))
paddle.fluid.layers.affine_channel ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None))
paddle.fluid.layers.hash ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
8c1e3043
...
@@ -252,9 +252,9 @@ std::vector<ir::Node *> SortOpsAndDelayOptimizeOp(const ir::Graph &graph) {
...
@@ -252,9 +252,9 @@ std::vector<ir::Node *> SortOpsAndDelayOptimizeOp(const ir::Graph &graph) {
std
::
vector
<
ir
::
Node
*>
sorted_ret
;
std
::
vector
<
ir
::
Node
*>
sorted_ret
;
for
(
size_t
i
=
0
;
i
<
ret
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
ret
.
size
();
++
i
)
{
if
(
i
<
last_backward
)
{
if
(
i
<
last_backward
)
{
if
(
boost
::
get
<
int
>
(
ret
[
i
]
->
Op
()
->
GetAttr
(
if
(
static_cast
<
bool
>
(
boost
::
get
<
int
>
(
ret
[
i
]
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
==
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
&
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
static_cast
<
int
>
(
OpRole
::
kOptimize
)
))
{
optimize_ops
.
push_back
(
ret
[
i
]);
optimize_ops
.
push_back
(
ret
[
i
]);
}
else
{
}
else
{
sorted_ret
.
push_back
(
ret
[
i
]);
sorted_ret
.
push_back
(
ret
[
i
]);
...
...
paddle/fluid/framework/ir/graph_helper.cc
浏览文件 @
8c1e3043
...
@@ -120,19 +120,25 @@ size_t GraphNum(const Graph &graph) {
...
@@ -120,19 +120,25 @@ size_t GraphNum(const Graph &graph) {
std
::
deque
<
ir
::
Node
*>
q_nodes
;
std
::
deque
<
ir
::
Node
*>
q_nodes
;
std
::
vector
<
std
::
unordered_set
<
ir
::
Node
*>>
graph_nodes
;
std
::
vector
<
std
::
unordered_set
<
ir
::
Node
*>>
graph_nodes
;
std
::
unordered_set
<
ir
::
Node
*>
g_nodes
;
std
::
unordered_set
<
ir
::
Node
*>
g_nodes
;
// q_set used to record records in the queue.
std
::
unordered_set
<
ir
::
Node
*>
q_set
;
size_t
graph_count
=
0
;
size_t
graph_count
=
0
;
auto
traverse_nodes
=
[
&
visited_nodes
,
auto
traverse_nodes
=
[
&
visited_nodes
,
&
q_nodes
,
&
q_nodes
](
const
std
::
vector
<
ir
::
Node
*>
&
nodes
)
{
&
q_set
](
const
std
::
vector
<
ir
::
Node
*>
&
nodes
)
{
std
::
copy_if
(
for
(
auto
n
:
nodes
)
{
nodes
.
begin
(),
nodes
.
end
(),
std
::
back_inserter
(
q_nodes
),
if
(
visited_nodes
.
count
(
n
)
==
0
&&
q_set
.
count
(
n
)
==
0
)
{
[
&
visited_nodes
](
Node
*
node
)
{
return
!
visited_nodes
.
count
(
node
);
});
q_nodes
.
push_back
(
n
);
q_set
.
insert
(
n
);
}
}
};
};
while
(
visited_nodes
.
size
()
!=
nodes
.
size
())
{
while
(
visited_nodes
.
size
()
!=
nodes
.
size
())
{
if
(
!
q_nodes
.
empty
())
{
if
(
!
q_nodes
.
empty
())
{
auto
cur_node
=
q_nodes
.
front
();
auto
cur_node
=
q_nodes
.
front
();
q_nodes
.
pop_front
();
q_nodes
.
pop_front
();
q_set
.
erase
(
cur_node
);
visited_nodes
.
insert
(
cur_node
);
visited_nodes
.
insert
(
cur_node
);
g_nodes
.
insert
(
cur_node
);
g_nodes
.
insert
(
cur_node
);
traverse_nodes
(
cur_node
->
inputs
);
traverse_nodes
(
cur_node
->
inputs
);
...
@@ -146,6 +152,7 @@ size_t GraphNum(const Graph &graph) {
...
@@ -146,6 +152,7 @@ size_t GraphNum(const Graph &graph) {
for
(
auto
&
n
:
nodes
)
{
for
(
auto
&
n
:
nodes
)
{
if
(
visited_nodes
.
count
(
n
)
==
0
)
{
if
(
visited_nodes
.
count
(
n
)
==
0
)
{
q_nodes
.
push_back
(
n
);
q_nodes
.
push_back
(
n
);
q_set
.
insert
(
n
);
break
;
break
;
}
}
}
}
...
...
paddle/fluid/framework/lod_tensor_array.h
浏览文件 @
8c1e3043
...
@@ -18,6 +18,82 @@ limitations under the License. */
...
@@ -18,6 +18,82 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
// NOTE The vector<LoDTensor> can't be replaced with the class LoDTensorArray
// directly, because there are many vector<LoDTensor> used accross the project,
// and some of them are treated as LoDTensorArray.
#if !defined(PADDLE_ON_INFERENCE)
using
LoDTensorArray
=
std
::
vector
<
LoDTensor
>
;
using
LoDTensorArray
=
std
::
vector
<
LoDTensor
>
;
}
#else // !PADDLE_ON_INFERENCE
#pragma message "LoDTensorArray is replaced with the inference one."
/*
* A LoDTensorArray which will not deallocate buffer when resized, fix the data
* diff in inference, and more performance friendly in the concurrency
* scenerios.
*/
class
LoDTensorArray
{
public:
LoDTensorArray
()
=
default
;
using
iterator
=
std
::
vector
<
LoDTensor
>::
iterator
;
using
const_iterator
=
std
::
vector
<
LoDTensor
>::
const_iterator
;
const_iterator
begin
()
const
{
return
array_
.
begin
();
}
const_iterator
end
()
const
{
return
array_
.
begin
()
+
size_
;
}
iterator
begin
()
{
return
array_
.
begin
();
}
iterator
end
()
{
return
array_
.
begin
()
+
size_
;
}
void
push_back
(
const
LoDTensor
&
x
)
{
if
(
size_
<
array_
.
size
())
{
array_
[
size_
++
]
=
x
;
}
else
{
array_
.
push_back
(
x
);
++
size_
;
}
}
void
resize
(
size_t
size
)
{
if
(
array_
.
size
()
<
size
)
{
array_
.
resize
(
size
);
}
size_
=
size
;
}
void
emplace_back
()
{
array_
.
emplace_back
();
}
void
emplace_back
(
LoDTensor
&&
x
)
{
array_
.
emplace_back
(
std
::
move
(
x
));
}
LoDTensor
&
back
()
{
return
array_
.
back
();
}
size_t
space
()
const
{
return
array_
.
size
();
}
void
reserve
(
size_t
size
)
{
// Naive warning to tell user this array might be to large. The memory and
// buffer used by this TensorArray will not be deleted during the training
// and inference phase, so attention not to make it expand too long.
if
(
size
>
800UL
)
{
LOG
(
WARNING
)
<<
"TensorArray has more than 800 items"
;
}
array_
.
reserve
(
size
);
}
bool
empty
()
const
{
return
size_
==
0UL
;
}
void
clear
()
{
size_
=
0UL
;
}
LoDTensor
&
operator
[](
size_t
id
)
{
return
array_
[
id
];
}
const
LoDTensor
&
operator
[](
size_t
id
)
const
{
return
array_
[
id
];
}
LoDTensor
&
at
(
size_t
id
)
{
return
array_
.
at
(
id
);
}
const
LoDTensor
&
at
(
size_t
id
)
const
{
return
array_
.
at
(
id
);
}
size_t
size
()
const
{
return
size_
;
}
private:
size_t
size_
{
0
};
std
::
vector
<
LoDTensor
>
array_
;
};
#endif // !PADDLE_ON_INFERENCE
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/framework/mixed_vector.h
浏览文件 @
8c1e3043
...
@@ -542,6 +542,33 @@ class CPUVector : public std::vector<T, std::allocator<T>> {
...
@@ -542,6 +542,33 @@ class CPUVector : public std::vector<T, std::allocator<T>> {
this
->
reserve
(
this
->
size
()
+
size_t
(
end
-
begin
));
this
->
reserve
(
this
->
size
()
+
size_t
(
end
-
begin
));
this
->
insert
(
this
->
end
(),
begin
,
end
);
this
->
insert
(
this
->
end
(),
begin
,
end
);
}
}
const
T
*
CUDAData
(
platform
::
Place
place
)
const
{
PADDLE_THROW
(
"Vector::CUDAData() method is not supported in CPU-only version"
);
}
T
*
CUDAMutableData
(
platform
::
Place
place
)
{
PADDLE_THROW
(
"Vector::CUDAMutableData() method is not supported in CPU-only "
"version"
);
}
const
T
*
Data
(
platform
::
Place
place
)
const
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
place
),
"Vector::Data() method is not supported when not in CPUPlace"
);
return
this
->
data
();
}
T
*
MutableData
(
platform
::
Place
place
)
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
place
),
"Vector::MutableData() method is not supported when not in CPUPlace"
);
return
this
->
data
();
}
const
void
*
Handle
()
const
{
return
static_cast
<
const
void
*>
(
this
);
}
};
};
template
<
typename
T
>
template
<
typename
T
>
...
...
paddle/fluid/framework/naive_executor.cc
浏览文件 @
8c1e3043
...
@@ -146,22 +146,5 @@ void NaiveExecutor::CleanFeedFetchOps() {
...
@@ -146,22 +146,5 @@ void NaiveExecutor::CleanFeedFetchOps() {
ops_
.
swap
(
ops
);
ops_
.
swap
(
ops
);
}
}
void
NaiveExecutor
::
EnableMKLDNN
(
const
ProgramDesc
&
program
)
{
#ifdef PADDLE_WITH_MKLDNN
VLOG
(
3
)
<<
"use_mkldnn=True"
;
for
(
size_t
block_id
=
0
;
block_id
<
program
.
Size
();
++
block_id
)
{
auto
*
block
=
const_cast
<
ProgramDesc
&>
(
program
).
MutableBlock
(
block_id
);
for
(
auto
*
op
:
block
->
AllOps
())
{
if
(
op
->
HasAttr
(
"use_mkldnn"
))
{
op
->
SetAttr
(
"use_mkldnn"
,
true
);
}
}
}
#else
LOG
(
WARNING
)
<<
"'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option"
;
#endif
}
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/framework/naive_executor.h
浏览文件 @
8c1e3043
...
@@ -48,8 +48,6 @@ class NaiveExecutor {
...
@@ -48,8 +48,6 @@ class NaiveExecutor {
void
CleanFeedFetchOps
();
void
CleanFeedFetchOps
();
void
EnableMKLDNN
(
const
ProgramDesc
&
program
);
protected:
protected:
void
CreateVariables
(
const
ProgramDesc
&
desc
,
Scope
*
scope
,
int
block_id
);
void
CreateVariables
(
const
ProgramDesc
&
desc
,
Scope
*
scope
,
int
block_id
);
...
...
paddle/fluid/framework/op_proto_maker.cc
浏览文件 @
8c1e3043
...
@@ -71,6 +71,8 @@ void OpProtoAndCheckerMaker::operator()(proto::OpProto* proto,
...
@@ -71,6 +71,8 @@ void OpProtoAndCheckerMaker::operator()(proto::OpProto* proto,
static_cast
<
int
>
(
OpRole
::
kLoss
)
|
static_cast
<
int
>
(
OpRole
::
kForward
),
static_cast
<
int
>
(
OpRole
::
kLoss
)
|
static_cast
<
int
>
(
OpRole
::
kForward
),
static_cast
<
int
>
(
OpRole
::
kLoss
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)
|
static_cast
<
int
>
(
OpRole
::
kBackward
),
static_cast
<
int
>
(
OpRole
::
kBackward
),
static_cast
<
int
>
(
OpRole
::
kOptimize
)
|
static_cast
<
int
>
(
OpRole
::
kLRSched
),
static_cast
<
int
>
(
OpRole
::
kNotSpecified
)})
static_cast
<
int
>
(
OpRole
::
kNotSpecified
)})
.
SetDefault
(
static_cast
<
int
>
(
OpRole
::
kNotSpecified
));
.
SetDefault
(
static_cast
<
int
>
(
OpRole
::
kNotSpecified
));
AddAttr
<
std
::
vector
<
std
::
string
>>
(
OpRoleVarAttrName
(),
AddAttr
<
std
::
vector
<
std
::
string
>>
(
OpRoleVarAttrName
(),
...
...
paddle/fluid/framework/op_proto_maker.h
浏览文件 @
8c1e3043
...
@@ -20,17 +20,20 @@ limitations under the License. */
...
@@ -20,17 +20,20 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
//////////////////////////
// Don't add more roles to make this too complicated!
//////////////////////////
enum
class
OpRole
{
enum
class
OpRole
{
kForward
=
0x0000
,
kForward
=
0x0000
,
kBackward
=
0x0001
,
kBackward
=
0x0001
,
kOptimize
=
0x0002
,
kOptimize
=
0x0002
,
// RPC role is for send/recv releated op
// RPC role is for send/recv releated op
kRPC
=
0x000
3
,
kRPC
=
0x000
4
,
// Dist role is for split_byref/split_selected_rows/concat
// Dist role is for split_byref/split_selected_rows/concat
// used for distributed training.
// used for distributed training.
kDist
=
0x000
4
,
kDist
=
0x000
8
,
// Tag all learning rate scheduler operators.
// Tag all learning rate scheduler operators.
kLRSched
=
0x00
05
,
kLRSched
=
0x00
16
,
kLoss
=
0x0100
,
kLoss
=
0x0100
,
// The default value of op's role. This should be only used for unittests and
// The default value of op's role. This should be only used for unittests and
...
...
paddle/fluid/framework/scope.h
浏览文件 @
8c1e3043
...
@@ -78,6 +78,8 @@ class Scope {
...
@@ -78,6 +78,8 @@ class Scope {
/// Drop all kids scopes belonged to this scope.
/// Drop all kids scopes belonged to this scope.
void
DropKids
();
void
DropKids
();
std
::
list
<
Scope
*>&
kids
()
const
{
return
kids_
;
}
/// Find if a scope exists in the kid scopes
/// Find if a scope exists in the kid scopes
bool
HasKid
(
const
Scope
*
scope
)
const
;
bool
HasKid
(
const
Scope
*
scope
)
const
;
...
...
paddle/fluid/framework/threadpool.cc
浏览文件 @
8c1e3043
...
@@ -25,7 +25,6 @@ DEFINE_int32(dist_threadpool_size, 0,
...
@@ -25,7 +25,6 @@ DEFINE_int32(dist_threadpool_size, 0,
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
std
::
unique_ptr
<
ThreadPool
>
ThreadPool
::
threadpool_
(
nullptr
);
std
::
unique_ptr
<
ThreadPool
>
ThreadPool
::
threadpool_
(
nullptr
);
std
::
once_flag
ThreadPool
::
init_flag_
;
std
::
once_flag
ThreadPool
::
init_flag_
;
...
@@ -47,8 +46,7 @@ void ThreadPool::Init() {
...
@@ -47,8 +46,7 @@ void ThreadPool::Init() {
}
}
}
}
ThreadPool
::
ThreadPool
(
int
num_threads
)
ThreadPool
::
ThreadPool
(
int
num_threads
)
:
running_
(
true
)
{
:
total_threads_
(
num_threads
),
idle_threads_
(
num_threads
),
running_
(
true
)
{
threads_
.
resize
(
num_threads
);
threads_
.
resize
(
num_threads
);
for
(
auto
&
thread
:
threads_
)
{
for
(
auto
&
thread
:
threads_
)
{
// TODO(Yancey1989): binding the thread on the specify CPU number
// TODO(Yancey1989): binding the thread on the specify CPU number
...
@@ -59,6 +57,7 @@ ThreadPool::ThreadPool(int num_threads)
...
@@ -59,6 +57,7 @@ ThreadPool::ThreadPool(int num_threads)
ThreadPool
::~
ThreadPool
()
{
ThreadPool
::~
ThreadPool
()
{
{
{
// notify all threads to stop running
// notify all threads to stop running
std
::
lock_guard
<
std
::
mutex
>
l
(
mutex_
);
running_
=
false
;
running_
=
false
;
scheduled_
.
notify_all
();
scheduled_
.
notify_all
();
}
}
...
@@ -69,36 +68,24 @@ ThreadPool::~ThreadPool() {
...
@@ -69,36 +68,24 @@ ThreadPool::~ThreadPool() {
}
}
}
}
void
ThreadPool
::
Wait
()
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
completed_
.
wait
(
lock
,
[
=
]
{
return
Done
()
==
true
;
});
}
void
ThreadPool
::
TaskLoop
()
{
void
ThreadPool
::
TaskLoop
()
{
while
(
running_
)
{
while
(
true
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
scheduled_
.
wait
(
lock
,
[
=
]
{
return
!
tasks_
.
empty
()
||
!
running_
;
});
if
(
!
running_
)
{
scheduled_
.
wait
(
break
;
lock
,
[
this
]
{
return
!
this
->
tasks_
.
empty
()
||
!
this
->
running_
;
});
if
(
!
running_
||
tasks_
.
empty
())
{
return
;
}
}
// pop a task from the task queue
// pop a task from the task queue
auto
task
=
std
::
move
(
tasks_
.
front
());
auto
task
=
std
::
move
(
tasks_
.
front
());
tasks_
.
pop
();
tasks_
.
pop
();
--
idle_threads_
;
lock
.
unlock
();
lock
.
unlock
();
// run the task
// run the task
task
();
task
();
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
++
idle_threads_
;
if
(
Done
())
{
completed_
.
notify_all
();
}
}
}
}
}
}
...
...
paddle/fluid/framework/threadpool.h
浏览文件 @
8c1e3043
...
@@ -57,15 +57,6 @@ class ThreadPool {
...
@@ -57,15 +57,6 @@ class ThreadPool {
~
ThreadPool
();
~
ThreadPool
();
// Returns the number of threads created by the constructor.
size_t
Threads
()
const
{
return
total_threads_
;
}
// Returns the number of currently idle threads.
size_t
IdleThreads
()
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
return
idle_threads_
;
}
// Run pushes a function to the task queue and returns a std::future
// Run pushes a function to the task queue and returns a std::future
// object. To wait for the completion of the task, call
// object. To wait for the completion of the task, call
// std::future::wait().
// std::future::wait().
...
@@ -94,25 +85,13 @@ class ThreadPool {
...
@@ -94,25 +85,13 @@ class ThreadPool {
});
});
std
::
future
<
std
::
unique_ptr
<
platform
::
EnforceNotMet
>>
f
=
task
.
get_future
();
std
::
future
<
std
::
unique_ptr
<
platform
::
EnforceNotMet
>>
f
=
task
.
get_future
();
tasks_
.
push
(
std
::
move
(
task
));
tasks_
.
push
(
std
::
move
(
task
));
lock
.
unlock
();
scheduled_
.
notify_one
();
scheduled_
.
notify_one
();
return
f
;
return
f
;
}
}
// Wait until all the tasks are completed.
void
Wait
();
private:
private:
DISABLE_COPY_AND_ASSIGN
(
ThreadPool
);
DISABLE_COPY_AND_ASSIGN
(
ThreadPool
);
// If the task queue is empty and avaialbe is equal to the number of
// threads, means that all tasks are completed. Note: this function
// is not thread-safe. Returns true if all tasks are completed.
// Note: don't delete the data member total_threads_ and use
// threads_.size() instead; because you'd need to lock the mutex
// before accessing threads_.
bool
Done
()
{
return
tasks_
.
empty
()
&&
idle_threads_
==
total_threads_
;
}
// The constructor starts threads to run TaskLoop, which retrieves
// The constructor starts threads to run TaskLoop, which retrieves
// and runs tasks from the queue.
// and runs tasks from the queue.
void
TaskLoop
();
void
TaskLoop
();
...
@@ -125,14 +104,11 @@ class ThreadPool {
...
@@ -125,14 +104,11 @@ class ThreadPool {
static
std
::
once_flag
init_flag_
;
static
std
::
once_flag
init_flag_
;
std
::
vector
<
std
::
unique_ptr
<
std
::
thread
>>
threads_
;
std
::
vector
<
std
::
unique_ptr
<
std
::
thread
>>
threads_
;
const
size_t
total_threads_
;
size_t
idle_threads_
;
std
::
queue
<
Task
>
tasks_
;
std
::
queue
<
Task
>
tasks_
;
std
::
mutex
mutex_
;
std
::
mutex
mutex_
;
bool
running_
;
bool
running_
;
std
::
condition_variable
scheduled_
;
std
::
condition_variable
scheduled_
;
std
::
condition_variable
completed_
;
};
};
class
ThreadPoolIO
:
ThreadPool
{
class
ThreadPoolIO
:
ThreadPool
{
...
...
paddle/fluid/framework/threadpool_test.cc
浏览文件 @
8c1e3043
...
@@ -19,10 +19,11 @@ limitations under the License. */
...
@@ -19,10 +19,11 @@ limitations under the License. */
namespace
framework
=
paddle
::
framework
;
namespace
framework
=
paddle
::
framework
;
void
do_sum
(
framework
::
ThreadPool
*
pool
,
std
::
atomic
<
int
>*
sum
,
int
cnt
)
{
void
do_sum
(
std
::
vector
<
std
::
future
<
void
>>*
fs
,
std
::
mutex
*
mu
,
std
::
vector
<
std
::
future
<
void
>>
fs
;
std
::
atomic
<
int
>*
sum
,
int
cnt
)
{
for
(
int
i
=
0
;
i
<
cnt
;
++
i
)
{
for
(
int
i
=
0
;
i
<
cnt
;
++
i
)
{
fs
.
push_back
(
framework
::
Async
([
sum
]()
{
sum
->
fetch_add
(
1
);
}));
std
::
lock_guard
<
std
::
mutex
>
l
(
*
mu
);
fs
->
push_back
(
framework
::
Async
([
sum
]()
{
sum
->
fetch_add
(
1
);
}));
}
}
}
}
...
@@ -40,18 +41,21 @@ TEST(ThreadPool, ConcurrentInit) {
...
@@ -40,18 +41,21 @@ TEST(ThreadPool, ConcurrentInit) {
}
}
TEST
(
ThreadPool
,
ConcurrentRun
)
{
TEST
(
ThreadPool
,
ConcurrentRun
)
{
framework
::
ThreadPool
*
pool
=
framework
::
ThreadPool
::
GetInstance
();
std
::
atomic
<
int
>
sum
(
0
);
std
::
atomic
<
int
>
sum
(
0
);
std
::
vector
<
std
::
thread
>
threads
;
std
::
vector
<
std
::
thread
>
threads
;
std
::
vector
<
std
::
future
<
void
>>
fs
;
std
::
mutex
fs_mu
;
int
n
=
50
;
int
n
=
50
;
// sum = (n * (n + 1)) / 2
// sum = (n * (n + 1)) / 2
for
(
int
i
=
1
;
i
<=
n
;
++
i
)
{
for
(
int
i
=
1
;
i
<=
n
;
++
i
)
{
std
::
thread
t
(
do_sum
,
pool
,
&
sum
,
i
);
std
::
thread
t
(
do_sum
,
&
fs
,
&
fs_mu
,
&
sum
,
i
);
threads
.
push_back
(
std
::
move
(
t
));
threads
.
push_back
(
std
::
move
(
t
));
}
}
for
(
auto
&
t
:
threads
)
{
for
(
auto
&
t
:
threads
)
{
t
.
join
();
t
.
join
();
}
}
pool
->
Wait
();
for
(
auto
&
t
:
fs
)
{
t
.
wait
();
}
EXPECT_EQ
(
sum
,
((
n
+
1
)
*
n
)
/
2
);
EXPECT_EQ
(
sum
,
((
n
+
1
)
*
n
)
/
2
);
}
}
paddle/fluid/inference/CMakeLists.txt
浏览文件 @
8c1e3043
...
@@ -30,7 +30,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
...
@@ -30,7 +30,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
endif
()
endif
()
# Create static library
# Create static library
cc_library
(
paddle_fluid DEPS
${
fluid_modules
}
${
STATIC_INFERENCE_APIS
}
zero_copy_tensor
)
cc_library
(
paddle_fluid DEPS
${
fluid_modules
}
${
STATIC_INFERENCE_APIS
}
zero_copy_tensor
reset_tensor_array
)
if
(
NOT APPLE
)
if
(
NOT APPLE
)
# TODO(liuyiqu: Temporarily disable the link flag because it is not support on Mac.
# TODO(liuyiqu: Temporarily disable the link flag because it is not support on Mac.
...
@@ -40,7 +40,7 @@ endif()
...
@@ -40,7 +40,7 @@ endif()
# Create shared library
# Create shared library
cc_library
(
paddle_fluid_shared SHARED SRCS
${
SHARED_INFERENCE_SRCS
}
cc_library
(
paddle_fluid_shared SHARED SRCS
${
SHARED_INFERENCE_SRCS
}
DEPS
${
fluid_modules
}
paddle_fluid_api
)
DEPS
${
fluid_modules
}
paddle_fluid_api
reset_tensor_array
)
set_target_properties
(
paddle_fluid_shared PROPERTIES OUTPUT_NAME paddle_fluid
)
set_target_properties
(
paddle_fluid_shared PROPERTIES OUTPUT_NAME paddle_fluid
)
if
(
NOT APPLE
)
if
(
NOT APPLE
)
...
...
paddle/fluid/inference/analysis/analyzer.cc
浏览文件 @
8c1e3043
...
@@ -107,6 +107,9 @@ void Analyzer::Run(Argument* argument) {
...
@@ -107,6 +107,9 @@ void Analyzer::Run(Argument* argument) {
passes
.
push_back
(
"mkldnn_placement_pass"
);
passes
.
push_back
(
"mkldnn_placement_pass"
);
}
}
#endif
#endif
// infer_clean_graph_pass should be the first default pass
// after mkldnn_placement_pass.
passes
.
push_back
(
"infer_clean_graph_pass"
);
for
(
auto
&
pass
:
ir_passes_
)
{
for
(
auto
&
pass
:
ir_passes_
)
{
if
(
!
disabled_ir_passes_
.
count
(
pass
))
{
if
(
!
disabled_ir_passes_
.
count
(
pass
))
{
passes
.
push_back
(
pass
);
passes
.
push_back
(
pass
);
...
...
paddle/fluid/inference/analysis/analyzer.h
浏览文件 @
8c1e3043
...
@@ -67,7 +67,6 @@ class Analyzer : public OrderedRegistry<PassManager> {
...
@@ -67,7 +67,6 @@ class Analyzer : public OrderedRegistry<PassManager> {
// larger fusion.
// larger fusion.
const
std
::
vector
<
std
::
string
>
all_ir_passes_
{{
const
std
::
vector
<
std
::
string
>
all_ir_passes_
{{
// Manual update the passes here.
// Manual update the passes here.
"infer_clean_graph_pass"
,
//
"attention_lstm_fuse_pass"
,
//
"attention_lstm_fuse_pass"
,
//
"seqconv_eltadd_relu_fuse_pass"
,
//
"seqconv_eltadd_relu_fuse_pass"
,
//
"embedding_fc_lstm_fuse_pass"
,
//
"embedding_fc_lstm_fuse_pass"
,
//
...
...
paddle/fluid/inference/api/CMakeLists.txt
浏览文件 @
8c1e3043
...
@@ -18,7 +18,8 @@ if(APPLE)
...
@@ -18,7 +18,8 @@ if(APPLE)
endif
(
APPLE
)
endif
(
APPLE
)
set
(
inference_deps paddle_inference_api paddle_fluid_api analysis pass ir_pass_manager naive_executor
${
GLOB_PASS_LIB
}
)
set
(
inference_deps paddle_inference_api paddle_fluid_api analysis pass ir_pass_manager naive_executor
${
GLOB_PASS_LIB
}
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
set
(
inference_deps
${
inference_deps
}
paddle_inference_tensorrt_subgraph_engine analysis_predictor
)
set
(
inference_deps
${
inference_deps
}
paddle_inference_tensorrt_subgraph_engine analysis_predictor
)
...
@@ -31,10 +32,17 @@ function(inference_api_test TARGET_NAME)
...
@@ -31,10 +32,17 @@ function(inference_api_test TARGET_NAME)
set
(
multiValueArgs ARGS
)
set
(
multiValueArgs ARGS
)
cmake_parse_arguments
(
inference_test
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
cmake_parse_arguments
(
inference_test
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
cc_test
(
${
TARGET_NAME
}
if
(
WITH_GPU
)
SRCS
${
inference_test_SRC
}
cc_test
(
${
TARGET_NAME
}
DEPS
"
${
inference_deps
}
"
SRCS
${
inference_test_SRC
}
ARGS --dirname=
${
PYTHON_TESTS_DIR
}
/book/
)
DEPS
"
${
inference_deps
}
"
ARGS --dirname=
${
PYTHON_TESTS_DIR
}
/book/ --fraction_of_gpu_memory_to_use=0.15
)
else
()
cc_test
(
${
TARGET_NAME
}
SRCS
${
inference_test_SRC
}
DEPS
"
${
inference_deps
}
"
ARGS --dirname=
${
PYTHON_TESTS_DIR
}
/book/
)
endif
()
if
(
inference_test_ARGS
)
if
(
inference_test_ARGS
)
set_tests_properties
(
${
TARGET_NAME
}
set_tests_properties
(
${
TARGET_NAME
}
PROPERTIES DEPENDS
"
${
inference_test_ARGS
}
"
)
PROPERTIES DEPENDS
"
${
inference_test_ARGS
}
"
)
...
@@ -42,7 +50,8 @@ function(inference_api_test TARGET_NAME)
...
@@ -42,7 +50,8 @@ function(inference_api_test TARGET_NAME)
endif
(
WITH_TESTING
)
endif
(
WITH_TESTING
)
endfunction
(
inference_api_test
)
endfunction
(
inference_api_test
)
cc_library
(
paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor scope
)
cc_library
(
reset_tensor_array SRCS details/reset_tensor_array.cc DEPS lod_tensor scope
)
cc_library
(
paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS reset_tensor_array lod_tensor scope
)
cc_library
(
analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor
)
cc_library
(
analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor
)
cc_library
(
zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS paddle_inference_api
)
cc_library
(
zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS paddle_inference_api
)
cc_library
(
zero_copy_tensor_dummy SRCS details/zero_copy_tensor_dummy.cc DEPS paddle_inference_api
)
cc_library
(
zero_copy_tensor_dummy SRCS details/zero_copy_tensor_dummy.cc DEPS paddle_inference_api
)
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
8c1e3043
...
@@ -82,6 +82,7 @@ bool AnalysisPredictor::Init(
...
@@ -82,6 +82,7 @@ bool AnalysisPredictor::Init(
// Get the feed_target_names and fetch_target_names
// Get the feed_target_names and fetch_target_names
PrepareFeedFetch
();
PrepareFeedFetch
();
return
true
;
return
true
;
}
}
...
@@ -109,6 +110,10 @@ bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
...
@@ -109,6 +110,10 @@ bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
return
false
;
return
false
;
}
}
VLOG
(
3
)
<<
"predict cost: "
<<
timer
.
toc
()
<<
"ms"
;
VLOG
(
3
)
<<
"predict cost: "
<<
timer
.
toc
()
<<
"ms"
;
// Fix TensorArray reuse not cleaned bug.
tensor_array_batch_cleaner_
.
CollectTensorArrays
(
scope_
.
get
());
tensor_array_batch_cleaner_
.
ResetTensorArray
();
return
true
;
return
true
;
}
}
...
@@ -322,6 +327,9 @@ std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
...
@@ -322,6 +327,9 @@ std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
bool
AnalysisPredictor
::
ZeroCopyRun
()
{
bool
AnalysisPredictor
::
ZeroCopyRun
()
{
executor_
->
Run
();
executor_
->
Run
();
// Fix TensorArray reuse not cleaned bug.
tensor_array_batch_cleaner_
.
CollectTensorArrays
(
scope_
.
get
());
tensor_array_batch_cleaner_
.
ResetTensorArray
();
return
true
;
return
true
;
}
}
...
...
paddle/fluid/inference/api/analysis_predictor.h
浏览文件 @
8c1e3043
...
@@ -18,6 +18,7 @@
...
@@ -18,6 +18,7 @@
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/string/printf.h"
#include "paddle/fluid/string/printf.h"
...
@@ -88,6 +89,7 @@ class AnalysisPredictor : public PaddlePredictor {
...
@@ -88,6 +89,7 @@ class AnalysisPredictor : public PaddlePredictor {
// Memory buffer for feed inputs. The temporary LoDTensor will cause serious
// Memory buffer for feed inputs. The temporary LoDTensor will cause serious
// concurrency problems, so cache them.
// concurrency problems, so cache them.
std
::
vector
<
framework
::
LoDTensor
>
feed_tensors_
;
std
::
vector
<
framework
::
LoDTensor
>
feed_tensors_
;
details
::
TensorArrayBatchCleaner
tensor_array_batch_cleaner_
;
};
};
}
// namespace paddle
}
// namespace paddle
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
8c1e3043
...
@@ -22,6 +22,7 @@ limitations under the License. */
...
@@ -22,6 +22,7 @@ limitations under the License. */
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/profiler.h"
...
@@ -157,6 +158,10 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
...
@@ -157,6 +158,10 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
return
false
;
return
false
;
}
}
VLOG
(
3
)
<<
"predict cost: "
<<
timer
.
toc
()
<<
"ms"
;
VLOG
(
3
)
<<
"predict cost: "
<<
timer
.
toc
()
<<
"ms"
;
// Fix TensorArray reuse not cleaned bug.
tensor_array_batch_cleaner_
.
CollectTensorArrays
(
scope_
.
get
());
tensor_array_batch_cleaner_
.
ResetTensorArray
();
return
true
;
return
true
;
}
}
...
...
paddle/fluid/inference/api/api_impl.h
浏览文件 @
8c1e3043
...
@@ -26,11 +26,11 @@ limitations under the License. */
...
@@ -26,11 +26,11 @@ limitations under the License. */
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/init.h"
...
@@ -77,6 +77,7 @@ class NativePaddlePredictor : public PaddlePredictor {
...
@@ -77,6 +77,7 @@ class NativePaddlePredictor : public PaddlePredictor {
std
::
vector
<
framework
::
OpDesc
*>
fetchs_
;
std
::
vector
<
framework
::
OpDesc
*>
fetchs_
;
// Do not use unique_ptr, use parent scope to delete
// Do not use unique_ptr, use parent scope to delete
framework
::
Scope
*
sub_scope_
{
nullptr
};
framework
::
Scope
*
sub_scope_
{
nullptr
};
details
::
TensorArrayBatchCleaner
tensor_array_batch_cleaner_
;
};
};
}
// namespace paddle
}
// namespace paddle
paddle/fluid/inference/api/demo_ci/CMakeLists.txt
浏览文件 @
8c1e3043
...
@@ -52,6 +52,7 @@ include_directories("${PADDLE_LIB}")
...
@@ -52,6 +52,7 @@ include_directories("${PADDLE_LIB}")
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/protobuf/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/protobuf/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/glog/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/glog/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/gflags/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/gflags/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/xxhash/include"
)
if
(
NOT WIN32
)
if
(
NOT WIN32
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/snappy/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/snappy/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/snappystream/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/snappystream/include"
)
...
@@ -61,8 +62,8 @@ endif(NOT WIN32)
...
@@ -61,8 +62,8 @@ endif(NOT WIN32)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/boost"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/boost"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/eigen3"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/eigen3"
)
if
(
NOT WIN32
)
if
(
NOT WIN32
)
if
(
USE_TENSORRT AND WITH_GPU
)
if
(
USE_TENSORRT AND WITH_GPU
)
include_directories
(
"
${
TENSORRT_INCLUDE_DIR
}
"
)
include_directories
(
"
${
TENSORRT_INCLUDE_DIR
}
"
)
link_directories
(
"
${
TENSORRT_LIB_DIR
}
"
)
link_directories
(
"
${
TENSORRT_LIB_DIR
}
"
)
endif
()
endif
()
...
@@ -77,13 +78,14 @@ endif(NOT WIN32)
...
@@ -77,13 +78,14 @@ endif(NOT WIN32)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/protobuf/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/protobuf/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/glog/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/glog/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/gflags/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/gflags/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/xxhash/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/paddle/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/paddle/lib"
)
add_executable
(
${
DEMO_NAME
}
${
DEMO_NAME
}
.cc
)
add_executable
(
${
DEMO_NAME
}
${
DEMO_NAME
}
.cc
)
if
(
WITH_MKL
)
if
(
WITH_MKL
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/mklml/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/mklml/include"
)
set
(
MATH_LIB
${
PADDLE_LIB
}
/third_party/install/mklml/lib/libmklml_intel
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
set
(
MATH_LIB
${
PADDLE_LIB
}
/third_party/install/mklml/lib/libmklml_intel
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
${
PADDLE_LIB
}
/third_party/install/mklml/lib/libiomp5
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
${
PADDLE_LIB
}
/third_party/install/mklml/lib/libiomp5
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
set
(
MKLDNN_PATH
"
${
PADDLE_LIB
}
/third_party/install/mkldnn"
)
set
(
MKLDNN_PATH
"
${
PADDLE_LIB
}
/third_party/install/mkldnn"
)
if
(
EXISTS
${
MKLDNN_PATH
}
)
if
(
EXISTS
${
MKLDNN_PATH
}
)
...
@@ -107,7 +109,7 @@ if (NOT WIN32)
...
@@ -107,7 +109,7 @@ if (NOT WIN32)
set
(
EXTERNAL_LIB
"-lrt -ldl -lpthread"
)
set
(
EXTERNAL_LIB
"-lrt -ldl -lpthread"
)
set
(
DEPS
${
DEPS
}
set
(
DEPS
${
DEPS
}
${
MATH_LIB
}
${
MKLDNN_LIB
}
${
MATH_LIB
}
${
MKLDNN_LIB
}
glog gflags protobuf snappystream snappy z
glog gflags protobuf snappystream snappy z
xxhash
${
EXTERNAL_LIB
}
)
${
EXTERNAL_LIB
}
)
else
()
else
()
set
(
DEPS
${
DEPS
}
set
(
DEPS
${
DEPS
}
...
@@ -120,7 +122,7 @@ endif(NOT WIN32)
...
@@ -120,7 +122,7 @@ endif(NOT WIN32)
if
(
WITH_GPU
)
if
(
WITH_GPU
)
if
(
NOT WIN32
)
if
(
NOT WIN32
)
if
(
USE_TENSORRT
)
if
(
USE_TENSORRT
)
set
(
DEPS
${
DEPS
}
${
TENSORRT_LIB_DIR
}
/libnvinfer
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
TENSORRT_LIB_DIR
}
/libnvinfer
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
TENSORRT_LIB_DIR
}
/libnvinfer_plugin
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
TENSORRT_LIB_DIR
}
/libnvinfer_plugin
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
endif
()
endif
()
...
...
paddle/fluid/inference/api/demo_ci/run.sh
浏览文件 @
8c1e3043
...
@@ -16,7 +16,7 @@ if [ $2 == ON ]; then
...
@@ -16,7 +16,7 @@ if [ $2 == ON ]; then
fi
fi
if
[
$3
==
ON
]
;
then
if
[
$3
==
ON
]
;
then
use_gpu_list
=
'true false'
use_gpu_list
=
'true false'
else
else
use_gpu_list
=
'false'
use_gpu_list
=
'false'
fi
fi
...
@@ -60,7 +60,8 @@ for WITH_STATIC_LIB in ON OFF; do
...
@@ -60,7 +60,8 @@ for WITH_STATIC_LIB in ON OFF; do
-DWITH_MKL
=
$TURN_ON_MKL
\
-DWITH_MKL
=
$TURN_ON_MKL
\
-DDEMO_NAME
=
simple_on_word2vec
\
-DDEMO_NAME
=
simple_on_word2vec
\
-DWITH_GPU
=
$TEST_GPU_CPU
\
-DWITH_GPU
=
$TEST_GPU_CPU
\
-DWITH_STATIC_LIB
=
$WITH_STATIC_LIB
-DWITH_STATIC_LIB
=
$WITH_STATIC_LIB
\
-DON_INFER
=
ON
make
-j
make
-j
word2vec_model
=
${
PADDLE_ROOT
}
'/build/python/paddle/fluid/tests/book/word2vec.inference.model'
word2vec_model
=
${
PADDLE_ROOT
}
'/build/python/paddle/fluid/tests/book/word2vec.inference.model'
if
[
-d
$word2vec_model
]
;
then
if
[
-d
$word2vec_model
]
;
then
...
@@ -80,10 +81,11 @@ for WITH_STATIC_LIB in ON OFF; do
...
@@ -80,10 +81,11 @@ for WITH_STATIC_LIB in ON OFF; do
-DWITH_MKL
=
$TURN_ON_MKL
\
-DWITH_MKL
=
$TURN_ON_MKL
\
-DDEMO_NAME
=
vis_demo
\
-DDEMO_NAME
=
vis_demo
\
-DWITH_GPU
=
$TEST_GPU_CPU
\
-DWITH_GPU
=
$TEST_GPU_CPU
\
-DWITH_STATIC_LIB
=
$WITH_STATIC_LIB
-DWITH_STATIC_LIB
=
$WITH_STATIC_LIB
\
-DON_INFER
=
ON
make
-j
make
-j
for
use_gpu
in
$use_gpu_list
;
do
for
use_gpu
in
$use_gpu_list
;
do
for
vis_demo_name
in
$vis_demo_list
;
do
for
vis_demo_name
in
$vis_demo_list
;
do
./vis_demo
\
./vis_demo
\
--modeldir
=
$DATA_DIR
/
$vis_demo_name
/model
\
--modeldir
=
$DATA_DIR
/
$vis_demo_name
/model
\
--data
=
$DATA_DIR
/
$vis_demo_name
/data.txt
\
--data
=
$DATA_DIR
/
$vis_demo_name
/data.txt
\
...
@@ -95,7 +97,7 @@ for WITH_STATIC_LIB in ON OFF; do
...
@@ -95,7 +97,7 @@ for WITH_STATIC_LIB in ON OFF; do
fi
fi
done
done
done
done
# --------tensorrt mobilenet------
# --------tensorrt mobilenet------
if
[
$USE_TENSORRT
==
ON
-a
$TEST_GPU_CPU
==
ON
]
;
then
if
[
$USE_TENSORRT
==
ON
-a
$TEST_GPU_CPU
==
ON
]
;
then
rm
-rf
*
rm
-rf
*
...
@@ -106,8 +108,9 @@ for WITH_STATIC_LIB in ON OFF; do
...
@@ -106,8 +108,9 @@ for WITH_STATIC_LIB in ON OFF; do
-DWITH_STATIC_LIB
=
$WITH_STATIC_LIB
\
-DWITH_STATIC_LIB
=
$WITH_STATIC_LIB
\
-DUSE_TENSORRT
=
$USE_TENSORRT
\
-DUSE_TENSORRT
=
$USE_TENSORRT
\
-DTENSORRT_INCLUDE_DIR
=
$TENSORRT_INCLUDE_DIR
\
-DTENSORRT_INCLUDE_DIR
=
$TENSORRT_INCLUDE_DIR
\
-DTENSORRT_LIB_DIR
=
$TENSORRT_LIB_DIR
-DTENSORRT_LIB_DIR
=
$TENSORRT_LIB_DIR
\
make
-j
-DON_INFER
=
ON
make
-j
./trt_mobilenet_demo
\
./trt_mobilenet_demo
\
--modeldir
=
$DATA_DIR
/mobilenet/model
\
--modeldir
=
$DATA_DIR
/mobilenet/model
\
--data
=
$DATA_DIR
/mobilenet/data.txt
\
--data
=
$DATA_DIR
/mobilenet/data.txt
\
...
...
paddle/fluid/inference/api/details/reset_tensor_array.cc
0 → 100644
浏览文件 @
8c1e3043
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
namespace
paddle
{
namespace
details
{
// Should be called after the parameters are loaded.
void
TensorArrayBatchCleaner
::
CollectTensorArrays
(
framework
::
Scope
*
scope
)
{
if
(
flag_
)
{
for
(
auto
&
var_name
:
scope
->
LocalVarNames
())
{
auto
*
var
=
scope
->
FindVar
(
var_name
);
// TODO(Superjomn) should avoid the case when a TensorArray is a
// parameter.
if
(
var_name
==
"feed"
||
var_name
==
"fetch"
)
continue
;
if
(
var
->
Type
()
==
typeid
(
framework
::
LoDTensorArray
))
{
VLOG
(
4
)
<<
"collect "
<<
var_name
;
arrays_
.
push_back
(
var
->
GetMutable
<
framework
::
LoDTensorArray
>
());
}
}
for
(
auto
*
kid
:
scope
->
kids
())
{
CollectTensorArrays
(
kid
);
}
VLOG
(
3
)
<<
"Collect "
<<
arrays_
.
size
()
<<
" arrays"
;
flag_
=
false
;
}
}
// Should be called when `Run` finished.
void
TensorArrayBatchCleaner
::
ResetTensorArray
()
{
for
(
auto
*
arr
:
arrays_
)
{
arr
->
clear
();
}
}
}
// namespace details
}
// namespace paddle
paddle/fluid/inference/api/details/reset_tensor_array.h
0 → 100644
浏览文件 @
8c1e3043
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/scope.h"
namespace
paddle
{
namespace
details
{
// Clean the TensorArray each batch to make the behavior the same with the
// training phase.
struct
TensorArrayBatchCleaner
{
// Fix the tensor array not clear in the inference scenarios.
void
CollectTensorArrays
(
framework
::
Scope
*
scope
);
void
ResetTensorArray
();
private:
bool
flag_
{
true
};
std
::
vector
<
framework
::
LoDTensorArray
*>
arrays_
;
};
}
// namespace details
}
// namespace paddle
paddle/fluid/inference/api/paddle_inference_api.h
浏览文件 @
8c1e3043
...
@@ -124,7 +124,7 @@ class ZeroCopyTensor {
...
@@ -124,7 +124,7 @@ class ZeroCopyTensor {
std
::
vector
<
std
::
vector
<
size_t
>>
lod
()
const
;
std
::
vector
<
std
::
vector
<
size_t
>>
lod
()
const
;
protected:
protected:
ZeroCopyTensor
(
void
*
scope
)
:
scope_
{
scope
}
{}
explicit
ZeroCopyTensor
(
void
*
scope
)
:
scope_
{
scope
}
{}
void
SetName
(
const
std
::
string
&
name
)
{
name_
=
name
;
}
void
SetName
(
const
std
::
string
&
name
)
{
name_
=
name
;
}
void
*
FindTensor
()
const
;
void
*
FindTensor
()
const
;
...
@@ -259,12 +259,6 @@ struct AnalysisConfig : public NativeConfig {
...
@@ -259,12 +259,6 @@ struct AnalysisConfig : public NativeConfig {
kExclude
// Specify the disabled passes in `ir_passes`.
kExclude
// Specify the disabled passes in `ir_passes`.
};
};
void
SetIncludeMode
()
{
ir_mode
=
IrPassMode
::
kInclude
;
// this pass has to be run at the beginning of all fuse passes
ir_passes
=
{
"infer_clean_graph_pass"
};
}
// Determine whether to perform graph optimization.
// Determine whether to perform graph optimization.
bool
enable_ir_optim
=
true
;
bool
enable_ir_optim
=
true
;
// Manually determine the IR passes to run.
// Manually determine the IR passes to run.
...
...
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
浏览文件 @
8c1e3043
...
@@ -228,6 +228,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
...
@@ -228,6 +228,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
TEST
(
Analyzer_rnn1
,
profile
)
{
TEST
(
Analyzer_rnn1
,
profile
)
{
contrib
::
AnalysisConfig
cfg
;
contrib
::
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
SetConfig
(
&
cfg
);
cfg
.
use_gpu
=
false
;
std
::
vector
<
PaddleTensor
>
outputs
;
std
::
vector
<
PaddleTensor
>
outputs
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
8c1e3043
...
@@ -268,6 +268,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
...
@@ -268,6 +268,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
else
()
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
tensorrt_engine_op
)
set
(
DEPS_OPS
${
DEPS_OPS
}
tensorrt_engine_op
)
endif
()
endif
()
op_library
(
hash_op DEPS xxhash
)
op_library
(
clip_by_norm_op DEPS selected_rows_functor selected_rows
)
op_library
(
clip_by_norm_op DEPS selected_rows_functor selected_rows
)
op_library
(
sum_op DEPS selected_rows_functor
)
op_library
(
sum_op DEPS selected_rows_functor
)
op_library
(
sgd_op DEPS selected_rows_functor
)
op_library
(
sgd_op DEPS selected_rows_functor
)
...
...
paddle/fluid/operators/beam_search_decode_op.cc
浏览文件 @
8c1e3043
...
@@ -79,6 +79,9 @@ struct BeamSearchDecodeFunctor {
...
@@ -79,6 +79,9 @@ struct BeamSearchDecodeFunctor {
bool
tensor_on_gpu_
;
bool
tensor_on_gpu_
;
size_t
beam_size_
;
size_t
beam_size_
;
int
end_id_
;
int
end_id_
;
// TODO(Superjomn) Here might result serious performance issue in the
// concurrency
// scenarios.
const
LoDTensorArray
&
step_ids_origin_
;
const
LoDTensorArray
&
step_ids_origin_
;
const
LoDTensorArray
&
step_scores_origin_
;
const
LoDTensorArray
&
step_scores_origin_
;
LoDTensorArray
step_ids_
=
LoDTensorArray
();
LoDTensorArray
step_ids_
=
LoDTensorArray
();
...
...
paddle/fluid/operators/detection/generate_proposals_op.cc
浏览文件 @
8c1e3043
...
@@ -284,7 +284,7 @@ static inline Tensor NMS(const platform::DeviceContext &ctx, Tensor *bbox,
...
@@ -284,7 +284,7 @@ static inline Tensor NMS(const platform::DeviceContext &ctx, Tensor *bbox,
selected_indices
.
push_back
(
idx
);
selected_indices
.
push_back
(
idx
);
++
selected_num
;
++
selected_num
;
}
}
sorted_indices
.
erase
(
sorted_indices
.
end
());
sorted_indices
.
erase
(
sorted_indices
.
end
()
-
1
);
if
(
flag
&&
eta
<
1
&&
adaptive_threshold
>
0.5
)
{
if
(
flag
&&
eta
<
1
&&
adaptive_threshold
>
0.5
)
{
adaptive_threshold
*=
eta
;
adaptive_threshold
*=
eta
;
}
}
...
...
paddle/fluid/operators/dropout_op.cc
浏览文件 @
8c1e3043
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/dropout_op.h"
#include <string>
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -57,6 +58,29 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -57,6 +58,29 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
"will be dropped."
)
"will be dropped."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
int
>
(
"seed"
,
"Dropout random seed."
).
SetDefault
(
0
);
AddAttr
<
int
>
(
"seed"
,
"Dropout random seed."
).
SetDefault
(
0
);
AddAttr
<
std
::
string
>
(
"dropout_implementation"
,
"[
\"
downgrade_in_infer
\"
|
\"
upscale_in_train
\"
]"
"There are two kinds of ways to implement dropout"
"(the mask below is a tensor have the same shape with input"
"the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
"1. downgrade_in_infer(default), downgrade the outcome at inference "
"time"
" train: out = input * mask"
" inference: out = input * dropout_prob"
"2. upscale_in_train, upscale the outcome at training time, do nothing "
"in inference"
" train: out = input * mask / ( 1.0 - dropout_prob )"
" inference: out = input"
" dropout op can be removed from the program. the program will be "
"efficient"
)
.
SetDefault
(
"downgrade_in_infer"
)
.
AddCustomChecker
([](
const
std
::
string
&
type
)
{
PADDLE_ENFORCE
(
type
==
"downgrade_in_infer"
||
type
==
"upscale_in_train"
,
"dropout_implementation can only be downgrade_in_infer or "
"upscale_in_train"
);
});
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Dropout Operator.
Dropout Operator.
...
@@ -104,7 +128,9 @@ REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
...
@@ -104,7 +128,9 @@ REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
dropout_grad
,
ops
::
DropoutOpGrad
);
REGISTER_OPERATOR
(
dropout_grad
,
ops
::
DropoutOpGrad
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
dropout
,
ops
::
CPUDropoutKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
dropout
,
ops
::
CPUDropoutKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CPUDropoutKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
dropout_grad
,
dropout_grad
,
ops
::
DropoutGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
DropoutGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
DropoutGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/dropout_op.cu
浏览文件 @
8c1e3043
...
@@ -17,6 +17,7 @@ limitations under the License. */
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include <thrust/transform.h>
#include <string>
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/float16.h"
...
@@ -26,7 +27,8 @@ namespace operators {
...
@@ -26,7 +27,8 @@ namespace operators {
template
<
typename
T
>
template
<
typename
T
>
__global__
void
RandomGenerator
(
const
size_t
n
,
const
int
seed
,
__global__
void
RandomGenerator
(
const
size_t
n
,
const
int
seed
,
const
float
dropout_prob
,
const
T
*
src
,
const
float
dropout_prob
,
const
T
*
src
,
T
*
mask_data
,
T
*
dst
)
{
T
*
mask_data
,
T
*
dst
,
bool
is_upscale_in_train
)
{
thrust
::
minstd_rand
rng
;
thrust
::
minstd_rand
rng
;
rng
.
seed
(
seed
);
rng
.
seed
(
seed
);
thrust
::
uniform_real_distribution
<
float
>
dist
(
0
,
1
);
thrust
::
uniform_real_distribution
<
float
>
dist
(
0
,
1
);
...
@@ -47,7 +49,11 @@ __global__ void RandomGenerator(const size_t n, const int seed,
...
@@ -47,7 +49,11 @@ __global__ void RandomGenerator(const size_t n, const int seed,
if
(
dist
(
rng
)
<
dropout_prob
)
{
if
(
dist
(
rng
)
<
dropout_prob
)
{
mask
=
static_cast
<
T
>
(
0
);
mask
=
static_cast
<
T
>
(
0
);
}
else
{
}
else
{
mask
=
static_cast
<
T
>
(
1
);
if
(
is_upscale_in_train
)
{
mask
=
static_cast
<
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
}
else
{
mask
=
static_cast
<
T
>
(
1
);
}
}
}
dest
=
s
*
mask
;
dest
=
s
*
mask
;
mask_data
[
idx
]
=
mask
;
mask_data
[
idx
]
=
mask
;
...
@@ -67,6 +73,8 @@ class GPUDropoutKernel : public framework::OpKernel<T> {
...
@@ -67,6 +73,8 @@ class GPUDropoutKernel : public framework::OpKernel<T> {
y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
float
dropout_prob
=
context
.
Attr
<
float
>
(
"dropout_prob"
);
float
dropout_prob
=
context
.
Attr
<
float
>
(
"dropout_prob"
);
auto
dropout_implementation
=
context
.
Attr
<
std
::
string
>
(
"dropout_implementation"
);
auto
&
place
=
*
context
.
template
device_context
<
Place
>().
eigen_device
();
auto
&
place
=
*
context
.
template
device_context
<
Place
>().
eigen_device
();
if
(
!
context
.
Attr
<
bool
>
(
"is_test"
))
{
if
(
!
context
.
Attr
<
bool
>
(
"is_test"
))
{
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
...
@@ -83,11 +91,16 @@ class GPUDropoutKernel : public framework::OpKernel<T> {
...
@@ -83,11 +91,16 @@ class GPUDropoutKernel : public framework::OpKernel<T> {
int
grid
=
(
x
->
numel
()
+
threads
-
1
)
/
threads
;
int
grid
=
(
x
->
numel
()
+
threads
-
1
)
/
threads
;
RandomGenerator
<
RandomGenerator
<
T
><<<
grid
,
threads
,
0
,
context
.
cuda_device_context
().
stream
()
>>>
(
T
><<<
grid
,
threads
,
0
,
context
.
cuda_device_context
().
stream
()
>>>
(
size
,
seed
,
dropout_prob
,
x_data
,
mask_data
,
y_data
);
size
,
seed
,
dropout_prob
,
x_data
,
mask_data
,
y_data
,
(
dropout_implementation
==
"upscale_in_train"
));
}
else
{
}
else
{
auto
X
=
EigenMatrix
<
T
>::
Reshape
(
*
x
,
1
);
auto
X
=
EigenMatrix
<
T
>::
Reshape
(
*
x
,
1
);
auto
Y
=
EigenMatrix
<
T
>::
Reshape
(
*
y
,
1
);
auto
Y
=
EigenMatrix
<
T
>::
Reshape
(
*
y
,
1
);
Y
.
device
(
place
)
=
X
*
static_cast
<
T
>
(
1.0
f
-
dropout_prob
);
if
(
dropout_implementation
==
"upscale_in_train"
)
{
Y
.
device
(
place
)
=
X
;
}
else
{
Y
.
device
(
place
)
=
X
*
static_cast
<
T
>
(
1.0
f
-
dropout_prob
);
}
}
}
}
}
};
};
...
@@ -99,6 +112,8 @@ namespace ops = paddle::operators;
...
@@ -99,6 +112,8 @@ namespace ops = paddle::operators;
namespace
plat
=
paddle
::
platform
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
dropout
,
ops
::
GPUDropoutKernel
<
plat
::
CUDADeviceContext
,
float
>
,
dropout
,
ops
::
GPUDropoutKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
GPUDropoutKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
);
ops
::
GPUDropoutKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
,
REGISTER_OP_CUDA_KERNEL
(
dropout_grad
,
ops
::
GPUDropoutKernel
<
plat
::
CUDADeviceContext
,
double
>
);
ops
::
DropoutGradKernel
<
plat
::
CUDADeviceContext
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
dropout_grad
,
ops
::
DropoutGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
DropoutGradKernel
<
plat
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/dropout_op.h
浏览文件 @
8c1e3043
...
@@ -14,6 +14,7 @@ limitations under the License. */
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#pragma once
#include <random>
#include <random>
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
...
@@ -36,6 +37,8 @@ class CPUDropoutKernel : public framework::OpKernel<T> {
...
@@ -36,6 +37,8 @@ class CPUDropoutKernel : public framework::OpKernel<T> {
auto
*
y_data
=
y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
y_data
=
y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
float
dropout_prob
=
context
.
Attr
<
float
>
(
"dropout_prob"
);
float
dropout_prob
=
context
.
Attr
<
float
>
(
"dropout_prob"
);
auto
dropout_implementation
=
context
.
Attr
<
std
::
string
>
(
"dropout_implementation"
);
if
(
!
context
.
Attr
<
bool
>
(
"is_test"
))
{
if
(
!
context
.
Attr
<
bool
>
(
"is_test"
))
{
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
auto
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
@@ -49,14 +52,20 @@ class CPUDropoutKernel : public framework::OpKernel<T> {
...
@@ -49,14 +52,20 @@ class CPUDropoutKernel : public framework::OpKernel<T> {
engine
.
seed
(
seed
);
engine
.
seed
(
seed
);
std
::
uniform_real_distribution
<
float
>
dist
(
0
,
1
);
std
::
uniform_real_distribution
<
float
>
dist
(
0
,
1
);
size_t
size
=
framework
::
product
(
mask
->
dims
());
size_t
size
=
framework
::
product
(
mask
->
dims
());
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
if
(
dist
(
engine
)
<
dropout_prob
)
{
if
(
dist
(
engine
)
<
dropout_prob
)
{
mask_data
[
i
]
=
0
;
mask_data
[
i
]
=
0
;
y_data
[
i
]
=
0
;
y_data
[
i
]
=
0
;
}
else
{
}
else
{
mask_data
[
i
]
=
1
;
if
(
dropout_implementation
==
"upscale_in_train"
)
{
y_data
[
i
]
=
x_data
[
i
];
mask_data
[
i
]
=
1.0
f
/
static_cast
<
T
>
(
1.0
f
-
dropout_prob
);
y_data
[
i
]
=
x_data
[
i
]
/
static_cast
<
T
>
(
1.0
f
-
dropout_prob
);
}
else
{
mask_data
[
i
]
=
1
;
y_data
[
i
]
=
x_data
[
i
];
}
}
}
}
}
}
else
{
}
else
{
...
@@ -64,7 +73,11 @@ class CPUDropoutKernel : public framework::OpKernel<T> {
...
@@ -64,7 +73,11 @@ class CPUDropoutKernel : public framework::OpKernel<T> {
auto
Y
=
EigenMatrix
<
T
>::
Reshape
(
*
y
,
1
);
auto
Y
=
EigenMatrix
<
T
>::
Reshape
(
*
y
,
1
);
auto
&
place
=
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
Y
.
device
(
place
)
=
X
*
(
1.0
f
-
dropout_prob
);
if
(
dropout_implementation
==
"upscale_in_train"
)
{
Y
.
device
(
place
)
=
X
;
}
else
{
Y
.
device
(
place
)
=
X
*
static_cast
<
T
>
(
1.0
f
-
dropout_prob
);
}
}
}
}
}
};
};
...
...
paddle/fluid/operators/hash_op.cc
0 → 100644
浏览文件 @
8c1e3043
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/hash_op.h"
#include <string>
#include <vector>
namespace
paddle
{
namespace
operators
{
class
HashOp
:
public
framework
::
OperatorWithKernel
{
public:
HashOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of HashOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of HashOp should not be null."
);
auto
dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2UL
,
"The input of hash_op's dimensions must be 2"
);
std
::
vector
<
int64_t
>
out_dims
;
out_dims
.
reserve
(
dims
.
size
()
+
1
);
// copy all dims except the last one
for
(
size_t
i
=
0u
;
i
!=
dims
.
size
()
-
1
;
++
i
)
{
out_dims
.
emplace_back
(
dims
[
i
]);
}
int
num_hash
=
ctx
->
Attrs
().
Get
<
int
>
(
"num_hash"
);
out_dims
.
emplace_back
(
num_hash
);
// keep the last dim to 1
out_dims
.
emplace_back
(
1
);
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_dims
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
class
HashOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) Input tensor of scale operator."
);
AddOutput
(
"Out"
,
"(Tensor) Output tensor of scale operator."
);
AddComment
(
R"DOC(
**Hash Operator**
$$Out = scale * X$$
)DOC"
);
AddAttr
<
int
>
(
"num_hash"
,
""
).
SetDefault
(
1
);
AddAttr
<
int
>
(
"mod_by"
,
""
).
SetDefault
(
100000
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
hash
,
ops
::
HashOp
,
ops
::
HashOpMaker
);
REGISTER_OP_CPU_KERNEL
(
hash
,
ops
::
HashKerel
<
int
>
,
ops
::
HashKerel
<
int64_t
>
);
paddle/fluid/operators/hash_op.h
0 → 100644
浏览文件 @
8c1e3043
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
extern
"C"
{
#include <xxhash.h>
}
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
// template <typename DeviceContext, typename T>
template
<
typename
T
>
class
HashKerel
:
public
framework
::
OpKernel
<
T
>
{
public:
virtual
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
*
out_t
=
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
in_t
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
int
mod_by
=
context
.
Attr
<
int
>
(
"mod_by"
);
int
num_hash
=
context
.
Attr
<
int
>
(
"num_hash"
);
auto
*
output
=
out_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
in_dims
=
in_t
->
dims
();
auto
in_lod
=
in_t
->
lod
();
PADDLE_ENFORCE_EQ
(
static_cast
<
uint64_t
>
(
in_dims
[
0
]),
in_lod
[
0
].
back
(),
"The actual input data's size mismatched with LoD information."
);
auto
seq_length
=
in_dims
[
0
];
auto
last_dim
=
in_dims
[
in_dims
.
size
()
-
1
];
auto
*
input
=
in_t
->
data
<
T
>
();
for
(
int
idx
=
0
;
idx
<
seq_length
;
++
idx
)
{
for
(
int
ihash
=
0
;
ihash
!=
num_hash
;
++
ihash
)
{
output
[
idx
*
num_hash
+
ihash
]
=
XXH64
(
input
,
sizeof
(
int
)
*
last_dim
,
ihash
)
%
mod_by
;
}
input
+=
last_dim
;
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/lookup_table_op.cc
浏览文件 @
8c1e3043
...
@@ -81,6 +81,12 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -81,6 +81,12 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
"Otherwise the given value indicates padding the output "
"Otherwise the given value indicates padding the output "
"with zeros whenever lookup encounters it in Ids."
)
"with zeros whenever lookup encounters it in Ids."
)
.
SetDefault
(
kNoPadding
);
.
SetDefault
(
kNoPadding
);
// NOTE(minqiyang): grad_inplace is an temporal attribute,
// please do NOT set this attribute in python layer.
AddAttr
<
bool
>
(
"grad_inplace"
,
"(boolean, default false) "
"If the grad op reuse the input's variable."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Lookup Table Operator.
Lookup Table Operator.
...
...
paddle/fluid/operators/lookup_table_op.h
浏览文件 @
8c1e3043
...
@@ -21,6 +21,7 @@ limitations under the License. */
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -68,6 +69,7 @@ class LookupTableKernel : public framework::OpKernel<T> {
...
@@ -68,6 +69,7 @@ class LookupTableKernel : public framework::OpKernel<T> {
const
auto
*
table
=
table_t
.
value
().
data
<
T
>
();
const
auto
*
table
=
table_t
.
value
().
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
...
@@ -75,8 +77,8 @@ class LookupTableKernel : public framework::OpKernel<T> {
...
@@ -75,8 +77,8 @@ class LookupTableKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
);
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
);
auto
id_index
=
table_t
.
Index
(
ids
[
i
]);
auto
id_index
=
table_t
.
Index
(
ids
[
i
]);
PADDLE_ENFORCE_GE
(
id_index
,
0
,
"the input key should be exists."
);
PADDLE_ENFORCE_GE
(
id_index
,
0
,
"the input key should be exists."
);
memcpy
(
output
+
i
*
row_width
,
table
+
id_index
*
row_width
,
blas
.
VCOPY
(
row_width
,
table
+
id_index
*
row_width
,
row_width
*
sizeof
(
T
)
);
output
+
i
*
row_width
);
}
}
}
}
}
}
...
@@ -111,27 +113,37 @@ class LookupTableGradKernel : public framework::OpKernel<T> {
...
@@ -111,27 +113,37 @@ class LookupTableGradKernel : public framework::OpKernel<T> {
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
int64_t
ids_num
=
ids
->
numel
();
int64_t
ids_num
=
ids
->
numel
();
framework
::
Vector
<
int64_t
>
new_rows
;
std
::
vector
<
int64_t
>
new_rows
;
new_rows
.
reserve
(
ids_num
);
new_rows
.
resize
(
ids_num
);
for
(
int64_t
i
=
0
;
i
<
ids_num
;
i
++
)
{
std
::
memcpy
(
&
new_rows
[
0
],
ids_data
,
ids_num
*
sizeof
(
int64_t
));
new_rows
.
push_back
(
ids_data
[
i
]);
}
d_table
->
set_rows
(
new_rows
);
d_table
->
set_rows
(
new_rows
);
auto
*
d_table_value
=
d_table
->
mutable_value
();
auto
*
d_table_value
=
d_table
->
mutable_value
();
d_table_value
->
Resize
({
ids_num
,
table_dim
[
1
]});
d_table_value
->
Resize
({
ids_num
,
table_dim
[
1
]});
d_table_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// FIXME(minqiyang):
// memory optimization will NOT reuse Tensor with SelectedRows
d_table
->
set_height
(
table_dim
[
0
]);
// so we could just share the tensor here directly.
// However, the InferVarType method will infer the output SelectedRows
auto
*
d_output_data
=
d_output
->
data
<
T
>
();
// to Tensor sometimes, which is a bug, so we will add an attribute
auto
*
d_table_data
=
d_table_value
->
data
<
T
>
();
// here to indicate the inplace and remove this attribute after
// the InferVarType's bug was fixed
auto
d_output_dims
=
d_output
->
dims
();
bool
grad_inplace
=
context
.
Attr
<
bool
>
(
"grad_inplace"
);
PADDLE_ENFORCE_EQ
(
if
(
grad_inplace
)
{
d_table_value
->
dims
(),
d_table_value
->
ShareDataWith
(
*
d_output
);
framework
::
flatten_to_2d
(
d_output_dims
,
d_output_dims
.
size
()
-
1
));
}
else
{
memcpy
(
d_table_data
,
d_output_data
,
sizeof
(
T
)
*
d_output
->
numel
());
d_table_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
d_table
->
set_height
(
table_dim
[
0
]);
auto
*
d_output_data
=
d_output
->
data
<
T
>
();
auto
*
d_table_data
=
d_table_value
->
data
<
T
>
();
auto
d_output_dims
=
d_output
->
dims
();
PADDLE_ENFORCE_EQ
(
d_table_value
->
dims
(),
framework
::
flatten_to_2d
(
d_output_dims
,
d_output_dims
.
size
()
-
1
));
memcpy
(
d_table_data
,
d_output_data
,
sizeof
(
T
)
*
d_output
->
numel
());
}
}
else
{
}
else
{
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
...
...
paddle/fluid/operators/math/algorithm.h
浏览文件 @
8c1e3043
...
@@ -39,6 +39,52 @@ HOSTDEVICE inline int64_t BinarySearch(const T *x, int64_t num, const T &val) {
...
@@ -39,6 +39,52 @@ HOSTDEVICE inline int64_t BinarySearch(const T *x, int64_t num, const T &val) {
return
-
1
;
return
-
1
;
}
}
template
<
typename
T
>
HOSTDEVICE
inline
size_t
LowerBound
(
const
T
*
x
,
size_t
num
,
const
T
&
val
)
{
#ifdef __CUDA_ARCH__
// The following code is from
// https://en.cppreference.com/w/cpp/algorithm/lower_bound
auto
*
first
=
x
;
int64_t
count
=
static_cast
<
int64_t
>
(
num
);
while
(
count
>
0
)
{
int64_t
step
=
(
count
>>
1
);
auto
*
it
=
first
+
step
;
if
(
*
it
<
val
)
{
first
=
++
it
;
count
-=
(
step
+
1
);
}
else
{
count
=
step
;
}
}
return
static_cast
<
size_t
>
(
first
-
x
);
#else
return
static_cast
<
size_t
>
(
std
::
lower_bound
(
x
,
x
+
num
,
val
)
-
x
);
#endif
}
template
<
typename
T
>
HOSTDEVICE
inline
size_t
UpperBound
(
const
T
*
x
,
size_t
num
,
const
T
&
val
)
{
#ifdef __CUDA_ARCH__
// The following code is from
// https://en.cppreference.com/w/cpp/algorithm/upper_bound
auto
*
first
=
x
;
int64_t
count
=
static_cast
<
int64_t
>
(
num
);
while
(
count
>
0
)
{
auto
step
=
(
count
>>
1
);
auto
*
it
=
first
+
step
;
if
(
val
<
*
it
)
{
count
=
step
;
}
else
{
first
=
++
it
;
count
-=
(
step
+
1
);
}
}
return
static_cast
<
size_t
>
(
first
-
x
);
#else
return
static_cast
<
size_t
>
(
std
::
upper_bound
(
x
,
x
+
num
,
val
)
-
x
);
#endif
}
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
paddle/fluid/operators/sequence_reverse_op.cc
0 → 100644
浏览文件 @
8c1e3043
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/sequence_reverse_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
sequence_reverse
,
ops
::
SequenceReverseOp
,
ops
::
SequenceReverseOpMaker
,
ops
::
SequenceReverseGradOpDescMaker
);
REGISTER_OP_CPU_KERNEL
(
sequence_reverse
,
ops
::
SequenceReverseOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
uint8_t
>
,
ops
::
SequenceReverseOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
SequenceReverseOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
SequenceReverseOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SequenceReverseOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/sequence_reverse_op.cu
0 → 100644
浏览文件 @
8c1e3043
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/sequence_reverse_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
sequence_reverse
,
ops
::
SequenceReverseOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
uint8_t
>
,
ops
::
SequenceReverseOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SequenceReverseOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
ops
::
SequenceReverseOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SequenceReverseOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/sequence_reverse_op.h
0 → 100644
浏览文件 @
8c1e3043
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
operators
{
class
SequenceReverseOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) must exist"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
"Output(Y) must exist"
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_GE
(
x_dim
.
size
(),
2
,
"Rank of Input(X) must be not less than 2."
);
ctx
->
SetOutputDim
(
"Y"
,
x_dim
);
ctx
->
ShareLoD
(
"X"
,
"Y"
);
}
};
class
SequenceReverseOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input LoDTensor of sequence_reverse op."
);
AddOutput
(
"Y"
,
"The output LoDTensor of sequence_reverse op."
);
AddComment
(
R"DOC(
SequenceReverse Operator.
Reverse each sequence in input X along dim 0.
Assuming X is a LoDTensor with dims [5, 4] and lod [[0, 2, 5]], where:
X.data() = [
[1, 2, 3, 4],
[5, 6, 7, 8], # the 0-th sequence with length 2
[9, 10, 11, 12],
[13, 14, 15, 16],
[17, 18, 19, 20] # the 1-st sequence with length 3
]
The output Y would be a LoDTensor sharing the same dims and lod with input X,
and:
Y.data() = [
[5, 6, 7, 8],
[1, 2, 3, 4], # the reversed 0-th sequence with length 2
[17, 18, 19, 20],
[13, 14, 15, 16],
[9, 10, 11, 12] # the reversed 1-st sequence with length 3
]
This Operator is useful to build a reverse dynamic RNN network.
This Operator only supports one-level lod currently.
)DOC"
);
}
};
template
<
typename
T
>
struct
SequenceReverseFunctor
{
SequenceReverseFunctor
(
const
T
*
x
,
T
*
y
,
const
size_t
*
lod
,
size_t
lod_count
,
size_t
row_numel
)
:
x_
(
x
),
y_
(
y
),
lod_
(
lod
),
lod_count_
(
lod_count
),
row_numel_
(
row_numel
)
{}
HOSTDEVICE
void
operator
()(
size_t
idx_x
)
const
{
auto
row_idx_x
=
idx_x
/
row_numel_
;
auto
lod_idx
=
math
::
UpperBound
(
lod_
,
lod_count_
,
row_idx_x
);
auto
row_idx_y
=
lod_
[
lod_idx
-
1
]
+
(
lod_
[
lod_idx
]
-
1
-
row_idx_x
);
auto
idx_y
=
row_idx_y
*
row_numel_
+
idx_x
%
row_numel_
;
y_
[
idx_y
]
=
x_
[
idx_x
];
}
const
T
*
x_
;
T
*
y_
;
const
size_t
*
lod_
;
size_t
lod_count_
;
size_t
row_numel_
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceReverseOpKernel
:
public
framework
::
OpKernel
<
T
>
{
using
LoDTensor
=
framework
::
LoDTensor
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
x
=
*
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
LoDTensor
>
(
"Y"
);
PADDLE_ENFORCE_EQ
(
x
.
lod
().
size
(),
1
,
"SequenceReverse Op only support one level lod."
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
const
size_t
*
lod
;
size_t
lod_count
=
x
.
lod
()[
0
].
size
();
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
lod
=
x
.
lod
()[
0
].
CUDAData
(
ctx
.
GetPlace
());
}
else
{
#endif
lod
=
x
.
lod
()[
0
].
data
();
#ifdef PADDLE_WITH_CUDA
}
#endif
size_t
limit
=
static_cast
<
size_t
>
(
x
.
numel
());
size_t
row_numel
=
static_cast
<
size_t
>
(
limit
/
x
.
dims
()[
0
]);
auto
*
x_data
=
x
.
data
<
T
>
();
auto
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
PADDLE_ENFORCE_NE
(
x_data
,
y_data
,
"SequenceReverse Op does not support in-place operation"
);
SequenceReverseFunctor
<
T
>
functor
(
x_data
,
y_data
,
lod
,
lod_count
,
row_numel
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
limit
);
for_range
(
functor
);
}
};
class
SequenceReverseGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"sequence_reverse"
);
op
->
SetInput
(
"X"
,
OutputGrad
(
"Y"
));
op
->
SetOutput
(
"Y"
,
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/softmax_cudnn_op.cu.cc
浏览文件 @
8c1e3043
...
@@ -76,6 +76,8 @@ namespace ops = paddle::operators;
...
@@ -76,6 +76,8 @@ namespace ops = paddle::operators;
namespace
plat
=
paddle
::
platform
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_KERNEL
(
softmax
,
CUDNN
,
plat
::
CUDAPlace
,
REGISTER_OP_KERNEL
(
softmax
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
SoftmaxCUDNNKernel
<
float
>
,
ops
::
SoftmaxCUDNNKernel
<
float
>
,
ops
::
SoftmaxCUDNNKernel
<
double
>
,
ops
::
SoftmaxCUDNNKernel
<
plat
::
float16
>
);
ops
::
SoftmaxCUDNNKernel
<
plat
::
float16
>
);
REGISTER_OP_KERNEL
(
softmax_grad
,
CUDNN
,
plat
::
CUDAPlace
,
REGISTER_OP_KERNEL
(
softmax_grad
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
SoftmaxGradCUDNNKernel
<
float
>
);
ops
::
SoftmaxGradCUDNNKernel
<
float
>
,
ops
::
SoftmaxGradCUDNNKernel
<
double
>
);
paddle/fluid/operators/transpose_op.cc
浏览文件 @
8c1e3043
...
@@ -210,18 +210,21 @@ REGISTER_OPERATOR(transpose, ops::TransposeOp, ops::TransposeOpMaker,
...
@@ -210,18 +210,21 @@ REGISTER_OPERATOR(transpose, ops::TransposeOp, ops::TransposeOpMaker,
REGISTER_OPERATOR
(
transpose_grad
,
ops
::
TransposeOpGrad
);
REGISTER_OPERATOR
(
transpose_grad
,
ops
::
TransposeOpGrad
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
transpose
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
transpose
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
transpose_grad
,
transpose_grad
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OPERATOR
(
transpose2
,
ops
::
Transpose2Op
,
ops
::
Transpose2OpMaker
,
REGISTER_OPERATOR
(
transpose2
,
ops
::
Transpose2Op
,
ops
::
Transpose2OpMaker
,
ops
::
Transpose2GradMaker
);
ops
::
Transpose2GradMaker
);
REGISTER_OPERATOR
(
transpose2_grad
,
ops
::
Transpose2OpGrad
);
REGISTER_OPERATOR
(
transpose2_grad
,
ops
::
Transpose2OpGrad
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
transpose2
,
transpose2
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
TransposeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
transpose2_grad
,
transpose2_grad
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/transpose_op.cu.cc
浏览文件 @
8c1e3043
...
@@ -16,15 +16,18 @@ limitations under the License. */
...
@@ -16,15 +16,18 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
transpose
,
transpose
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
TransposeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
transpose_grad
,
transpose_grad
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
transpose2
,
transpose2
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
TransposeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
transpose2_grad
,
transpose2_grad
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/train/demo/CMakeLists.txt
浏览文件 @
8c1e3043
...
@@ -15,6 +15,7 @@ include_directories("${PADDLE_LIB}")
...
@@ -15,6 +15,7 @@ include_directories("${PADDLE_LIB}")
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/protobuf/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/protobuf/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/glog/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/glog/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/gflags/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/gflags/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/xxhash/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/snappy/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/snappy/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/snappystream/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/snappystream/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/zlib/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/zlib/include"
)
...
@@ -27,6 +28,7 @@ link_directories("${PADDLE_LIB}/third_party/install/snappystream/lib")
...
@@ -27,6 +28,7 @@ link_directories("${PADDLE_LIB}/third_party/install/snappystream/lib")
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/protobuf/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/protobuf/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/glog/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/glog/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/gflags/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/gflags/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/xxhash/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/zlib/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/zlib/lib"
)
add_executable
(
demo_trainer demo_trainer.cc
)
add_executable
(
demo_trainer demo_trainer.cc
)
...
@@ -62,5 +64,5 @@ target_link_libraries(demo_trainer
...
@@ -62,5 +64,5 @@ target_link_libraries(demo_trainer
${
ARCHIVE_END
}
${
ARCHIVE_END
}
${
MATH_LIB
}
${
MATH_LIB
}
${
MKLDNN_LIB
}
${
MKLDNN_LIB
}
glog gflags protobuf snappystream snappy z
glog gflags protobuf snappystream snappy z
xxhash
${
EXTERNAL_LIB
}
)
${
EXTERNAL_LIB
}
)
paddle/scripts/paddle_build.sh
浏览文件 @
8c1e3043
...
@@ -95,9 +95,9 @@ function cmake_gen() {
...
@@ -95,9 +95,9 @@ function cmake_gen() {
exit
1
exit
1
fi
fi
fi
fi
else
else
if
[
"
$1
"
!=
""
]
;
then
if
[
"
$1
"
!=
""
]
;
then
echo
"using python abi:
$1
"
echo
"using python abi:
$1
"
if
[
"
$1
"
==
"cp27-cp27m"
]
;
then
if
[
"
$1
"
==
"cp27-cp27m"
]
;
then
export
LD_LIBRARY_PATH
=
/opt/_internal/cpython-2.7.11-ucs2/lib:
${
LD_LIBRARY_PATH
#/opt/_internal/cpython-2.7.11-ucs4/lib
:
}
export
LD_LIBRARY_PATH
=
/opt/_internal/cpython-2.7.11-ucs2/lib:
${
LD_LIBRARY_PATH
#/opt/_internal/cpython-2.7.11-ucs4/lib
:
}
export
PATH
=
/opt/python/cp27-cp27m/bin/:
${
PATH
}
export
PATH
=
/opt/python/cp27-cp27m/bin/:
${
PATH
}
...
@@ -119,7 +119,7 @@ function cmake_gen() {
...
@@ -119,7 +119,7 @@ function cmake_gen() {
fi
fi
fi
fi
fi
fi
if
[
"
$SYSTEM
"
==
"Darwin"
]
;
then
if
[
"
$SYSTEM
"
==
"Darwin"
]
;
then
WITH_DISTRIBUTE
=
${
WITH_DISTRIBUTE
:-
ON
}
WITH_DISTRIBUTE
=
${
WITH_DISTRIBUTE
:-
ON
}
WITH_AVX
=
${
WITH_AVX
:-
ON
}
WITH_AVX
=
${
WITH_AVX
:-
ON
}
...
@@ -127,7 +127,7 @@ function cmake_gen() {
...
@@ -127,7 +127,7 @@ function cmake_gen() {
else
else
INFERENCE_DEMO_INSTALL_DIR
=
${
INFERENCE_DEMO_INSTALL_DIR
:-
/root/.cache/inference_demo
}
INFERENCE_DEMO_INSTALL_DIR
=
${
INFERENCE_DEMO_INSTALL_DIR
:-
/root/.cache/inference_demo
}
fi
fi
cat
<<
EOF
cat
<<
EOF
========================================
========================================
Configuring cmake in /paddle/build ...
Configuring cmake in /paddle/build ...
...
@@ -394,8 +394,8 @@ EOF
...
@@ -394,8 +394,8 @@ EOF
export
http_proxy
=
export
http_proxy
=
export
https_proxy
=
export
https_proxy
=
# TODO: jiabin need to refine this part when these tests fixed on mac
# TODO: jiabin need to refine this part when these tests fixed on mac
ctest
--output-on-failure
-j
$1
ctest
--output-on-failure
-j
$1
# make install should also be test when unittest
# make install should also be test when unittest
make
install
-j
8
make
install
-j
8
pip
install
--user
${
INSTALL_PREFIX
:-
/paddle/build
}
/opt/paddle/share/wheels/
*
.whl
pip
install
--user
${
INSTALL_PREFIX
:-
/paddle/build
}
/opt/paddle/share/wheels/
*
.whl
if
[[
${
WITH_FLUID_ONLY
:-
OFF
}
==
"OFF"
]]
;
then
if
[[
${
WITH_FLUID_ONLY
:-
OFF
}
==
"OFF"
]]
;
then
...
@@ -659,7 +659,7 @@ function gen_fluid_lib() {
...
@@ -659,7 +659,7 @@ function gen_fluid_lib() {
Generating fluid library for train and inference ...
Generating fluid library for train and inference ...
========================================
========================================
EOF
EOF
cmake ..
-DWITH_DISTRIBUTE
=
OFF
cmake ..
-DWITH_DISTRIBUTE
=
OFF
-DON_INFER
=
ON
make
-j
`
nproc
`
fluid_lib_dist
make
-j
`
nproc
`
fluid_lib_dist
make
-j
`
nproc
`
inference_lib_dist
make
-j
`
nproc
`
inference_lib_dist
fi
fi
...
...
python/paddle/dataset/wmt16.py
浏览文件 @
8c1e3043
...
@@ -78,7 +78,7 @@ def __build_dict(tar_file, dict_size, save_path, lang):
...
@@ -78,7 +78,7 @@ def __build_dict(tar_file, dict_size, save_path, lang):
six
.
iteritems
(
word_dict
),
key
=
lambda
x
:
x
[
1
],
six
.
iteritems
(
word_dict
),
key
=
lambda
x
:
x
[
1
],
reverse
=
True
)):
reverse
=
True
)):
if
idx
+
3
==
dict_size
:
break
if
idx
+
3
==
dict_size
:
break
fout
.
write
(
"%s
\n
"
%
(
word
[
0
]
))
fout
.
write
(
"%s
\n
"
%
(
cpt
.
to_bytes
(
word
[
0
])
))
def
__load_dict
(
tar_file
,
dict_size
,
lang
,
reverse
=
False
):
def
__load_dict
(
tar_file
,
dict_size
,
lang
,
reverse
=
False
):
...
...
python/paddle/fluid/clip.py
浏览文件 @
8c1e3043
...
@@ -272,7 +272,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
...
@@ -272,7 +272,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
)
)
square
=
grad
*
grad
square
=
grad
*
grad
local_norm_var
=
layers
.
cast
(
layers
.
reduce_sum
(
input
=
square
),
'float64'
)
local_norm_var
=
layers
.
reduce_sum
(
input
=
square
)
context
[
self
.
group_name
].
append
(
local_norm_var
)
context
[
self
.
group_name
].
append
(
local_norm_var
)
self
.
context
=
context
self
.
context
=
context
...
@@ -282,7 +282,6 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
...
@@ -282,7 +282,6 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
if
group_scale_name
not
in
self
.
context
:
if
group_scale_name
not
in
self
.
context
:
group_norm_var
=
layers
.
sums
(
input
=
self
.
context
[
self
.
group_name
])
group_norm_var
=
layers
.
sums
(
input
=
self
.
context
[
self
.
group_name
])
group_norm_var
=
layers
.
sqrt
(
x
=
group_norm_var
)
group_norm_var
=
layers
.
sqrt
(
x
=
group_norm_var
)
group_norm_var
=
layers
.
cast
(
group_norm_var
,
'float32'
)
clip_var
=
self
.
context
[
self
.
group_name
+
"_clip"
]
clip_var
=
self
.
context
[
self
.
group_name
+
"_clip"
]
group_scale_var
=
layers
.
elementwise_div
(
group_scale_var
=
layers
.
elementwise_div
(
x
=
clip_var
,
x
=
clip_var
,
...
@@ -333,7 +332,8 @@ def append_gradient_clip_ops(param_grads):
...
@@ -333,7 +332,8 @@ def append_gradient_clip_ops(param_grads):
for
p
,
g
in
param_grads
:
for
p
,
g
in
param_grads
:
if
g
is
None
:
if
g
is
None
:
continue
continue
with
p
.
block
.
program
.
_optimized_guard
([
p
,
g
]):
with
p
.
block
.
program
.
_optimized_guard
(
[
p
,
g
]),
framework
.
name_scope
(
'append_clip'
):
clip_attr
=
getattr
(
p
,
'gradient_clip_attr'
,
NullGradientClipAttr
())
clip_attr
=
getattr
(
p
,
'gradient_clip_attr'
,
NullGradientClipAttr
())
if
clip_attr
is
None
:
if
clip_attr
is
None
:
clip_attr
=
NullGradientClipAttr
()
clip_attr
=
NullGradientClipAttr
()
...
@@ -348,7 +348,8 @@ def append_gradient_clip_ops(param_grads):
...
@@ -348,7 +348,8 @@ def append_gradient_clip_ops(param_grads):
for
p
,
g
in
param_grads
:
for
p
,
g
in
param_grads
:
if
g
is
None
:
if
g
is
None
:
continue
continue
with
p
.
block
.
program
.
_optimized_guard
([
p
,
g
]):
with
p
.
block
.
program
.
_optimized_guard
(
[
p
,
g
]),
framework
.
name_scope
(
'append_graident_clip'
):
res
.
append
(
clip_attr
.
_create_operators
(
param
=
p
,
grad
=
g
))
res
.
append
(
clip_attr
.
_create_operators
(
param
=
p
,
grad
=
g
))
return
res
return
res
...
...
python/paddle/fluid/evaluator.py
浏览文件 @
8c1e3043
...
@@ -316,7 +316,7 @@ class DetectionMAP(Evaluator):
...
@@ -316,7 +316,7 @@ class DetectionMAP(Evaluator):
gt_label (Variable): The ground truth label index, which is a LoDTensor
gt_label (Variable): The ground truth label index, which is a LoDTensor
with shape [N, 1].
with shape [N, 1].
gt_box (Variable): The ground truth bounding box (bbox), which is a
gt_box (Variable): The ground truth bounding box (bbox), which is a
LoDTensor with shape [N,
6
]. The layout is [xmin, ymin, xmax, ymax].
LoDTensor with shape [N,
4
]. The layout is [xmin, ymin, xmax, ymax].
gt_difficult (Variable|None): Whether this ground truth is a difficult
gt_difficult (Variable|None): Whether this ground truth is a difficult
bounding bbox, which can be a LoDTensor [N, 1] or not set. If None,
bounding bbox, which can be a LoDTensor [N, 1] or not set. If None,
it means all the ground truth labels are not difficult bbox.
it means all the ground truth labels are not difficult bbox.
...
...
python/paddle/fluid/framework.py
浏览文件 @
8c1e3043
...
@@ -1496,6 +1496,9 @@ class Program(object):
...
@@ -1496,6 +1496,9 @@ class Program(object):
>>> with program._optimized_guard([p,g]):
>>> with program._optimized_guard([p,g]):
>>> p = p - 0.001 * g
>>> p = p - 0.001 * g
"""
"""
tmp_role
=
self
.
_current_role
tmp_var
=
self
.
_op_role_var
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
self
.
_current_role
=
OpRole
.
Optimize
self
.
_current_role
=
OpRole
.
Optimize
self
.
_op_role_var
=
[
self
.
_op_role_var
=
[
...
@@ -1503,11 +1506,11 @@ class Program(object):
...
@@ -1503,11 +1506,11 @@ class Program(object):
for
var
in
param_and_grads
for
var
in
param_and_grads
]
]
yield
yield
self
.
_op_role_var
=
[]
self
.
_op_role_var
=
tmp_var
self
.
_current_role
=
OpRole
.
Forward
self
.
_current_role
=
tmp_role
@
contextlib
.
contextmanager
@
contextlib
.
contextmanager
def
_lr_schedule_guard
(
self
):
def
_lr_schedule_guard
(
self
,
is_with_opt
=
False
):
"""
"""
A with guard to set :code:`LRSched` :code:`OpRole` and
A with guard to set :code:`LRSched` :code:`OpRole` and
:code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
:code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
...
@@ -1515,6 +1518,10 @@ class Program(object):
...
@@ -1515,6 +1518,10 @@ class Program(object):
Notes: This is a very low level API. Users should not use it directly.
Notes: This is a very low level API. Users should not use it directly.
Args:
is_with_opt: Only set to true if these ops a in the middle
of a bunch of optimize ops so that it can be treated
correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
Examples:
Examples:
...
@@ -1528,6 +1535,8 @@ class Program(object):
...
@@ -1528,6 +1535,8 @@ class Program(object):
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
self
.
_current_role
=
OpRole
.
LRSched
self
.
_current_role
=
OpRole
.
LRSched
if
is_with_opt
:
self
.
_current_role
=
int
(
OpRole
.
LRSched
)
|
int
(
OpRole
.
Optimize
)
# TODO(typhoonzero): how to set target learning rate var
# TODO(typhoonzero): how to set target learning rate var
self
.
_op_role_var
=
[]
self
.
_op_role_var
=
[]
yield
yield
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
8c1e3043
...
@@ -154,8 +154,10 @@ __all__ = [
...
@@ -154,8 +154,10 @@ __all__ = [
'mul'
,
'mul'
,
'sigmoid_cross_entropy_with_logits'
,
'sigmoid_cross_entropy_with_logits'
,
'maxout'
,
'maxout'
,
'sequence_reverse'
,
'affine_channel'
,
'affine_channel'
,
'similarity_focus'
,
'similarity_focus'
,
'hash'
,
]
]
...
@@ -981,7 +983,12 @@ def cos_sim(X, Y):
...
@@ -981,7 +983,12 @@ def cos_sim(X, Y):
return
out
return
out
def
dropout
(
x
,
dropout_prob
,
is_test
=
False
,
seed
=
None
,
name
=
None
):
def
dropout
(
x
,
dropout_prob
,
is_test
=
False
,
seed
=
None
,
name
=
None
,
dropout_implementation
=
"downgrade_in_infer"
):
"""
"""
Computes dropout.
Computes dropout.
...
@@ -1001,6 +1008,21 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
...
@@ -1001,6 +1008,21 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
units will be dropped. DO NOT use a fixed seed in training.
units will be dropped. DO NOT use a fixed seed in training.
name (str|None): A name for this layer(optional). If set None, the layer
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
will be named automatically.
dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
1. downgrade_in_infer(default), downgrade the outcome at inference
train: out = input * mask
inference: out = input * dropout_prob
(make is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob)
2. upscale_in_train, upscale the outcome at training time
train: out = input * mask / ( 1.0 - dropout_prob )
inference: out = input
(make is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob)
dropout op can be removed from the program.
the program will be efficient
Returns:
Returns:
Variable: A tensor variable is the shape with `x`.
Variable: A tensor variable is the shape with `x`.
...
@@ -1030,7 +1052,8 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
...
@@ -1030,7 +1052,8 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
'dropout_prob'
:
dropout_prob
,
'dropout_prob'
:
dropout_prob
,
'is_test'
:
is_test
,
'is_test'
:
is_test
,
'fix_seed'
:
seed
is
not
None
,
'fix_seed'
:
seed
is
not
None
,
'seed'
:
seed
if
seed
is
not
None
else
0
'seed'
:
seed
if
seed
is
not
None
else
0
,
'dropout_implementation'
:
dropout_implementation
,
})
})
return
out
return
out
...
@@ -1970,17 +1993,17 @@ def sequence_slice(input, offset, length, name=None):
...
@@ -1970,17 +1993,17 @@ def sequence_slice(input, offset, length, name=None):
"""
"""
**Sequence Slice Layer**
**Sequence Slice Layer**
The layer crops a subsequence from given sequence with given start
The layer crops a subsequence from given sequence with given start
offset and subsequence length.
offset and subsequence length.
It only supports sequence data (LoDTensor with lod_level equal to 1).
It only supports sequence data (LoDTensor with lod_level equal to 1).
.. code-block:: text
.. code-block:: text
- Case:
- Case:
Given the input Variable **input**:
Given the input Variable **input**:
input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
input.lod = [[3, 2]],
input.lod = [[3, 2]],
input.dims = (5, 2),
input.dims = (5, 2),
...
@@ -1988,16 +2011,16 @@ def sequence_slice(input, offset, length, name=None):
...
@@ -1988,16 +2011,16 @@ def sequence_slice(input, offset, length, name=None):
with offset.data = [[0], [1]] and length.data = [[2], [1]],
with offset.data = [[0], [1]] and length.data = [[2], [1]],
the output Variable will be
the output Variable will be
out.data = [[a1, a2], [b1, b2], [e1, e2]],
out.data = [[a1, a2], [b1, b2], [e1, e2]],
out.lod = [[2, 1]],
out.lod = [[2, 1]],
out.dims = (3, 2).
out.dims = (3, 2).
NOTE: The first dimension size of **input**, **offset** and **length**
NOTE: The first dimension size of **input**, **offset** and **length**
should be equal. The **offset** should start from 0.
should be equal. The **offset** should start from 0.
Args:
Args:
input(Variable): The input Variable which consists of the complete
input(Variable): The input Variable which consists of the complete
sequences.
sequences.
offset(Variable): The offset to slice each sequence.
offset(Variable): The offset to slice each sequence.
length(Variable): The length of each subsequence.
length(Variable): The length of each subsequence.
...
@@ -2016,7 +2039,7 @@ def sequence_slice(input, offset, length, name=None):
...
@@ -2016,7 +2039,7 @@ def sequence_slice(input, offset, length, name=None):
dtype='float32', lod_level=1)
dtype='float32', lod_level=1)
offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
length=length)
length=length)
"""
"""
helper
=
LayerHelper
(
"sequence_slice"
,
**
locals
())
helper
=
LayerHelper
(
"sequence_slice"
,
**
locals
())
...
@@ -2399,12 +2422,12 @@ def layer_norm(input,
...
@@ -2399,12 +2422,12 @@ def layer_norm(input,
param_attr(ParamAttr|None): The parameter attribute for the learnable
param_attr(ParamAttr|None): The parameter attribute for the learnable
gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
a default :code:`ParamAttr` would be added as scale. The
a default :code:`ParamAttr` would be added as scale. The
:attr:`param_attr` is initialized as 1 if it is added. Default None.
:attr:`param_attr` is initialized as 1 if it is added. Default None.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
a default :code:`ParamAttr` would be added as bias. The
a default :code:`ParamAttr` would be added as bias. The
:attr:`bias_attr` is initialized as 0 if it is added. Default None.
:attr:`bias_attr` is initialized as 0 if it is added. Default None.
act(str): Activation to be applied to the output of layer normalizaiton.
act(str): Activation to be applied to the output of layer normalizaiton.
Default None.
Default None.
...
@@ -3022,8 +3045,8 @@ def sequence_unpad(x, length, name=None):
...
@@ -3022,8 +3045,8 @@ def sequence_unpad(x, length, name=None):
"""
"""
**Sequence Unpad Layer**
**Sequence Unpad Layer**
This layer removes the padding data in the input sequences and convert
This layer removes the padding data in the input sequences and convert
them into sequences with actual length as output, identitied by lod
them into sequences with actual length as output, identitied by lod
information.
information.
.. code-block:: text
.. code-block:: text
...
@@ -3033,9 +3056,9 @@ def sequence_unpad(x, length, name=None):
...
@@ -3033,9 +3056,9 @@ def sequence_unpad(x, length, name=None):
Given input Variable **x**:
Given input Variable **x**:
x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
[ 6.0, 7.0, 8.0, 9.0, 10.0],
[ 6.0, 7.0, 8.0, 9.0, 10.0],
[11.0, 12.0, 13.0, 14.0, 15.0]],
[11.0, 12.0, 13.0, 14.0, 15.0]],
in which there are 3 sequences padded to length 5, and the acutal length
in which there are 3 sequences padded to length 5, and the acutal length
specified by input Variable **length**:
specified by input Variable **length**:
length.data = [[2], [3], [4]],
length.data = [[2], [3], [4]],
...
@@ -3043,7 +3066,7 @@ def sequence_unpad(x, length, name=None):
...
@@ -3043,7 +3066,7 @@ def sequence_unpad(x, length, name=None):
after unpadding, the output Variable will be:
after unpadding, the output Variable will be:
out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
out.lod = [[2, 3, 4]]
out.lod = [[2, 3, 4]]
Args:
Args:
x(Variable): Input Variable which contains the padded sequences with
x(Variable): Input Variable which contains the padded sequences with
...
@@ -4845,7 +4868,7 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1):
...
@@ -4845,7 +4868,7 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1):
return
counter
return
counter
def
reshape
(
x
,
shape
,
actual_shape
=
None
,
act
=
None
,
inplace
=
Tru
e
,
name
=
None
):
def
reshape
(
x
,
shape
,
actual_shape
=
None
,
act
=
None
,
inplace
=
Fals
e
,
name
=
None
):
"""
"""
Gives a new shape to the input Tensor without changing its data.
Gives a new shape to the input Tensor without changing its data.
...
@@ -4893,15 +4916,22 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
...
@@ -4893,15 +4916,22 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
:attr:`shape` specifying shape. That is to
:attr:`shape` specifying shape. That is to
say :attr:`actual_shape` has a higher priority
say :attr:`actual_shape` has a higher priority
than :attr:`shape`.
than :attr:`shape`.
act (str): The non-linear activation to be applied to output variable.
act (str): The non-linear activation to be applied to the reshaped tensor
inplace(bool): If this flag is set true, the output
variable.
shares data with input without copying, otherwise
inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
a new output tensor is created
operators. If this flag is set :attr:`True`, reuse input
whose data is copied from input x.
:attr:`x` to reshape, which will change the shape of
tensor variable :attr:`x` and might cause errors when
:attr:`x` is used in multiple operators. If :attr:`False`,
preserve the shape :attr:`x` and create a new output tensor
variable whose data is copied from input x but reshaped.
name (str): The name of this layer. It is optional.
name (str): The name of this layer. It is optional.
Returns:
Returns:
Variable: The output tensor.
Variable: The reshaped tensor variable if :attr:`act` is None. It is a
\
new tensor variable if :attr:`inplace` is :attr:`False`,
\
otherwise it is :attr:`x`. If :attr:`act` is not None, return
\
the activated tensor variable.
Raises:
Raises:
TypeError: if actual_shape is neither Variable nor None.
TypeError: if actual_shape is neither Variable nor None.
...
@@ -4912,7 +4942,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
...
@@ -4912,7 +4942,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
data = fluid.layers.data(
data = fluid.layers.data(
name='data', shape=[2, 4, 6], dtype='float32')
name='data', shape=[2, 4, 6], dtype='float32')
reshaped = fluid.layers.reshape(
reshaped = fluid.layers.reshape(
x=data, shape=[-1, 0, 3, 2],
act='tanh',
inplace=True)
x=data, shape=[-1, 0, 3, 2], inplace=True)
"""
"""
if
not
(
isinstance
(
shape
,
list
)
or
isinstance
(
shape
,
tuple
)):
if
not
(
isinstance
(
shape
,
list
)
or
isinstance
(
shape
,
tuple
)):
...
@@ -4939,7 +4969,8 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
...
@@ -4939,7 +4969,8 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
"except one unknown dimension."
)
"except one unknown dimension."
)
helper
=
LayerHelper
(
"reshape2"
,
**
locals
())
helper
=
LayerHelper
(
"reshape2"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
out
=
x
if
inplace
else
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
x_shape
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
x_shape
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"reshape2"
,
type
=
"reshape2"
,
...
@@ -5470,9 +5501,9 @@ def roi_align(input,
...
@@ -5470,9 +5501,9 @@ def roi_align(input,
Examples:
Examples:
.. code-block:: python
.. code-block:: python
align_out = fluid.layers.roi_align(input=x,
align_out = fluid.layers.roi_align(input=x,
rois=rois,
rois=rois,
pooled_height=7,
pooled_height=7,
pooled_width=7,
pooled_width=7,
spatial_scale=0.5,
spatial_scale=0.5,
sampling_ratio=-1)
sampling_ratio=-1)
...
@@ -7456,13 +7487,40 @@ def maxout(x, groups, name=None):
...
@@ -7456,13 +7487,40 @@ def maxout(x, groups, name=None):
return
out
return
out
@
templatedoc
()
def
sequence_reverse
(
x
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
name(basestring|None): Name of the output.
Returns:
out(${y_type}): ${y_comment}
"""
helper
=
LayerHelper
(
"sequence_reverse"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
"sequence_reverse"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Y"
:
out
},
attrs
=
dict
())
return
out
def
affine_channel
(
x
,
scale
=
None
,
bias
=
None
,
data_layout
=
'NCHW'
,
name
=
None
):
def
affine_channel
(
x
,
scale
=
None
,
bias
=
None
,
data_layout
=
'NCHW'
,
name
=
None
):
"""
"""
Applies a separate affine transformation to each channel of the input.
Applies a separate affine transformation to each channel of the input.
Useful for replacing spatial batch norm with its equivalent fixed
Useful for replacing spatial batch norm with its equivalent fixed
transformation. The input also can be 2D tensor and applies a affine
transformation. The input also can be 2D tensor and applies a affine
transformation in second dimension.
transformation in second dimension.
Args:
Args:
x (Variable): Feature map input can be a 4D tensor with order NCHW
x (Variable): Feature map input can be a 4D tensor with order NCHW
or NHWC. It also can be a 2D tensor and the affine transformation
or NHWC. It also can be a 2D tensor and the affine transformation
...
@@ -7599,3 +7657,31 @@ def similarity_focus(input, axis, indexes, name=None):
...
@@ -7599,3 +7657,31 @@ def similarity_focus(input, axis, indexes, name=None):
attrs
=
{
"axis"
:
axis
,
attrs
=
{
"axis"
:
axis
,
"indexes"
:
indexes
})
"indexes"
:
indexes
})
return
out
return
out
def
hash
(
input
,
hash_size
,
num_hash
=
1
,
name
=
None
):
"""
hash the input
Args:
input (Variable): The input variable which is a one-hot word.
hash_size (int): The space size for hash algorithm.
num_hash (int): The times of hash, default 1.
name (str, default None): The name of this layer.
Returns:
Variable: The hash result variable which is a LoDTensor.
Examples:
.. code-block:: python
word_dict = paddle.dataset.imdb.word_dict()
x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
out = fluid.layers.hash(input=x, len(word_dict))
"""
helper
=
LayerHelper
(
'hash'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
helper
.
input_dtype
(),
stop_gradient
=
True
)
helper
.
append_op
(
type
=
'hash'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'num_hash'
:
num_hash
,
'mod_by'
:
hash_size
})
return
out
python/paddle/fluid/metrics.py
浏览文件 @
8c1e3043
...
@@ -13,8 +13,6 @@
...
@@ -13,8 +13,6 @@
# limitations under the License.
# limitations under the License.
"""
"""
Fluid Metrics
Fluid Metrics
The metrics are accomplished via Python natively.
"""
"""
from
__future__
import
print_function
from
__future__
import
print_function
...
@@ -24,6 +22,12 @@ import copy
...
@@ -24,6 +22,12 @@ import copy
import
warnings
import
warnings
import
six
import
six
from
.layer_helper
import
LayerHelper
from
.initializer
import
Constant
from
.
import
unique_name
from
.framework
import
Program
,
Variable
,
program_guard
from
.
import
layers
__all__
=
[
__all__
=
[
'MetricBase'
,
'MetricBase'
,
'CompositeMetric'
,
'CompositeMetric'
,
...
@@ -474,71 +478,10 @@ class EditDistance(MetricBase):
...
@@ -474,71 +478,10 @@ class EditDistance(MetricBase):
"There is no data in EditDistance Metric. Please check layers.edit_distance output has been added to EditDistance."
"There is no data in EditDistance Metric. Please check layers.edit_distance output has been added to EditDistance."
)
)
avg_distance
=
self
.
total_distance
/
self
.
seq_num
avg_distance
=
self
.
total_distance
/
self
.
seq_num
avg_instance_error
=
self
.
instance_error
/
self
.
seq_num
avg_instance_error
=
self
.
instance_error
/
float
(
self
.
seq_num
)
return
avg_distance
,
avg_instance_error
return
avg_distance
,
avg_instance_error
class
DetectionMAP
(
MetricBase
):
"""
Calculate the detection mean average precision (mAP).
mAP is the metric to measure the accuracy of object detectors
like Faster R-CNN, SSD, etc.
It is the average of the maximum precisions at different recall values.
Please get more information from the following articles:
https://sanchom.wordpress.com/tag/average-precision/
https://arxiv.org/abs/1512.02325
The general steps are as follows:
1. calculate the true positive and false positive according to the input
of detection and labels.
2. calculate mAP value, support two versions: '11 point' and 'integral'.
Examples:
.. code-block:: python
pred = fluid.layers.fc(input=data, size=1000, act="tanh")
batch_map = layers.detection_map(
input,
label,
class_num,
background_label,
overlap_threshold=overlap_threshold,
evaluate_difficult=evaluate_difficult,
ap_version=ap_version)
metric = fluid.metrics.DetectionMAP()
for data in train_reader():
loss, preds, labels = exe.run(fetch_list=[cost, batch_map])
batch_size = data[0]
metric.update(value=batch_map, weight=batch_size)
numpy_map = metric.eval()
"""
def
__init__
(
self
,
name
=
None
):
super
(
DetectionMAP
,
self
).
__init__
(
name
)
# the current map value
self
.
value
=
.
0
self
.
weight
=
.
0
def
update
(
self
,
value
,
weight
):
if
not
_is_number_or_matrix_
(
value
):
raise
ValueError
(
"The 'value' must be a number(int, float) or a numpy ndarray."
)
if
not
_is_number_
(
weight
):
raise
ValueError
(
"The 'weight' must be a number(int, float)."
)
self
.
value
+=
value
self
.
weight
+=
weight
def
eval
(
self
):
if
self
.
weight
==
0
:
raise
ValueError
(
"There is no data in DetectionMAP Metrics. "
"Please check layers.detection_map output has added to DetectionMAP."
)
return
self
.
value
/
self
.
weight
class
Auc
(
MetricBase
):
class
Auc
(
MetricBase
):
"""
"""
Auc metric adapts to the binary classification.
Auc metric adapts to the binary classification.
...
@@ -616,3 +559,179 @@ class Auc(MetricBase):
...
@@ -616,3 +559,179 @@ class Auc(MetricBase):
idx
-=
1
idx
-=
1
return
auc
/
tot_pos
/
tot_neg
if
tot_pos
>
0.0
and
tot_neg
>
0.0
else
0.0
return
auc
/
tot_pos
/
tot_neg
if
tot_pos
>
0.0
and
tot_neg
>
0.0
else
0.0
class
DetectionMAP
(
object
):
"""
Calculate the detection mean average precision (mAP).
The general steps are as follows:
1. calculate the true positive and false positive according to the input
of detection and labels.
2. calculate mAP value, support two versions: '11 point' and 'integral'.
Please get more information from the following articles:
https://sanchom.wordpress.com/tag/average-precision/
https://arxiv.org/abs/1512.02325
Args:
input (Variable): The detection results, which is a LoDTensor with shape
[M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax].
gt_label (Variable): The ground truth label index, which is a LoDTensor
with shape [N, 1].
gt_box (Variable): The ground truth bounding box (bbox), which is a
LoDTensor with shape [N, 4]. The layout is [xmin, ymin, xmax, ymax].
gt_difficult (Variable|None): Whether this ground truth is a difficult
bounding bbox, which can be a LoDTensor [N, 1] or not set. If None,
it means all the ground truth labels are not difficult bbox.
class_num (int): The class number.
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all categories will be
considered, 0 by defalut.
overlap_threshold (float): The threshold for deciding true/false
positive, 0.5 by defalut.
evaluate_difficult (bool): Whether to consider difficult ground truth
for evaluation, True by defalut. This argument does not work when
gt_difficult is None.
ap_version (string): The average precision calculation ways, it must be
'integral' or '11point'. Please check
https://sanchom.wordpress.com/tag/average-precision/ for details.
- 11point: the 11-point interpolated average precision.
- integral: the natural integral of the precision-recall curve.
Examples:
.. code-block:: python
exe = fluid.Executor(place)
map_evaluator = fluid.Evaluator.DetectionMAP(input,
gt_label, gt_box, gt_difficult)
cur_map, accum_map = map_evaluator.get_map_var()
fetch = [cost, cur_map, accum_map]
for epoch in PASS_NUM:
map_evaluator.reset(exe)
for data in batches:
loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)
In the above example:
'cur_map_v' is the mAP of current mini-batch.
'accum_map_v' is the accumulative mAP of one pass.
"""
def
__init__
(
self
,
input
,
gt_label
,
gt_box
,
gt_difficult
=
None
,
class_num
=
None
,
background_label
=
0
,
overlap_threshold
=
0.5
,
evaluate_difficult
=
True
,
ap_version
=
'integral'
):
self
.
helper
=
LayerHelper
(
'map_eval'
)
gt_label
=
layers
.
cast
(
x
=
gt_label
,
dtype
=
gt_box
.
dtype
)
if
gt_difficult
:
gt_difficult
=
layers
.
cast
(
x
=
gt_difficult
,
dtype
=
gt_box
.
dtype
)
label
=
layers
.
concat
([
gt_label
,
gt_difficult
,
gt_box
],
axis
=
1
)
else
:
label
=
layers
.
concat
([
gt_label
,
gt_box
],
axis
=
1
)
# calculate mean average precision (mAP) of current mini-batch
map
=
layers
.
detection_map
(
input
,
label
,
class_num
,
background_label
,
overlap_threshold
=
overlap_threshold
,
evaluate_difficult
=
evaluate_difficult
,
ap_version
=
ap_version
)
states
=
[]
states
.
append
(
self
.
_create_state
(
dtype
=
'int32'
,
shape
=
None
,
suffix
=
'accum_pos_count'
))
states
.
append
(
self
.
_create_state
(
dtype
=
'float32'
,
shape
=
None
,
suffix
=
'accum_true_pos'
))
states
.
append
(
self
.
_create_state
(
dtype
=
'float32'
,
shape
=
None
,
suffix
=
'accum_false_pos'
))
var
=
self
.
_create_state
(
dtype
=
'int32'
,
shape
=
[
1
],
suffix
=
'has_state'
)
self
.
helper
.
set_variable_initializer
(
var
,
initializer
=
Constant
(
value
=
int
(
0
)))
self
.
has_state
=
var
# calculate accumulative mAP
accum_map
=
layers
.
detection_map
(
input
,
label
,
class_num
,
background_label
,
overlap_threshold
=
overlap_threshold
,
evaluate_difficult
=
evaluate_difficult
,
has_state
=
self
.
has_state
,
input_states
=
states
,
out_states
=
states
,
ap_version
=
ap_version
)
layers
.
fill_constant
(
shape
=
self
.
has_state
.
shape
,
value
=
1
,
dtype
=
self
.
has_state
.
dtype
,
out
=
self
.
has_state
)
self
.
cur_map
=
map
self
.
accum_map
=
accum_map
def
_create_state
(
self
,
suffix
,
dtype
,
shape
):
"""
Create state variable.
Args:
suffix(str): the state suffix.
dtype(str|core.VarDesc.VarType): the state data type
shape(tuple|list): the shape of state
Returns: State variable
"""
state
=
self
.
helper
.
create_variable
(
name
=
"_"
.
join
([
unique_name
.
generate
(
self
.
helper
.
name
),
suffix
]),
persistable
=
True
,
dtype
=
dtype
,
shape
=
shape
)
return
state
def
get_map_var
(
self
):
"""
Returns: mAP variable of current mini-batch and
accumulative mAP variable cross mini-batches.
"""
return
self
.
cur_map
,
self
.
accum_map
def
reset
(
self
,
executor
,
reset_program
=
None
):
"""
Reset metric states at the begin of each pass/user specified batch.
Args:
executor(Executor): a executor for executing
the reset_program.
reset_program(Program|None): a single Program for reset process.
If None, will create a Program.
"""
def
_clone_var_
(
block
,
var
):
assert
isinstance
(
var
,
Variable
)
return
block
.
create_var
(
name
=
var
.
name
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
,
type
=
var
.
type
,
lod_level
=
var
.
lod_level
,
persistable
=
var
.
persistable
)
if
reset_program
is
None
:
reset_program
=
Program
()
with
program_guard
(
main_program
=
reset_program
):
var
=
_clone_var_
(
reset_program
.
current_block
(),
self
.
has_state
)
layers
.
fill_constant
(
shape
=
var
.
shape
,
value
=
0
,
dtype
=
var
.
dtype
,
out
=
var
)
executor
.
run
(
reset_program
)
python/paddle/fluid/optimizer.py
浏览文件 @
8c1e3043
...
@@ -111,7 +111,9 @@ class Optimizer(object):
...
@@ -111,7 +111,9 @@ class Optimizer(object):
if
param_lr
==
1.0
:
if
param_lr
==
1.0
:
return
self
.
_global_learning_rate
()
return
self
.
_global_learning_rate
()
else
:
else
:
with
default_main_program
().
_lr_schedule_guard
():
with
default_main_program
().
_lr_schedule_guard
(
is_with_opt
=
True
),
framework
.
name_scope
(
'scale_with_param_lr'
):
return
self
.
_global_learning_rate
()
*
param_lr
return
self
.
_global_learning_rate
()
*
param_lr
def
_create_accumulators
(
self
,
block
,
parameters
):
def
_create_accumulators
(
self
,
block
,
parameters
):
...
@@ -602,7 +604,8 @@ class AdamOptimizer(Optimizer):
...
@@ -602,7 +604,8 @@ class AdamOptimizer(Optimizer):
for
param
,
grad
in
param_and_grads
:
for
param
,
grad
in
param_and_grads
:
if
grad
is
None
:
if
grad
is
None
:
continue
continue
with
param
.
block
.
program
.
_optimized_guard
([
param
,
grad
]):
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
name_scope
(
"optimizer"
):
beta1_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta1_pow_acc_str
,
beta1_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta1_pow_acc_str
,
param
)
param
)
beta2_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta2_pow_acc_str
,
beta2_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta2_pow_acc_str
,
...
@@ -740,7 +743,8 @@ class AdamaxOptimizer(Optimizer):
...
@@ -740,7 +743,8 @@ class AdamaxOptimizer(Optimizer):
for
param
,
grad
in
parameters_and_grads
:
for
param
,
grad
in
parameters_and_grads
:
if
grad
is
None
:
if
grad
is
None
:
continue
continue
with
param
.
block
.
program
.
_optimized_guard
([
param
,
grad
]):
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
name_scope
(
'adamx'
):
beta1_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta1_pow_acc_str
,
beta1_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta1_pow_acc_str
,
param
)
param
)
main_block
.
append_op
(
main_block
.
append_op
(
...
@@ -1279,7 +1283,8 @@ class ModelAverage(Optimizer):
...
@@ -1279,7 +1283,8 @@ class ModelAverage(Optimizer):
for
param
,
grad
in
self
.
params_grads
:
for
param
,
grad
in
self
.
params_grads
:
if
grad
is
None
:
if
grad
is
None
:
continue
continue
with
param
.
block
.
program
.
_optimized_guard
([
param
,
grad
]):
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
name_scope
(
'move_average'
):
self
.
_append_average_accumulate_op
(
param
)
self
.
_append_average_accumulate_op
(
param
)
self
.
apply_program
=
Program
()
self
.
apply_program
=
Program
()
...
...
python/paddle/fluid/regularizer.py
浏览文件 @
8c1e3043
...
@@ -47,7 +47,8 @@ def append_regularization_ops(parameters_and_grads, regularization=None):
...
@@ -47,7 +47,8 @@ def append_regularization_ops(parameters_and_grads, regularization=None):
if
grad
is
None
:
if
grad
is
None
:
params_and_grads
.
append
((
param
,
grad
))
params_and_grads
.
append
((
param
,
grad
))
continue
continue
with
param
.
block
.
program
.
_optimized_guard
([
param
,
grad
]):
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
framework
.
name_scope
(
'regularization'
):
regularization_term
=
None
regularization_term
=
None
if
param
.
regularizer
is
not
None
:
if
param
.
regularizer
is
not
None
:
# Add variable for regularization term in grad block
# Add variable for regularization term in grad block
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
8c1e3043
...
@@ -78,9 +78,9 @@ if(WITH_DISTRIBUTE)
...
@@ -78,9 +78,9 @@ if(WITH_DISTRIBUTE)
set_tests_properties
(
test_dist_word2vec PROPERTIES TIMEOUT 200
)
set_tests_properties
(
test_dist_word2vec PROPERTIES TIMEOUT 200
)
py_test_modules
(
test_dist_se_resnext MODULES test_dist_se_resnext
)
py_test_modules
(
test_dist_se_resnext MODULES test_dist_se_resnext
)
set_tests_properties
(
test_dist_se_resnext PROPERTIES TIMEOUT 1000
)
set_tests_properties
(
test_dist_se_resnext PROPERTIES TIMEOUT 1000
)
# FIXME(typhoonzero): add this back
py_test_modules
(
test_dist_transformer MODULES test_dist_transformer
)
#
py_test_modules(test_dist_transformer MODULES test_dist_transformer)
set_tests_properties
(
test_dist_transformer PROPERTIES TIMEOUT 1000
)
#
set_tests_properties(test_dist_transformer PROPERTIES TIMEOUT 1000)
endif
(
NOT APPLE
)
endif
(
NOT APPLE
)
py_test_modules
(
test_dist_transpiler MODULES test_dist_transpiler
)
py_test_modules
(
test_dist_transpiler MODULES test_dist_transpiler
)
endif
()
endif
()
...
...
python/paddle/fluid/tests/unittests/dist_transformer.py
浏览文件 @
8c1e3043
...
@@ -1159,6 +1159,7 @@ def prepare_encoder(src_word,
...
@@ -1159,6 +1159,7 @@ def prepare_encoder(src_word,
name
=
pos_enc_param_name
,
name
=
pos_enc_param_name
,
trainable
=
False
,
trainable
=
False
,
initializer
=
fluid
.
initializer
.
ConstantInitializer
(
0.001
)))
initializer
=
fluid
.
initializer
.
ConstantInitializer
(
0.001
)))
src_pos_enc
.
stop_gradient
=
True
enc_input
=
src_word_emb
+
src_pos_enc
enc_input
=
src_word_emb
+
src_pos_enc
return
layers
.
dropout
(
return
layers
.
dropout
(
enc_input
,
enc_input
,
...
...
python/paddle/fluid/tests/unittests/test_dist_ctr.py
浏览文件 @
8c1e3043
...
@@ -23,9 +23,8 @@ class TestDistCTR2x2(TestDistBase):
...
@@ -23,9 +23,8 @@ class TestDistCTR2x2(TestDistBase):
self
.
_sync_mode
=
True
self
.
_sync_mode
=
True
self
.
_enforce_place
=
"CPU"
self
.
_enforce_place
=
"CPU"
def
test_dist_ctr
(
self
):
def
test_dist_ctr
(
self
):
self
.
check_with_place
(
"dist_ctr.py"
,
delta
=
1e-7
,
check_error_log
=
False
)
self
.
check_with_place
(
"dist_ctr.py"
,
delta
=
1e-7
,
check_error_log
=
False
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_dist_mnist.py
浏览文件 @
8c1e3043
...
@@ -40,8 +40,7 @@ class TestDistMnistAsync(TestDistBase):
...
@@ -40,8 +40,7 @@ class TestDistMnistAsync(TestDistBase):
self
.
_sync_mode
=
False
self
.
_sync_mode
=
False
self
.
_use_reduce
=
False
self
.
_use_reduce
=
False
# FIXME(typhoonzero): fix async mode test later
def
test_dist_train
(
self
):
def
no_test_dist_train
(
self
):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
200
)
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
200
)
...
...
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
浏览文件 @
8c1e3043
...
@@ -40,8 +40,7 @@ class TestDistSeResneXt2x2Async(TestDistBase):
...
@@ -40,8 +40,7 @@ class TestDistSeResneXt2x2Async(TestDistBase):
self
.
_sync_mode
=
False
self
.
_sync_mode
=
False
self
.
_use_reader_alloc
=
False
self
.
_use_reader_alloc
=
False
#FIXME(typhoonzero): fix async mode later
def
test_dist_train
(
self
):
def
no_test_dist_train
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
100
)
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
100
)
...
...
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
浏览文件 @
8c1e3043
...
@@ -79,8 +79,7 @@ class TestDistSimnetBow2x2SparseAsync(TestDistBase):
...
@@ -79,8 +79,7 @@ class TestDistSimnetBow2x2SparseAsync(TestDistBase):
self
.
_sync_mode
=
False
self
.
_sync_mode
=
False
self
.
_enforce_place
=
"CPU"
self
.
_enforce_place
=
"CPU"
#FIXME(typhoonzero): fix async tests later
def
test_simnet_bow
(
self
):
def
no_test_simnet_bow
(
self
):
need_envs
=
{
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'1'
,
"IS_SPARSE"
:
'1'
,
...
...
python/paddle/fluid/tests/unittests/test_dropout_op.py
浏览文件 @
8c1e3043
...
@@ -85,6 +85,69 @@ class TestDropoutOp5(OpTest):
...
@@ -85,6 +85,69 @@ class TestDropoutOp5(OpTest):
self
.
check_output
()
self
.
check_output
()
class
TestDropoutOp6
(
TestDropoutOp
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
1.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
np
.
zeros
((
32
,
64
)).
astype
(
'float32'
),
'Mask'
:
np
.
zeros
((
32
,
64
)).
astype
(
'float32'
)
}
class
TestDropoutOp7
(
TestDropoutOp
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
2
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
,
2
)).
astype
(
'float32'
)
}
class
TestDropoutOp8
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.35
,
'fix_seed'
:
True
,
'is_test'
:
True
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestDropoutOp9
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
3
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.75
,
'is_test'
:
True
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestFP16DropoutOp
(
OpTest
):
class
TestFP16DropoutOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
op_type
=
"dropout"
...
...
python/paddle/fluid/tests/unittests/test_hash_op.py
0 → 100644
浏览文件 @
8c1e3043
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestScaleOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hash"
self
.
init_test_case
()
self
.
inputs
=
{
'X'
:
(
self
.
in_seq
,
self
.
lod
)}
self
.
attrs
=
{
'num_hash'
:
4
,
'mod_by'
:
10000
}
self
.
outputs
=
{
'Out'
:
(
self
.
out_seq
,
self
.
lod
)}
def
init_test_case
(
self
):
np
.
random
.
seed
=
1
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int32"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
# self.out_seq = np.ones([30, 4, 1], dtype=np.int32)
self
.
out_seq
=
[
[[
9662
],
[
9217
],
[
1129
],
[
8487
]],
[[
9662
],
[
9217
],
[
1129
],
[
8487
]],
[[
8310
],
[
1327
],
[
1654
],
[
4567
]],
[[
6897
],
[
3218
],
[
2013
],
[
1241
]],
[[
9407
],
[
6715
],
[
6949
],
[
8094
]],
[[
8473
],
[
694
],
[
5142
],
[
2479
]],
[[
8310
],
[
1327
],
[
1654
],
[
4567
]],
[[
6897
],
[
3218
],
[
2013
],
[
1241
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
6897
],
[
3218
],
[
2013
],
[
1241
]],
[[
8473
],
[
694
],
[
5142
],
[
2479
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
8473
],
[
694
],
[
5142
],
[
2479
]],
[[
9407
],
[
6715
],
[
6949
],
[
8094
]],
[[
9369
],
[
4525
],
[
8935
],
[
9210
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
9369
],
[
4525
],
[
8935
],
[
9210
]],
[[
6897
],
[
3218
],
[
2013
],
[
1241
]],
[[
9038
],
[
7951
],
[
5953
],
[
8657
]],
[[
9407
],
[
6715
],
[
6949
],
[
8094
]],
[[
9662
],
[
9217
],
[
1129
],
[
8487
]],
[[
9369
],
[
4525
],
[
8935
],
[
9210
]],
[[
9038
],
[
7951
],
[
5953
],
[
8657
]],
[[
9662
],
[
9217
],
[
1129
],
[
8487
]],
[[
9369
],
[
4525
],
[
8935
],
[
9210
]],
[[
1719
],
[
5986
],
[
9919
],
[
3421
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
9038
],
[
7951
],
[
5953
],
[
8657
]]
]
self
.
out_seq
=
np
.
array
(
self
.
out_seq
)
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_metrics.py
0 → 100644
浏览文件 @
8c1e3043
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.framework
import
Program
,
program_guard
class
TestMetricsDetectionMap
(
unittest
.
TestCase
):
def
test_detection_map
(
self
):
program
=
fluid
.
Program
()
with
program_guard
(
program
):
detect_res
=
fluid
.
layers
.
data
(
name
=
'detect_res'
,
shape
=
[
10
,
6
],
append_batch_size
=
False
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
10
,
1
],
append_batch_size
=
False
,
dtype
=
'float32'
)
box
=
fluid
.
layers
.
data
(
name
=
'bbox'
,
shape
=
[
10
,
4
],
append_batch_size
=
False
,
dtype
=
'float32'
)
map_eval
=
fluid
.
metrics
.
DetectionMAP
(
detect_res
,
label
,
box
,
class_num
=
21
)
cur_map
,
accm_map
=
map_eval
.
get_map_var
()
self
.
assertIsNotNone
(
cur_map
)
self
.
assertIsNotNone
(
accm_map
)
print
(
str
(
program
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_sequence_reverse.py
0 → 100644
浏览文件 @
8c1e3043
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
import
numpy
as
np
class
TestSequenceReverseBase
(
OpTest
):
def
initParameters
(
self
):
pass
def
setUp
(
self
):
self
.
size
=
(
10
,
3
,
4
)
self
.
lod
=
[
2
,
3
,
5
]
self
.
dtype
=
'float32'
self
.
initParameters
()
self
.
op_type
=
'sequence_reverse'
self
.
x
=
np
.
random
.
random
(
self
.
size
).
astype
(
self
.
dtype
)
self
.
y
=
self
.
get_output
()
self
.
inputs
=
{
'X'
:
(
self
.
x
,
[
self
.
lod
,
]),
}
self
.
outputs
=
{
'Y'
:
(
self
.
y
,
[
self
.
lod
,
]),
}
def
get_output
(
self
):
tmp_x
=
np
.
reshape
(
self
.
x
,
newshape
=
[
self
.
x
.
shape
[
0
],
-
1
])
tmp_y
=
np
.
ndarray
(
tmp_x
.
shape
).
astype
(
self
.
dtype
)
prev_idx
=
0
for
cur_len
in
self
.
lod
:
idx_range
=
range
(
prev_idx
,
prev_idx
+
cur_len
)
tmp_y
[
idx_range
,
:]
=
np
.
flip
(
tmp_x
[
idx_range
,
:],
0
)
prev_idx
+=
cur_len
return
np
.
reshape
(
tmp_y
,
newshape
=
self
.
x
.
shape
).
astype
(
self
.
dtype
)
def
test_output
(
self
):
self
.
check_output
(
0
)
def
test_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
)
class
TestSequenceReserve1
(
TestSequenceReverseBase
):
def
initParameters
(
self
):
self
.
size
=
(
12
,
10
)
self
.
lod
=
[
4
,
5
,
3
]
class
TestSequenceReverse2
(
TestSequenceReverseBase
):
def
initParameters
(
self
):
self
.
size
=
(
12
,
10
)
self
.
lod
=
[
12
]
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
8c1e3043
...
@@ -49,6 +49,7 @@ LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
...
@@ -49,6 +49,7 @@ LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
OP_ROLE_VAR_ATTR_NAME
=
core
.
op_proto_and_checker_maker
.
kOpRoleVarAttrName
()
OP_ROLE_VAR_ATTR_NAME
=
core
.
op_proto_and_checker_maker
.
kOpRoleVarAttrName
()
RPC_OP_ROLE_ATTR_NAME
=
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
(
RPC_OP_ROLE_ATTR_NAME
=
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
(
)
)
OPT_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
RPC_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
RPC
RPC_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
RPC
DIST_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Dist
DIST_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Dist
LR_SCHED_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
LRSched
LR_SCHED_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
LRSched
...
@@ -1717,8 +1718,10 @@ to transpile() call.")
...
@@ -1717,8 +1718,10 @@ to transpile() call.")
lr_ops
=
[]
lr_ops
=
[]
block
=
self
.
origin_program
.
global_block
()
block
=
self
.
origin_program
.
global_block
()
for
op
in
block
.
ops
:
for
op
in
block
.
ops
:
if
int
(
op
.
attr
(
RPC_OP_ROLE_ATTR_NAME
))
==
int
(
role_id
=
int
(
op
.
attr
(
RPC_OP_ROLE_ATTR_NAME
))
LR_SCHED_OP_ROLE_ATTR_VALUE
):
if
role_id
==
int
(
LR_SCHED_OP_ROLE_ATTR_VALUE
)
or
\
role_id
==
int
(
LR_SCHED_OP_ROLE_ATTR_VALUE
)
|
\
int
(
OPT_OP_ROLE_ATTR_VALUE
):
lr_ops
.
append
(
op
)
lr_ops
.
append
(
op
)
log
(
"append lr op: "
,
op
.
type
)
log
(
"append lr op: "
,
op
.
type
)
return
lr_ops
return
lr_ops
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录