Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
8a412c0d
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8a412c0d
编写于
11月 06, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Complete impl
上级
17c8014f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
40 addition
and
27 deletion
+40
-27
paddle/fluid/operators/fused_embedding_seq_pool_op.cc
paddle/fluid/operators/fused_embedding_seq_pool_op.cc
+12
-6
paddle/fluid/operators/fused_embedding_seq_pool_op.h
paddle/fluid/operators/fused_embedding_seq_pool_op.h
+28
-21
未找到文件。
paddle/fluid/operators/fused_embedding_seq_pool_op.cc
浏览文件 @
8a412c0d
...
...
@@ -42,8 +42,14 @@ class FusedEmbeddingSeqPoolOp : public framework::OperatorWithKernel {
// we only support sum now
PADDLE_ENFORCE_EQ
(
combiner
,
"sum"
);
int64_t
last_dim
=
table_dims
[
1
];
for
(
int
i
=
1
;
i
!=
ids_dims
.
size
();
++
i
)
{
last_dim
*=
ids_dims
[
i
];
}
if
(
ctx
->
IsRuntime
())
{
Variable
*
ids_var
=
boost
::
get
<
Variable
*>
(
ctx
->
GetInputVarPtrs
(
"Ids"
)[
0
]);
framework
::
Variable
*
ids_var
=
boost
::
get
<
framework
::
Variable
*>
(
ctx
->
GetInputVarPtrs
(
"Ids"
)[
0
]);
const
auto
&
ids_lod
=
ids_var
->
Get
<
LoDTensor
>
().
lod
();
// in run time, the LoD of ids must be 1
...
...
@@ -51,20 +57,20 @@ class FusedEmbeddingSeqPoolOp : public framework::OperatorWithKernel {
"The LoD level of Input(Ids) must be 1"
);
PADDLE_ENFORCE_GE
(
ids_lod
[
0
].
size
(),
1u
,
"The LoD could NOT be empty"
);
size
_t
batch_size
=
ids_lod
[
0
].
size
()
-
1
;
int64
_t
batch_size
=
ids_lod
[
0
].
size
()
-
1
;
// in run time, the shape from Ids -> output
// should be [seq_length, 1] -> [batch_size, embedding_size]
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
({
batch_size
,
table_dims
[
1
]}));
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
({
batch_size
,
last_dim
}));
}
else
{
// in compile time, the lod level of ids must be 1
VarDesc
*
ids_desc
=
boost
::
get
<
VarDesc
*>
(
ctx
->
GetInputVarPtrs
(
"Ids"
)[
0
]);
framework
::
VarDesc
*
ids_desc
=
boost
::
get
<
framework
::
VarDesc
*>
(
ctx
->
GetInputVarPtrs
(
"Ids"
)[
0
]);
PADDLE_ENFORCE_EQ
(
ids_desc
->
GetLoDLevel
(),
1
);
// in compile time, the shape from Ids -> output
// should be [-1, 1] -> [-1, embedding_size]
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
({
-
1
,
table_dims
[
1
]
}));
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
({
-
1
,
last_dim
}));
}
}
...
...
paddle/fluid/operators/fused_embedding_seq_pool_op.h
浏览文件 @
8a412c0d
...
...
@@ -31,31 +31,38 @@ using LoDTensor = framework::LoDTensor;
using
SelectedRows
=
framework
::
SelectedRows
;
using
DDim
=
framework
::
DDim
;
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
struct
EmbeddingVSumFunctor
{
void
operator
()(
const
DeviceContext
&
context
,
LoDTensor
*
table_t
,
LoDTensor
*
ids_t
,
LoDTensor
*
output_t
)
{
void
operator
()(
const
framework
::
ExecutionContext
&
context
,
const
LoDTensor
*
table_t
,
const
LoDTensor
*
ids_t
,
LoDTensor
*
output_t
)
{
auto
*
table
=
table_t
->
data
<
T
>
();
int64_t
row_number
=
table
->
dims
()[
0
];
int64_t
row_width
=
table
->
dims
()[
1
];
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row_width
=
table_t
->
dims
()[
1
];
int64_t
last_dim
=
output_t
->
dims
()[
1
];
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
auto
ids_lod
=
ids_t
->
LoD
()[
0
];
auto
ids_lod
=
ids_t
->
lod
()[
0
];
int64_t
ids_count
=
ids_t
->
numel
()
/
ids_lod
.
back
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
auto
blas
=
math
::
GetBlas
<
platform
::
CPU
DeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
!=
ids_lod
.
size
()
-
1
;
++
i
)
{
size_t
begin
=
ids_lod
[
i
];
for
(
int64_t
j
=
0
;
j
!=
ids_count
;
++
j
)
{
size_t
begin
=
ids_lod
[
i
]
*
ids_count
;
PADDLE_ENFORCE_LT
(
ids
[
begin
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
begin
],
0
,
"ids %d"
,
i
);
blas
.
VCOPY
(
row_width
,
table
+
ids
[
begin
]
*
row_width
,
output
+
i
*
row_width
);
PADDLE_ENFORCE_LT
(
ids
[
begin
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
begin
],
0
,
"ids %d"
,
i
);
blas
.
VCOPY
(
row_width
,
table
+
ids
[
begin
]
*
row_width
,
output
+
i
*
last_dim
+
j
*
row_width
);
}
for
(
int64_t
r
=
ids_lod
[
i
]
+
1
;
r
<
ids_lod
[
i
+
1
];
++
r
)
{
for
(
int64_t
r
=
(
ids_lod
[
i
]
+
1
)
*
ids_count
;
r
<
ids_lod
[
i
+
1
]
*
ids_count
;
++
r
)
{
PADDLE_ENFORCE_LT
(
ids
[
r
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
r
],
0
,
"ids %d"
,
i
);
blas
.
AXPY
(
row_width
,
1.
,
table
+
ids
[
r
]
*
row_width
,
output
+
i
*
row_width
);
output
+
i
*
row_width
+
(
r
%
ids_count
)
*
row_width
);
}
}
}
...
...
@@ -65,14 +72,14 @@ template <typename T>
class
FusedEmbeddingSeqPoolKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
LoDTensor
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
LoDTensor
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
LoDTensor
*
table_var
=
context
.
Input
<
LoDTensor
>
(
"W"
);
const
LoDTensor
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
LoDTensor
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
const
LoDTensor
*
table_var
=
context
.
Input
<
LoDTensor
>
(
"W"
);
const
std
::
string
&
combiner_type
=
context
.
Attr
<
std
::
string
>
(
"combiner"
);
if
(
combiner_type
==
"sum"
)
{
EmbeddingVSumFunctor
<
T
>
functor
;
functor
(
context
.
template
device_context
(),
ids_t
,
output_t
,
table_var
);
functor
(
context
,
table_var
,
ids_t
,
output_t
);
}
}
};
...
...
@@ -105,7 +112,7 @@ class FusedEmbeddingSeqPoolGradKernel : public framework::OpKernel<T> {
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
int64_t
ids_num
=
ids
->
numel
();
auto
lod
=
ids
->
lod
()[
0
];
int64_t
row_width
=
table_dim
[
1
];
int64_t
row_width
=
d_output
->
dims
()
[
1
];
framework
::
Vector
<
int64_t
>
new_rows
;
new_rows
.
resize
(
ids_num
);
...
...
@@ -113,11 +120,11 @@ class FusedEmbeddingSeqPoolGradKernel : public framework::OpKernel<T> {
d_table
->
set_rows
(
new_rows
);
auto
*
d_table_value
=
d_table
->
mutable_value
();
d_table_value
->
Resize
({
ids_num
,
row_width
});
d_table_value
->
Resize
({
ids_num
,
table_dim
[
1
]
});
T
*
d_table_data
=
d_table_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
d_output_data
=
d_output
->
data
<
T
>
();
auto
blas
=
math
::
GetBlas
<
T
>
(
context
);
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
int64_t
in_offset
=
lod
[
i
]
*
row_width
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录