提交 88e430d1 编写于 作者: T Travis CI

Deploy to GitHub Pages: 3423022e

上级 726337fc
...@@ -27,6 +27,54 @@ ...@@ -27,6 +27,54 @@
"intermediate" : 0 "intermediate" : 0
} ], } ],
"attrs" : [ ] "attrs" : [ ]
},{
"type" : "print",
"comment" : "\n Creates a print op that will print when a tensor is accessed.\n\n Wraps the tensor passed in so that whenever that a tensor is accessed,\n the message `message` is printed, along with the current value of the\n tensor `t`.",
"inputs" : [
{
"name" : "input",
"comment" : "the tensor that will be displayed.",
"duplicable" : 0,
"intermediate" : 0
} ],
"outputs" : [ ],
"attrs" : [
{
"name" : "first_n",
"type" : "int",
"comment" : "Only log `first_n` number of times.",
"generated" : 0
}, {
"name" : "message",
"type" : "string",
"comment" : "A string message to print as a prefix.",
"generated" : 0
}, {
"name" : "summarize",
"type" : "int",
"comment" : "Print this number of elements in the tensor.",
"generated" : 0
}, {
"name" : "print_tensor_name",
"type" : "bool",
"comment" : "Whether to print the tensor name.",
"generated" : 0
}, {
"name" : "print_tensor_type",
"type" : "bool",
"comment" : "Whether to print the tensor's dtype.",
"generated" : 0
}, {
"name" : "print_tensor_shape",
"type" : "bool",
"comment" : "Whether to print the tensor's shape.",
"generated" : 0
}, {
"name" : "print_tensor_lod",
"type" : "bool",
"comment" : "Whether to print the tensor's lod.",
"generated" : 0
} ]
},{ },{
"type" : "adagrad", "type" : "adagrad",
"comment" : "\n\nAdaptive Gradient Algorithm (Adagrad).\n\nThe update is done as follows:\n\n$$moment\\_out = moment + grad * grad \\\\\nparam\\_out = param - \\frac{learning\\_rate * grad}{\\sqrt{moment\\_out} + \\epsilon}\n$$\n\nThe original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)\ndoes not have the epsilon attribute. It is added here in our implementation\nas also proposed here: http://cs231n.github.io/neural-networks-3/#ada\nfor numerical stability to avoid the division by zero error.\n\n", "comment" : "\n\nAdaptive Gradient Algorithm (Adagrad).\n\nThe update is done as follows:\n\n$$moment\\_out = moment + grad * grad \\\\\nparam\\_out = param - \\frac{learning\\_rate * grad}{\\sqrt{moment\\_out} + \\epsilon}\n$$\n\nThe original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)\ndoes not have the epsilon attribute. It is added here in our implementation\nas also proposed here: http://cs231n.github.io/neural-networks-3/#ada\nfor numerical stability to avoid the division by zero error.\n\n",
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册