提交 87648f8e 编写于 作者: J JiabinYang

merge develop, test=develop

......@@ -186,8 +186,7 @@ set(module "inference")
copy(inference_lib DEPS ${inference_deps}
SRCS ${src_dir}/${module}/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/inference/libpaddle_fluid.*
${src_dir}/${module}/api/paddle_*.h
${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/paddle_inference_pass.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}
DSTS ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}
)
set(module "platform")
......
......@@ -97,8 +97,8 @@ paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_ti
paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name', 'non_leaf_num', 'ptable', 'pcode', 'is_costum', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, False, False))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
......
......@@ -39,11 +39,12 @@ if (WITH_GPU)
endif()
cc_library(sequential_execution_pass SRCS sequential_execution_pass.cc DEPS graph graph_helper pass)
cc_library(all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_helper pass)
cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle)
set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass)
set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass)
if (WITH_GPU)
list(APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass)
endif()
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/op_graph_view.h"
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_proto_maker.h"
namespace paddle {
namespace framework {
namespace details {
static constexpr char kAllOpDescs[] = "all_op_descs";
VarHandle* GetValidInput(const OpHandleBase* a) {
for (auto p : a->Inputs()) {
VarHandle* b = dynamic_cast<VarHandle*>(p);
if (b) {
return b;
}
}
return nullptr;
}
std::unique_ptr<ir::Graph> AllReduceDepsPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
auto graph_ops = ir::FilterByNodeWrapper<OpHandleBase>(*graph);
// get vars order
int order = 0;
std::unordered_map<std::string, int> vars;
// TODO(gongwb): use graph topology sort to find the order of operators.
// Note that must assert topology sort is stable
auto& ops = Get<const std::vector<OpDesc*>>(kAllOpDescs);
for (auto* op_desc : ops) {
auto outputs = op_desc->Outputs();
for (auto& o_it : outputs) {
for (auto& v : o_it.second) { // values
vars[v] = order;
}
}
order++;
}
std::vector<OpHandleBase*> dist_ops;
// get allreduce ops.
for (auto& op : graph_ops) {
// FIXME(gongwb):add broad cast.
if (op->Name() == "all_reduce" || op->Name() == "reduce") {
dist_ops.push_back(op);
}
}
VLOG(10) << "dist_ops size:" << dist_ops.size() << std::endl;
std::sort(dist_ops.begin(), dist_ops.end(), [&](OpHandleBase* op1,
OpHandleBase* op2) {
VarHandle* i0 = dynamic_cast<VarHandle*>(GetValidInput(op1));
VarHandle* i1 = dynamic_cast<VarHandle*>(GetValidInput(op2));
PADDLE_ENFORCE(i0 != nullptr && i1 != nullptr, "%s convert to %s error",
op1->DebugString(), op2->DebugString());
auto l_it = vars.find(i0->name_);
auto r_it = vars.find(i1->name_);
if (l_it->second < r_it->second) return true;
if (l_it->second == r_it->second) {
return i0->name_ < i1->name_;
}
return false;
});
// add dependency.
auto& sorted_ops = dist_ops;
for (size_t i = 1; i < sorted_ops.size(); ++i) {
auto* dep_var = new DummyVarHandle(graph->CreateControlDepVar());
auto* pre_op = sorted_ops[i - 1];
auto* op = sorted_ops[i];
pre_op->AddOutput(dep_var);
op->AddInput(dep_var);
graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
VLOG(10) << "add all_reduce sequential dependencies between " << pre_op
<< " and " << op;
VLOG(10) << "pre_op:" << pre_op->DebugString()
<< ", op:" << op->DebugString();
}
return graph;
}
} // namespace details
} // namespace framework
} // namespace paddle
REGISTER_PASS(all_reduce_deps_pass,
paddle::framework::details::AllReduceDepsPass)
.RequirePassAttr(paddle::framework::details::kAllOpDescs);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace details {
// TODO(gongwb): overlap allreduce with backward computation.
class AllReduceDepsPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
} // namespace details
} // namespace framework
} // namespace paddle
......@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
......@@ -24,6 +25,10 @@ namespace paddle {
namespace framework {
namespace details {
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
return (!strategy.enable_sequential_execution_ && strategy.num_trainers_ > 1);
}
class ParallelExecutorPassBuilder : public ir::PassBuilder {
public:
explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
......@@ -70,6 +75,10 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Verify that the graph is correct for multi-device executor.
AppendPass("multi_devices_check_pass");
if (SeqOnlyAllReduceOps(strategy)) {
AppendPass("all_reduce_deps_pass");
}
if (strategy_.remove_unnecessary_lock_) {
AppendPass("modify_op_lock_and_record_event_pass");
}
......@@ -124,6 +133,17 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
#endif
} else if (pass->Type() == "sequential_execution_pass") {
VLOG(1) << "set enable_sequential_execution:"
<< enable_sequential_execution_;
pass->Erase(kAllOpDescs);
pass->Set<const std::vector<OpDesc *>>(
kAllOpDescs,
new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
} else if (pass->Type() == "all_reduce_deps_pass") {
VLOG(1) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
<< ", num_trainers:" << num_trainers_;
pass->Erase(kAllOpDescs);
pass->Set<const std::vector<OpDesc *>>(
kAllOpDescs,
......@@ -144,4 +164,5 @@ USE_PASS(multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
USE_PASS(sequential_execution_pass);
USE_PASS(all_reduce_deps_pass);
USE_PASS(modify_op_lock_and_record_event_pass);
......@@ -73,6 +73,7 @@ struct BuildStrategy {
bool fuse_broadcast_op_{false};
int num_trainers_{1};
bool remove_unnecessary_lock_{false};
// NOTE:
......
......@@ -20,7 +20,7 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
......@@ -54,7 +54,7 @@ class ParallelExecutorPrivate {
Scope *global_scope_; // not owned
std::unique_ptr<details::SSAGraphExecutor> executor_;
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
#endif
bool own_local_scope_;
......@@ -104,7 +104,7 @@ ParallelExecutor::ParallelExecutor(
if (member_->use_cuda_) {
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
ncclUniqueId *nccl_id = nullptr;
if (nccl_id_var != nullptr) {
......@@ -124,7 +124,7 @@ ParallelExecutor::ParallelExecutor(
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
main_program, member_->places_, loss_var_name, params,
member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
......@@ -213,7 +213,7 @@ void ParallelExecutor::BCastParamsToDevices(
}
auto &dims = main_tensor.dims();
if (paddle::platform::is_gpu_place(main_tensor.place())) {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::vector<void *> buffers;
size_t numel = main_tensor.numel();
ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
......
......@@ -76,7 +76,8 @@ void TestWord2vecPrediction(const std::string& model_path) {
0.000932706};
const size_t num_elements = outputs.front().data.length() / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min((size_t)5UL, num_elements); i++) {
for (size_t i = 0; i < std::min(static_cast<size_t>(5UL), num_elements);
i++) {
LOG(INFO) << "data: "
<< static_cast<float*>(outputs.front().data.data())[i];
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
......
......@@ -99,9 +99,8 @@ TEST(BestFitAllocator, test_concurrent_cpu_allocation) {
LockedAllocator locked_allocator(std::move(best_fit_allocator));
auto th_main = [&] {
std::random_device dev;
std::default_random_engine engine(dev());
auto th_main = [&](std::random_device::result_type seed) {
std::default_random_engine engine(seed);
std::uniform_int_distribution<size_t> dist(1U, 1024U);
for (size_t i = 0; i < 128; ++i) {
......@@ -125,7 +124,8 @@ TEST(BestFitAllocator, test_concurrent_cpu_allocation) {
{
std::vector<std::thread> threads;
for (size_t i = 0; i < 1024; ++i) {
threads.emplace_back(th_main);
std::random_device dev;
threads.emplace_back(th_main, dev());
}
for (auto& th : threads) {
th.join();
......
......@@ -41,9 +41,8 @@ TEST(BestFitAllocator, concurrent_cuda) {
LockedAllocator concurrent_allocator(
std::unique_ptr<Allocator>(new BestFitAllocator(cuda_allocation.get())));
auto th_main = [&] {
std::random_device dev;
std::default_random_engine engine(dev());
auto th_main = [&](std::random_device::result_type seed) {
std::default_random_engine engine(seed);
std::uniform_int_distribution<size_t> dist(1U, 1024U);
platform::CUDAPlace gpu(0);
platform::CUDADeviceContext dev_ctx(gpu);
......@@ -75,7 +74,8 @@ TEST(BestFitAllocator, concurrent_cuda) {
{
std::vector<std::thread> threads;
for (size_t i = 0; i < 1024; ++i) {
threads.emplace_back(th_main);
std::random_device dev;
threads.emplace_back(th_main, dev());
}
for (auto& th : threads) {
th.join();
......
......@@ -86,7 +86,11 @@ void CPUAllocator::Free(void* p, size_t size, size_t index) {
munlock(p, size);
#endif
}
#ifdef _WIN32
_aligned_free(p);
#else
free(p);
#endif
}
bool CPUAllocator::UseGpu() const { return false; }
......
......@@ -12,7 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef _WIN32
#include <unistd.h>
#endif
#include <string>
#include <thread> // NOLINT
......
......@@ -60,75 +60,30 @@ float LogUniformSampler::Probability(int64_t value) const {
return (log((value + 2.0) / (value + 1.0))) / log_range_;
}
CustomSampler::CustomSampler(int64_t range, const float* probabilities,
CustomSampler::CustomSampler(int64_t range, const float *probabilities,
const int *alias, const float *alias_probabilities,
unsigned int seed)
: Sampler(range, seed) {
random_engine_ = std::make_shared<std::mt19937_64>(seed_);
random_engine_ = std::make_shared<std::mt19937>(seed_);
real_dist_ = std::make_shared<std::uniform_real_distribution<>>(0, 1);
int_dist_ = std::make_shared<std::uniform_int_distribution<>>(0, range);
alias_probs_ = std::make_shared<std::vector<float>>(range + 1);
alias_ = std::make_shared<std::vector<int64_t>>(range + 1);
probs_ = std::make_shared<std::vector<float>>(range + 1);
std::queue<std::pair<int64_t, float>> bigs;
std::queue<std::pair<int64_t, float>> littles;
for (int64_t i = 0; i <= range; ++i) {
(*probs_)[i] = probabilities[i];
float normal_prob = probabilities[i] * (range + 1);
if (normal_prob - 1.0 > 1e-4) {
bigs.emplace(i, normal_prob);
} else if (1.0 - normal_prob > 1e-4) {
littles.emplace(i, normal_prob);
} else {
(*alias_probs_)[i] = normal_prob;
(*alias_)[i] = -1;
}
}
while ((!littles.empty()) && (!bigs.empty())) {
auto big = bigs.front();
auto little = littles.front();
bigs.pop();
littles.pop();
(*alias_probs_)[little.first] = little.second;
(*alias_)[little.first] = big.first;
auto big_left = big.second - (1 - little.second);
if (big_left - 1.0 > 1e-4) {
bigs.emplace(big.first, big_left);
} else if (1.0 - big_left > 1e-4) {
littles.emplace(big.first, big_left);
} else {
(*alias_probs_)[big.first] = big_left;
(*alias_)[big.first] = -1;
}
}
if (!littles.empty()) { // littles.second is close to 1.0
auto little = littles.front();
(*alias_probs_)[little.first] = 1.0;
(*alias_)[little.first] = -1;
}
if (!bigs.empty()) { // bigs.second is close to 1.0
auto big = bigs.front();
(*alias_probs_)[big.first] = 1.0;
(*alias_)[big.first] = -1;
}
alias_probs_ = alias_probabilities;
probs_ = probabilities;
alias_ = alias;
}
int64_t CustomSampler::Sample() const {
auto index = (*int_dist_)(*random_engine_);
auto p = (*real_dist_)(*random_engine_);
if (p > (*alias_probs_)[index]) {
return (*alias_)[index];
if (p > alias_probs_[index]) {
return alias_[index];
} else {
return index;
}
}
float CustomSampler::Probability(int64_t value) const {
return (*probs_)[value];
}
float CustomSampler::Probability(int64_t value) const { return probs_[value]; }
} // namespace math
} // namespace operators
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstdint>
#include <memory>
#include <random>
......@@ -38,9 +39,12 @@ class Sampler {
seed_ = seed;
}
}
virtual ~Sampler();
// Sample a single value
virtual int64_t Sample() const = 0;
// The probability that a single call to Sample() returns the given value.
virtual float Probability(int64_t value) const = 0;
......@@ -99,6 +103,7 @@ class LogUniformSampler : public Sampler {
class CustomSampler : public Sampler {
public:
explicit CustomSampler(int64_t range, const float* probabilities,
const int* alias, const float* alias_probabilities,
unsigned int seed = 0UL);
~CustomSampler() override {}
......@@ -108,10 +113,10 @@ class CustomSampler : public Sampler {
float Probability(int64_t value) const override;
private:
std::shared_ptr<std::vector<float>> alias_probs_;
std::shared_ptr<std::vector<int64_t>> alias_;
std::shared_ptr<std::vector<float>> probs_;
std::shared_ptr<std::mt19937_64> random_engine_;
const float* alias_probs_;
const int* alias_;
const float* probs_;
std::shared_ptr<std::mt19937> random_engine_;
std::shared_ptr<std::uniform_real_distribution<>> real_dist_;
std::shared_ptr<std::uniform_int_distribution<>> int_dist_;
};
......
......@@ -16,13 +16,12 @@ limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/macros.h"
namespace paddle {
namespace operators {
namespace math {
#define FLT_MAX __FLT_MAX__
template <typename T>
struct MaxPoolFunctor {
HOSTDEVICE void operator()(const T* input, const size_t start,
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/nce_op.h"
#include <string>
#include <vector>
namespace paddle {
......@@ -25,7 +26,7 @@ class NCEOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"));
PADDLE_ENFORCE(ctx->HasInput("Label"));
PADDLE_ENFORCE(ctx->HasInput("Weight"));
......@@ -67,7 +68,7 @@ class NCEOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
platform::CPUPlace());
......@@ -101,11 +102,24 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
.AsDispensable();
AddInput(
"CustomDistribution",
"CustomDistProbs",
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled.")
.AsDispensable();
AddInput(
"CustomDistAlias",
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled.")
.AsDispensable();
AddInput(
"CustomDistAliasProbs",
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled.")
.AsDispensable();
AddOutput("Cost",
"(Tensor) A tensor of shape [batch_size, 1]. Cost of samples.");
AddOutput("SampleLogits",
......@@ -124,21 +138,22 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
"kernel to compute grads."
"")
.AsIntermediate();
AddAttr<int>("num_total_classes",
"Total number of classes in all samples.");
AddAttr<int>("num_neg_samples",
"The number of negative classes. The default value is 10.")
.SetDefault(10);
AddAttr<int>("sampler",
"(int) Which sampler to be used to sample negative class."
"0: Uniform; 1: LogUniform; 2: CostumDist.")
.SetDefault(0);
AddAttr<int>("seed",
"(int) The seed used in sampler. If it is 0, "
"the sampler will generate a seed randomly.")
.SetDefault(0);
AddAttr<bool>("is_sparse", "(boolean, default false) Sparse update.")
.SetDefault(false);
AddAttr<std::vector<int>>("custom_neg_classes",
"This attribute only be used in unitest. Classes "
......@@ -156,11 +171,19 @@ By default this operator uses a uniform distribution for sampling.
}
};
class NCEOpGradDescMaker : public framework::DefaultGradOpDescMaker<true> {
using ::paddle::framework::DefaultGradOpDescMaker<
true>::DefaultGradOpDescMaker;
protected:
virtual std::string GradOpType() const { return "nce_grad"; }
};
class NCEOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"));
PADDLE_ENFORCE(ctx->HasInput("Weight"));
PADDLE_ENFORCE(ctx->HasInput("Cost"));
......@@ -190,20 +213,45 @@ class NCEOpGrad : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
platform::CPUPlace());
}
};
class NCEOpGradVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto weight_grad = op_desc.Output(framework::GradVarName("Weight")).front();
auto bias_grad = op_desc.Output(framework::GradVarName("Bias")).front();
auto attr = op_desc.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(30) << "nce_op_grad op " << weight_grad << " and " << bias_grad
<< " is set to SelectedRows";
block->Var(weight_grad)
->SetType(framework::proto::VarType::SELECTED_ROWS);
block->Var(bias_grad)->SetType(framework::proto::VarType::SELECTED_ROWS);
} else {
VLOG(30) << "nce_op_grad op " << weight_grad << " and " << bias_grad
<< " is set to LoDTensor";
block->Var(weight_grad)->SetType(framework::proto::VarType::LOD_TENSOR);
block->Var(bias_grad)->SetType(framework::proto::VarType::LOD_TENSOR);
}
block->Var(weight_grad)->SetDataType(block->Var("Input")->GetDataType());
block->Var(bias_grad)->SetDataType(block->Var("Input")->GetDataType());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(nce, ops::NCEOp, ops::NCEOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(nce_grad, ops::NCEOpGrad);
REGISTER_OPERATOR(nce, ops::NCEOp, ops::NCEOpGradDescMaker, ops::NCEOpMaker);
REGISTER_OPERATOR(nce_grad, ops::NCEOpGrad, ops::NCEOpGradVarTypeInference);
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>,
ops::NCEKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(nce_grad,
......
......@@ -16,26 +16,32 @@ limitations under the License. */
#include <math.h>
#include <random>
#include <set>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/sampler.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using Sampler = math::Sampler;
using DDim = framework::DDim;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename DeviceContext, typename T>
void PrepareSamples(const framework::ExecutionContext& context,
Sampler* sampler) {
void PrepareSamples(const framework::ExecutionContext &context,
Sampler *sampler) {
auto label = context.Input<Tensor>("Label");
const int64_t* label_data = label->data<int64_t>();
const int64_t *label_data = label->data<int64_t>();
auto label_dims = label->dims();
// int num_total_classes = context.Attr<int>("num_total_classes");
// for unitest
......@@ -44,7 +50,7 @@ void PrepareSamples(const framework::ExecutionContext& context,
auto sample_labels = context.Output<Tensor>("SampleLabels");
auto sample_labels_dims = sample_labels->dims();
int64_t* sample_labels_data =
int64_t *sample_labels_data =
sample_labels->mutable_data<int64_t>(context.GetPlace());
int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
......@@ -70,13 +76,13 @@ void PrepareSamples(const framework::ExecutionContext& context,
template <typename DeviceContext, typename T>
class NCEKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
void Compute(const framework::ExecutionContext &context) const override {
int sampler_type = context.Attr<int>("sampler");
int seed = context.Attr<int>("seed");
int num_total_classes = context.Attr<int>("num_total_classes");
int num_neg_samples = context.Attr<int>("num_neg_samples");
Sampler* sampler;
Sampler *sampler;
switch (sampler_type) {
case 0: {
sampler = new math::UniformSampler(num_total_classes - 1, seed);
......@@ -87,11 +93,19 @@ class NCEKernel : public framework::OpKernel<T> {
break;
}
case 2: {
auto custom_dist = context.Input<Tensor>("CustomDistribution");
const float* custom_dist_data = custom_dist->data<float>();
PADDLE_ENFORCE_EQ(custom_dist->numel(), num_total_classes);
sampler = new math::CustomSampler(num_total_classes - 1,
custom_dist_data, seed);
auto dist_probs = context.Input<Tensor>("CustomDistProbs");
auto dist_alias = context.Input<Tensor>("CustomDistAlias");
auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");
PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);
const float *probs_data = dist_probs->data<float>();
const int *alias_data = dist_alias->data<int>();
const float *alias_probs_data = dist_alias_probs->data<float>();
sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
alias_data, alias_probs_data, seed);
break;
}
default: { PADDLE_THROW("Unsupported SamplerType."); }
......@@ -99,17 +113,17 @@ class NCEKernel : public framework::OpKernel<T> {
PrepareSamples<DeviceContext, T>(context, sampler);
auto sample_labels = context.Output<Tensor>("SampleLabels");
const int64_t* sample_labels_data = sample_labels->data<int64_t>();
const int64_t *sample_labels_data = sample_labels->data<int64_t>();
auto sample_out = context.Output<Tensor>("SampleLogits");
T* sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
T *sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
auto label = context.Input<Tensor>("Label");
auto sample_weight = context.Input<Tensor>("SampleWeight");
const T* sample_weight_data = nullptr;
const T *sample_weight_data = nullptr;
if (sample_weight != nullptr) {
sample_weight_data = sample_weight->data<T>();
}
auto out = context.Output<Tensor>("Cost");
T* out_data = out->mutable_data<T>(context.GetPlace());
T *out_data = out->mutable_data<T>(context.GetPlace());
int64_t num_true_class = 1;
if (label != nullptr) {
num_true_class = label->dims()[1];
......@@ -119,7 +133,7 @@ class NCEKernel : public framework::OpKernel<T> {
// forward bias
auto bias = context.Input<Tensor>("Bias");
if (bias != nullptr) {
const T* bias_data = bias->data<T>();
const T *bias_data = bias->data<T>();
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
sample_out_data[i] = bias_data[sample_labels_data[i]];
}
......@@ -158,16 +172,16 @@ class NCEKernel : public framework::OpKernel<T> {
template <typename DeviceContext, typename T>
class NCEGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
void Compute(const framework::ExecutionContext &context) const override {
auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
const T* d_out_data = d_out->data<T>();
const T *d_out_data = d_out->data<T>();
auto label = context.Input<Tensor>("Label");
auto sample_out = context.Input<Tensor>("SampleLogits");
const T* sample_out_data = sample_out->data<T>();
const T *sample_out_data = sample_out->data<T>();
auto sample_labels = context.Input<Tensor>("SampleLabels");
const int64_t* sample_labels_data = sample_labels->data<int64_t>();
const int64_t *sample_labels_data = sample_labels->data<int64_t>();
auto sample_weight = context.Input<Tensor>("SampleWeight");
const T* sample_weight_data = nullptr;
const T *sample_weight_data = nullptr;
if (sample_weight != nullptr) {
sample_weight_data = sample_weight->data<T>();
}
......@@ -180,7 +194,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
int sampler_type = context.Attr<int>("sampler");
int seed = context.Attr<int>("seed");
Sampler* sampler;
Sampler *sampler;
switch (sampler_type) {
case 0: {
sampler = new math::UniformSampler(num_total_classes - 1, seed);
......@@ -191,11 +205,19 @@ class NCEGradKernel : public framework::OpKernel<T> {
break;
}
case 2: {
auto custom_dist = context.Input<Tensor>("CustomDistribution");
const float* custom_dist_data = custom_dist->data<float>();
PADDLE_ENFORCE_EQ(custom_dist->numel(), num_total_classes);
sampler = new math::CustomSampler(num_total_classes - 1,
custom_dist_data, seed);
auto dist_probs = context.Input<Tensor>("CustomDistProbs");
auto dist_alias = context.Input<Tensor>("CustomDistAlias");
auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");
PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);
const float *probs_data = dist_probs->data<float>();
const int *alias_data = dist_alias->data<int>();
const float *alias_probs_data = dist_alias_probs->data<float>();
sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
alias_data, alias_probs_data, seed);
break;
}
default: { PADDLE_THROW("Unsupported SamplerType."); }
......@@ -203,7 +225,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
// T b = 1. / num_total_classes * num_neg_samples;
Tensor sample_grad; // tmp tensor
T* sample_grad_data =
T *sample_grad_data =
sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
// backward cost
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
......@@ -217,32 +239,105 @@ class NCEGradKernel : public framework::OpKernel<T> {
: w * (o * (1 - o) / (o + b));
sample_grad_data[i] *= d_out_data[sample_idx];
}
// get d_bias
auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
if (d_bias != nullptr) {
T* d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
bool is_sparse = context.Attr<bool>("is_sparse");
if (!is_sparse) {
// get d_bias
auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
if (d_bias != nullptr) {
T *d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
}
}
// get d_w
auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
if (d_w != nullptr) {
auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
auto d_w_matrix = EigenMatrix<T>::From(*d_w);
auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
d_w_matrix.chip(sample_labels_data[i], 0) +=
x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
sample_grad_data[i];
}
}
} else {
std::vector<int64_t> labels;
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
labels.push_back(sample_labels_data[i]);
}
}
// get d_w
auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
if (d_w != nullptr) {
auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
auto d_w_matrix = EigenMatrix<T>::From(*d_w);
std::set<T> st(labels.begin(), labels.end());
labels.assign(st.begin(), st.end());
auto *bias_var = context.InputVar("Bias");
DDim bias_dim;
if (bias_var->IsType<LoDTensor>()) {
bias_dim = context.Input<LoDTensor>("Bias")->dims();
} else if (bias_var->IsType<SelectedRows>()) {
auto *table_t = context.Input<SelectedRows>("Bias");
bias_dim = table_t->value().dims();
} else {
PADDLE_THROW(
"The parameter Bias of a NCE_OP "
"must be either LoDTensor or SelectedRows");
}
auto d_bias =
context.Output<SelectedRows>(framework::GradVarName("Bias"));
d_bias->set_rows(labels);
d_bias->set_height(bias_dim[0]);
d_bias->mutable_value()->Resize(
{static_cast<int64_t>(labels.size()), bias_dim[1]});
T *d_bias_data =
d_bias->mutable_value()->mutable_data<T>(context.GetPlace());
std::fill(d_bias_data, d_bias_data + labels.size(), 0.0);
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
d_bias_data[d_bias->Index(sample_labels_data[i])] +=
sample_grad_data[i];
}
auto *table_var = context.InputVar("Weight");
DDim table_dim;
if (table_var->IsType<LoDTensor>()) {
table_dim = context.Input<LoDTensor>("Weight")->dims();
} else if (table_var->IsType<SelectedRows>()) {
auto *table_t = context.Input<SelectedRows>("Weight");
table_dim = table_t->value().dims();
} else {
PADDLE_THROW(
"The parameter Weight of a NCE_OP "
"must be either LoDTensor or SelectedRows");
}
auto d_w = context.Output<SelectedRows>(framework::GradVarName("Weight"));
d_w->set_rows(labels);
d_w->set_height(table_dim[0]);
auto *d_table_value = d_w->mutable_value();
d_table_value->Resize(
{static_cast<int64_t>(labels.size()), table_dim[1]});
auto d_w_data = d_table_value->mutable_data<T>(context.GetPlace());
std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0);
auto d_w_matrix = EigenMatrix<T>::From(*d_table_value);
auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
d_w_matrix.chip(sample_labels_data[i], 0) +=
d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) +=
x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
sample_grad_data[i];
}
}
// get d_x
auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
if (d_x != nullptr) {
auto* d_x_data = d_x->mutable_data<T>(context.GetPlace());
auto *d_x_data = d_x->mutable_data<T>(context.GetPlace());
std::fill(d_x_data, d_x_data + d_x->numel(), 0.0);
auto d_x_matrix = EigenMatrix<T>::From(*d_x);
auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
......@@ -251,6 +346,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
}
}
delete sampler;
}
};
......
......@@ -20,12 +20,12 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
#ifndef _WIN32
const float fraction_of_gpu_memory_to_use = 0.92f;
constexpr static float fraction_of_gpu_memory_to_use = 0.92f;
#else
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
const float fraction_of_gpu_memory_to_use = 0.5f;
constexpr static float fraction_of_gpu_memory_to_use = 0.5f;
#endif
DEFINE_double(fraction_of_gpu_memory_to_use, fraction_of_gpu_memory_to_use,
......
......@@ -29,8 +29,16 @@ limitations under the License. */
namespace pybind11 {
namespace detail {
#if !defined(PYBIND11_HIDDEN)
#ifdef _WIN32
#define PYBIND11_HIDDEN __declspec(dllexport)
#else
#define PYBIND11_HIDDEN __attribute__((visibility("hidden")))
#endif
#endif
// Can be replaced by a generic lambda in C++14
struct __attribute__((visibility("hidden"))) paddle_variant_caster_visitor
struct PYBIND11_HIDDEN paddle_variant_caster_visitor
: public boost::static_visitor<handle> {
return_value_policy policy;
handle parent;
......
......@@ -860,6 +860,12 @@ All parameter, weight, gradient are variables in Paddle.
self.remove_unnecessary_lock_ = b;
},
R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
.def_property(
"num_trainers",
[](const BuildStrategy &self) { return self.num_trainers_; },
[](BuildStrategy &self, int num_trainers) {
self.num_trainers_ = num_trainers;
})
.def_property(
"fuse_elewise_add_act_ops",
[](const BuildStrategy &self) {
......
......@@ -4394,7 +4394,8 @@ def nce(input,
name=None,
sampler="uniform",
custom_dist=None,
seed=0):
seed=0,
is_sparse=False):
"""
${comment}
......@@ -4420,11 +4421,12 @@ def nce(input,
sampler (str): The sampler used to sample class from negtive classes.
It can be 'uniform', 'log_uniform' or 'custom_dist'.
default: 'uniform'.
custom_dist (Variable): A tensor with shape [num_total_classes].
custom_dist (float[]): A float[] with size=num_total_classes.
It is used when sampler is set to 'custom_dist'.
custom_dist[i] is the probsbility of i-th class to be sampled.
default: None.
seed (int): The seed used in sampler. default: 0.
is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
Returns:
Variable: The output nce loss.
......@@ -4476,12 +4478,7 @@ def nce(input,
shape=[num_total_classes, dim],
is_bias=False,
dtype=input.dtype)
inputs = {
'Input': input,
'Label': label,
'Weight': w,
'SampleWeight': sample_weight if sample_weight is not None else []
}
inputs = {}
if helper.bias_attr:
b = helper.create_parameter(
attr=helper.bias_attr,
......@@ -4493,18 +4490,10 @@ def nce(input,
sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
if num_neg_samples is None:
num_neg_samples = 10
else:
num_neg_samples = int(num_neg_samples)
inputs = {
'Input': input,
'Label': label,
'Weight': w,
'Bias': b,
'SampleWeight': sample_weight if sample_weight is not None else []
}
inputs['Input'] = input
inputs['Label'] = label
inputs['Weight'] = w
inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
if sampler == "uniform":
sampler = 0
......@@ -4512,17 +4501,73 @@ def nce(input,
sampler = 1
elif sampler == "custom_dist":
assert custom_dist is not None
assert isinstance(custom_dist, Variable)
inputs['CustomDistribution'] = custom_dist
# assert isinstance(custom_dist, Variable)
custom_dist_len = len(custom_dist)
alias_probs_ = [0] * custom_dist_len
alias_ = [0] * custom_dist_len
bigs = []
littles = []
for i in range(custom_dist_len):
normal_prob = custom_dist[i] * custom_dist_len
if normal_prob - 1.0 > 1e-4:
bigs.append((i, normal_prob))
elif 1.0 - normal_prob > 1e-4:
littles.append((i, normal_prob))
else:
alias_probs_[i] = normal_prob
alias_[i] = -1
while len(bigs) and len(littles):
big = bigs.pop(0)
little = littles.pop(0)
big_idx = big[0]
big_prob = big[1]
alias_probs_[little[0]] = little[1]
alias_[little[0]] = big_idx
big_left = big[1] + little[1] - 1
if big_left - 1.0 > 1e-4:
bigs.append((big_idx, big_left))
elif 1.0 - big_left > 1e-4:
littles.append((big_idx, big_left))
else:
alias_probs_[big_idx] = big_left
alias_[big_idx] = -1
if len(bigs):
big = bigs.pop(0)
alias_probs_[big[0]] = 1.0
alias_[big[0]] = -1
if len(littles):
little = littles.pop(0)
alias_probs_[little[0]] = 1.0
alias_[little[0]] = -1
probs = assign(input=np.array(custom_dist).astype('float32'))
custom_alias = assign(input=np.array(alias_).astype('int32'))
custom_alias_probs = assign(
input=np.array(alias_probs_).astype('float32'))
inputs['CustomDistProbs'] = probs
inputs['CustomDistAlias'] = custom_alias
inputs['CustomDistAliasProbs'] = custom_alias_probs
sampler = 2
else:
raise Exception("Unsupported sampler type.")
if num_neg_samples is None:
num_neg_samples = 10
else:
num_neg_samples = int(num_neg_samples)
attrs = {
'num_total_classes': int(num_total_classes),
'num_neg_samples': num_neg_samples,
'seed': seed,
'sampler': sampler
'sampler': sampler,
'is_sparse': is_sparse
}
helper.append_op(
......@@ -6525,7 +6570,7 @@ def crop(x, shape=None, offsets=None, name=None):
helper = LayerHelper('crop', **locals())
if not (isinstance(shape, list) or isinstance(shape, tuple) or \
isinstance(shape, Variable)):
isinstance(shape, Variable)):
raise ValueError("The shape should be a list, tuple or Variable.")
if offsets is None:
......@@ -6647,7 +6692,7 @@ def affine_grid(theta, out_shape, name=None):
helper = LayerHelper('affine_grid')
if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
isinstance(out_shape, Variable)):
isinstance(out_shape, Variable)):
raise ValueError("The out_shape should be a list, tuple or Variable.")
if not isinstance(theta, Variable):
......@@ -6888,6 +6933,13 @@ def elu(x, alpha=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.elu(x, alpha=0.2)
"""
helper = LayerHelper('elu', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6911,6 +6963,13 @@ def relu6(x, threshold=6.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.relu6(x, threshold=6.0)
"""
helper = LayerHelper('relu6', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6934,6 +6993,13 @@ def pow(x, factor=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.pow(x, factor=2.0)
"""
helper = LayerHelper('pow', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6958,6 +7024,13 @@ def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
"""
helper = LayerHelper('stanh', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6983,6 +7056,13 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
"""
helper = LayerHelper('hard_sigmoid', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -7007,6 +7087,13 @@ def swish(x, beta=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.swish(x, beta=2.0)
"""
helper = LayerHelper('swish', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......
......@@ -124,16 +124,11 @@ class ParallelExecutor(object):
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
exec_strategy.num_threads = cpu_num * 2
# Set 1 thread num under nccl2 distribute
# env to make sure all gpus run ops in same order.
if num_trainers > 1:
assert (use_cuda)
# FIXME(gongwb): avoid this set.
exec_strategy.num_threads = 1
if build_strategy is None:
build_strategy = BuildStrategy()
build_strategy.num_trainers = num_trainers
main = main_program
main = main if main else framework.default_main_program()
if scope == None:
......
......@@ -63,7 +63,7 @@ function(py_test_modules TARGET_NAME)
set(multiValueArgs MODULES DEPS ENVS)
cmake_parse_arguments(py_test_modules "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_modules_ENVS}
COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_modules_ENVS}
${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/tools/test_runner.py ${py_test_modules_MODULES}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
if (py_test_modules_SERIAL)
......
......@@ -14,8 +14,12 @@
from __future__ import print_function
import unittest
import numpy as np
import unittest
import paddle.fluid as fluid
import paddle.fluid.initializer as initializer
from op_test import OpTest
......@@ -59,7 +63,7 @@ def nce(input, weight, bias, sample_weight, labels, num_classes,
class TestNCE(OpTest):
def generate_data(self, dim, batch_size, num_classes, num_true_class,
num_neg_samples):
num_neg_samples, is_sparse):
input = np.random.randn(batch_size, dim).astype(np.float32)
weight = np.random.randn(num_classes, dim).astype(np.float32)
bias = np.random.randn(num_classes).astype(np.float32)
......@@ -70,7 +74,8 @@ class TestNCE(OpTest):
'num_neg_samples': num_neg_samples,
'custom_neg_classes': list(range(num_neg_samples)),
'seed': 0,
'sampler': 0
'sampler': 0,
'is_sparse': is_sparse
}
self.inputs = {
'Input': input,
......@@ -81,7 +86,7 @@ class TestNCE(OpTest):
}
def set_data(self):
self.generate_data(5, 5, 4, 1, 2)
self.generate_data(5, 5, 4, 1, 2, False)
def compute(self):
out = nce(self.inputs['Input'], self.inputs['Weight'],
......@@ -107,9 +112,110 @@ class TestNCE(OpTest):
["Input", "Weight", "Bias"], "Cost", max_relative_error=0.02)
class TestNCECase1(TestNCE):
class TestNCECase1Tensor(TestNCE):
def set_data(self):
self.generate_data(10, 20, 10, 2, 5)
self.generate_data(10, 20, 10, 2, 5, False)
class TestNCECase1SelectedRows(unittest.TestCase):
def setUp(self):
self.base_lr = 0.0001
self.batch_size = 8
@staticmethod
def get_place():
place = fluid.core.CPUPlace()
return place
@staticmethod
def get_train_data(batch_size):
batchs = []
for i in range(batch_size):
input = np.random.randn(batch_size, 10).astype(np.float32)
labels = np.random.randint(0, 20, (batch_size, 1))
batchs.append([input, labels])
return batchs
def get_optimizer(self):
# SGD optimizer
optimizer = fluid.optimizer.SGD(learning_rate=self.base_lr)
return optimizer
def train_network(self, num_total_classes, num_neg_samples, sampler,
custom_dist, is_sparse):
input = fluid.layers.data(name="input", shape=[10], dtype="float32")
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
w_param = fluid.default_main_program().global_block().create_parameter(
shape=[num_total_classes, 10],
dtype='float32',
name='nce_w',
initializer=initializer.ConstantInitializer())
b_param = fluid.default_main_program().global_block().create_parameter(
shape=[num_total_classes, 1],
dtype='float32',
name='nce_b',
initializer=initializer.ConstantInitializer())
cost = fluid.layers.nce(input=input,
label=label,
num_total_classes=num_total_classes,
sampler=sampler,
custom_dist=custom_dist,
sample_weight=None,
param_attr='nce_w',
bias_attr='nce_b',
seed=1,
num_neg_samples=num_neg_samples,
is_sparse=is_sparse)
avg_cost = fluid.layers.mean(cost)
# optimizer
optimizer = self.get_optimizer()
optimizer.minimize(avg_cost)
return [avg_cost, [input, label]]
def test_input_is_selected_rows(self):
place = self.get_place()
exe = fluid.Executor(place)
data = self.get_train_data(self.batch_size)
nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
rets = []
# for dense
dense_scope = fluid.core.Scope()
dense_startup_program = fluid.framework.Program()
dense_train_program = fluid.framework.Program()
with fluid.scope_guard(dense_scope):
with fluid.program_guard(dense_train_program,
dense_startup_program):
cost, feeds = self.train_network(20, 5, "custom_dist",
nid_freq_arr.tolist(), False)
feeder = fluid.DataFeeder(feed_list=feeds, place=place)
exe.run(dense_startup_program)
loss_val = exe.run(dense_train_program,
feed=feeder.feed(data),
fetch_list=[cost.name])
rets.append(np.mean(loss_val))
# for sparse
sparse_scope = fluid.core.Scope()
sparse_startup_program = fluid.framework.Program()
sparse_train_program = fluid.framework.Program()
with fluid.scope_guard(sparse_scope):
with fluid.program_guard(sparse_train_program,
sparse_startup_program):
cost, feeds = self.train_network(20, 5, "custom_dist",
nid_freq_arr.tolist(), True)
feeder = fluid.DataFeeder(feed_list=feeds, place=place)
exe.run(sparse_startup_program)
loss_val = exe.run(sparse_train_program,
feed=feeder.feed(data),
fetch_list=[cost.name])
rets.append(np.mean(loss_val))
self.assertEqual(rets[0], rets[1])
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册