提交 874bcb30 编写于 作者: Y Yu Yang

Merge branch 'develop' of github.com:baidu/Paddle into feature/change_bind_data_types

......@@ -21,7 +21,7 @@ Model Config API
trainer_config_helpers/optimizers.rst
trainer_config_helpers/data_sources.rst
trainer_config_helpers/layers.rst
trainer_config_helpers/activations.rst
trainer_config_helpers/activations.rst
trainer_config_helpers/poolings.rst
trainer_config_helpers/networks.rst
trainer_config_helpers/evaluators.rst
......
......@@ -345,6 +345,11 @@ clip
.. autoclass:: paddle.v2.layer.clip
:noindex:
resize
------
.. autoclass:: paddle.v2.layer.resize
:noindex:
slope_intercept
---------------
.. autoclass:: paddle.v2.layer.slope_intercept
......
......@@ -206,7 +206,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs,
- `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`。
- `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。
- `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulKernel`类。
- `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulGradKernel`类。
-`.cu`文件中注册GPU Kernel。
......
......@@ -205,7 +205,7 @@ The definition of its corresponding backward operator, if applicable, is similar
- `REGISTER_OP` registers the `ops::MulOp` class, type named `mul`, its type `ProtoMaker` is `ops::MulOpMaker`, registering `ops::MulOpGrad` as `mul_grad`.
- `REGISTER_OP_WITHOUT_GRADIENT` registers an operator without gradient.
- `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulKernel`.
- `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulGradKernel`.
- Registering GPU Kernel in `.cu` files
......
......@@ -22,7 +22,7 @@ cc_library(attribute SRCS attribute.cc DEPS framework_proto)
cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute)
cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute)
cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto proto_desc)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_info.h"
#include "paddle/framework/op_proto_maker.h"
#include "paddle/framework/operator.h"
namespace paddle {
namespace framework {
namespace details {
enum OpInfoFillType {
kOperator = 0,
kOpProtoAndCheckerMaker = 1,
kGradOpDescMaker = 2
};
template <typename T>
struct OpInfoFillTypeID {
static constexpr OpInfoFillType ID() {
return std::is_base_of<OperatorBase, T>::value
? kOperator
: (std::is_base_of<OpProtoAndCheckerMaker, T>::value
? kOpProtoAndCheckerMaker
: (std::is_base_of<GradOpDescMakerBase, T>::value
? kGradOpDescMaker
: static_cast<OpInfoFillType>(-1)));
}
};
template <typename T, OpInfoFillType = OpInfoFillTypeID<T>::ID()>
struct OpInfoFiller;
template <size_t I, bool at_end, typename... ARGS>
class OperatorRegistrarRecursive;
template <size_t I, typename... ARGS>
class OperatorRegistrarRecursive<I, false, ARGS...> {
public:
using T = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
OperatorRegistrarRecursive(const char* op_type, OpInfo* info) {
OpInfoFiller<T> fill;
fill(op_type, info);
constexpr auto size = sizeof...(ARGS);
OperatorRegistrarRecursive<I + 1, I + 1 == size, ARGS...> reg(op_type,
info);
(void)(reg);
}
};
template <size_t I, typename... ARGS>
class OperatorRegistrarRecursive<I, true, ARGS...> {
public:
OperatorRegistrarRecursive(const char* op_type, OpInfo* info) {}
};
template <typename T>
struct OpInfoFiller<T, kOperator> {
void operator()(const char* op_type, OpInfo* info) const {
info->creator_ = [](const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs,
const AttributeMap& attrs) {
return new T(type, inputs, outputs, attrs);
};
}
};
template <typename T>
struct OpInfoFiller<T, kOpProtoAndCheckerMaker> {
void operator()(const char* op_type, OpInfo* info) const {
info->proto_ = new OpProto;
info->checker_ = new OpAttrChecker();
auto maker = T(info->proto_, info->checker_);
maker.Validate();
info->proto_->set_type(op_type);
PADDLE_ENFORCE(
info->proto_->IsInitialized(),
"Fail to initialize %s's OpProto, because %s is not initialized",
op_type, info->proto_->InitializationErrorString());
}
};
template <typename T>
struct OpInfoFiller<T, kGradOpDescMaker> {
void operator()(const char* op_type, OpInfo* info) const {
info->grad_op_maker_ = new T();
}
};
} // namespace details
} // namespace framework
} // namespace paddle
......@@ -17,8 +17,8 @@
#include <map>
#include <string>
#include <unordered_map>
#include "paddle/framework/attribute.h"
#include "paddle/framework/op_desc.h"
namespace paddle {
namespace framework {
......@@ -29,11 +29,18 @@ using OpCreator = std::function<OperatorBase*(
const std::string& /*type*/, const VariableNameMap& /*inputs*/,
const VariableNameMap& /*outputs*/, const AttributeMap& /*attrs*/)>;
class GradOpDescMakerBase {
public:
virtual ~GradOpDescMakerBase() = default;
virtual std::vector<OpDescBind> operator()(const OpDescBind&) const = 0;
};
struct OpInfo {
OpCreator creator_;
std::string grad_op_type_;
OpProto* proto_;
OpAttrChecker* checker_;
GradOpDescMakerBase* grad_op_maker_{nullptr};
OpProto* proto_{nullptr};
OpAttrChecker* checker_{nullptr};
bool HasOpProtoAndChecker() const {
return proto_ != nullptr && checker_ != nullptr;
......
......@@ -21,49 +21,42 @@ limitations under the License. */
#include <unordered_map>
#include <unordered_set>
#include "paddle/framework/attribute.h"
#include "paddle/framework/details/op_registry.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_info.h"
#include "paddle/framework/op_proto_maker.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
namespace paddle {
namespace framework {
template <typename... ARGS>
struct OperatorRegistrar {
explicit OperatorRegistrar(const char* op_type) : op_type(op_type) {
PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type),
"'%s' is registered more than once.", op_type);
static_assert(sizeof...(ARGS) != 0,
"OperatorRegistrar should be invoked at least by OpClass");
details::OperatorRegistrarRecursive<0, false, ARGS...>(op_type, &info);
}
~OperatorRegistrar() { OpInfoMap::Instance().Insert(op_type, info); }
const char* op_type;
OpInfo info;
};
class OpRegistry {
public:
template <typename OpType, typename ProtoMakerType, typename GradOpType>
static void RegisterOp(const std::string& op_type,
const std::string& grad_op_type) {
PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type),
"'%s' is registered more than once.", op_type);
OpInfo op_info;
op_info.creator_ = [](
const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs) {
return new OpType(type, inputs, outputs, attrs);
};
op_info.grad_op_type_ = grad_op_type;
if (std::type_index(typeid(ProtoMakerType)) !=
std::type_index(typeid(NOPMaker))) {
op_info.proto_ = new OpProto;
op_info.checker_ = new OpAttrChecker;
auto maker = ProtoMakerType(op_info.proto_, op_info.checker_);
maker.Validate();
op_info.proto_->set_type(op_type);
PADDLE_ENFORCE(
op_info.proto_->IsInitialized(),
"Fail to initialize %s's OpProto, because %s is not initialized",
op_type, op_info.proto_->InitializationErrorString());
} else {
op_info.proto_ = nullptr;
op_info.checker_ = nullptr;
}
OpInfoMap::Instance().Insert(op_type, op_info);
OperatorRegistrar<OpType, ProtoMakerType> reg(op_type.c_str());
reg.info.grad_op_type_ = grad_op_type;
// register gradient op
if (!grad_op_type.empty()) {
RegisterOp<GradOpType, NOPMaker, NOP>(grad_op_type, "");
OperatorRegistrar<GradOpType> grad_reg(grad_op_type.c_str());
}
}
......
......@@ -173,3 +173,14 @@ TEST(OpRegistry, CustomChecker) {
int test_attr = op->Attr<int>("test_attr");
ASSERT_EQ(test_attr, 4);
}
class CosineOpComplete : public paddle::framework::CosineOp {
public:
DEFINE_OP_CONSTRUCTOR(CosineOpComplete, paddle::framework::CosineOp);
DEFINE_OP_CLONE_METHOD(CosineOpComplete);
};
TEST(OperatorRegistrar, Test) {
using namespace paddle::framework;
OperatorRegistrar<CosineOpComplete, CosineOpProtoAndCheckerMaker> reg("cos");
}
\ No newline at end of file
......@@ -245,5 +245,12 @@ std::vector<Tensor*> InferShapeContext::MultiOutput<Tensor>(
return res;
}
std::ostream& operator<<(std::ostream& os,
const OperatorWithKernel::OpKernelKey& kernel_key) {
os << "place[" << kernel_key.place_ << "]:data_type[" << kernel_key.data_type_
<< "]";
return os;
}
} // namespace framework
} // namespace paddle
......@@ -478,9 +478,25 @@ class OperatorWithKernel : public OperatorBase {
this->InferShape(&infer_shape_ctx);
ExecutionContext ctx(*this, scope, dev_ctx);
auto& opKernel = AllOpKernels().at(type_).at(
OpKernelKey(IndicateDataType(ctx), dev_ctx));
opKernel->Compute(ctx);
// check if op[type] has kernel registered.
auto& all_op_kernels = AllOpKernels();
auto kernels_iter = all_op_kernels.find(type_);
if (kernels_iter == all_op_kernels.end()) {
PADDLE_THROW("op[%s] has no kernel", type_);
}
// check if op[type] have kernel for kernel_key
OpKernelMap& kernels = kernels_iter->second;
auto kernel_key = OpKernelKey(IndicateDataType(ctx), dev_ctx);
auto kernel_iter = kernels.find(kernel_key);
if (kernel_iter == kernels.end()) {
PADDLE_THROW("op[%s] has no kernel with kernel_key[%s]", type_,
kernel_key);
}
kernel_iter->second->Compute(ctx);
}
static std::unordered_map<std::string /* op_type */, OpKernelMap>&
......@@ -529,5 +545,8 @@ class OperatorWithKernel : public OperatorBase {
}
};
std::ostream& operator<<(std::ostream& os,
const OperatorWithKernel::OpKernelKey& kernel_key);
} // namespace framework
} // namespace paddle
......@@ -142,6 +142,7 @@ __all__ = [
'img_pool3d_layer',
'scale_shift_layer',
'img_conv3d_layer',
'resize_layer',
]
......@@ -250,6 +251,8 @@ class LayerType(object):
KMAX_SEQ_SCORE = 'kmax_seq_score'
SCALE_SHIFT_LAYER = 'scale_shift'
RESIZE = 'resize'
@staticmethod
def is_layer_type(type_name):
"""
......@@ -6473,7 +6476,7 @@ def switch_order_layer(input,
act=None,
layer_attr=None):
"""
This layer switch dimension order of image input.
This layer switch dimension order of image input.
From order "batchSize, channels, height, width"
to order "batchSize, height, width, channels".
......@@ -6932,3 +6935,23 @@ def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
bias=ParamAttr.to_bias(bias_attr))
return LayerOutput(
name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
@wrap_name_default("resize")
def resize_layer(input, size, name=None):
"""
The resize layer resizes the input matrix with a shape of [Height, Width]
into the output matrix with a shape of [Height x Width / size, size],
where size is the parameter of this layer indicating the output dimension.
:param input: The input to this layer.
:type input: LayerOutput.
:param name: The name of this layer. It is optional.
:type name: basestring
:param size: The resized output dimesion of this layer.
:type size: int
:return: A LayerOutput object.
:rtype: LayerOutput
"""
Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
......@@ -10,6 +10,6 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer
test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D)
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer)
export whole_configs=(test_split_datasource)
type: "nn"
layers {
name: "input"
type: "data"
size: 300
active_type: ""
}
layers {
name: "__resize_0__"
type: "resize"
size: 150
active_type: ""
inputs {
input_layer_name: "input"
}
}
input_layer_names: "input"
output_layer_names: "__resize_0__"
sub_models {
name: "root"
layer_names: "input"
layer_names: "__resize_0__"
input_layer_names: "input"
output_layer_names: "__resize_0__"
is_recurrent_layer_group: false
}
from paddle.trainer_config_helpers import *
data = data_layer(name='input', size=300)
resized = resize_layer(input=data, size=150)
outputs(resized)
......@@ -15,7 +15,7 @@ class PySimpleCond(object):
for i in range(1, 10, 2):
array[i] = 0
self.cond = np.array(array)
self.x = np.ones(shape=(10, 1))
self.x = np.ones(shape=(10, 1)).astype("float32")
def forward(self):
self.index_t = np.where(self.cond == 1)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册