Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
86a6be1a
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
86a6be1a
编写于
9月 13, 2021
作者:
T
taixiurong
提交者:
GitHub
9月 13, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add xpu_wait & new implementation replace memcpy in adam, adamw (#35437)
上级
1a7b3ff6
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
482 addition
and
115 deletion
+482
-115
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+1
-1
paddle/fluid/operators/layer_norm_op_xpu.cc
paddle/fluid/operators/layer_norm_op_xpu.cc
+33
-18
paddle/fluid/operators/mean_op_xpu.cc
paddle/fluid/operators/mean_op_xpu.cc
+41
-18
paddle/fluid/operators/optimizers/adam_op_xpu.cc
paddle/fluid/operators/optimizers/adam_op_xpu.cc
+43
-44
paddle/fluid/operators/optimizers/adamw_op_xpu.cc
paddle/fluid/operators/optimizers/adamw_op_xpu.cc
+218
-0
paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc
paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc
+80
-0
paddle/fluid/operators/sum_op_xpu.cc
paddle/fluid/operators/sum_op_xpu.cc
+13
-26
paddle/fluid/operators/transpose_op_xpu.cc
paddle/fluid/operators/transpose_op_xpu.cc
+24
-8
paddle/fluid/platform/xpu/xpu2_op_list.h
paddle/fluid/platform/xpu/xpu2_op_list.h
+29
-0
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
86a6be1a
...
...
@@ -35,7 +35,7 @@ ELSE ()
ENDIF
()
SET
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev"
)
SET
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/20210
830
"
)
SET
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/20210
909
"
)
SET
(
XPU_XRE_URL
"
${
XPU_BASE_URL
}
/
${
XPU_XRE_DIR_NAME
}
.tar.gz"
CACHE STRING
""
FORCE
)
SET
(
XPU_XDNN_URL
"
${
XPU_BASE_URL
}
/
${
XPU_XDNN_DIR_NAME
}
.tar.gz"
CACHE STRING
""
FORCE
)
SET
(
XPU_XCCL_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/20210623/
${
XPU_XCCL_DIR_NAME
}
.tar.gz"
CACHE STRING
""
FORCE
)
...
...
paddle/fluid/operators/layer_norm_op_xpu.cc
浏览文件 @
86a6be1a
...
...
@@ -24,6 +24,8 @@ using DDim = framework::DDim;
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
...
...
@@ -39,15 +41,17 @@ class LayerNormXPUKernel : public framework::OpKernel<T> {
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
variance
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
*
x_data
=
x
->
data
<
T
>
();
const
auto
*
scale_data
=
(
scale
==
nullptr
?
nullptr
:
scale
->
data
<
T
>
());
const
auto
*
bias_data
=
(
bias
==
nullptr
?
nullptr
:
bias
->
data
<
T
>
());
const
auto
*
scale_data
=
(
scale
==
nullptr
?
nullptr
:
scale
->
data
<
float
>
());
const
auto
*
bias_data
=
(
bias
==
nullptr
?
nullptr
:
bias
->
data
<
float
>
());
auto
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
mean_data
=
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
variance_data
=
variance
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
mean_data
=
mean
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
auto
*
variance_data
=
variance
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
layer_norm
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
left
,
right
,
epsilon
,
scale_data
,
bias_data
,
mean_data
,
variance_data
);
int
r
=
xpu
::
layer_norm
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
XPUType
*>
(
y_data
),
left
,
right
,
epsilon
,
scale_data
,
bias_data
,
mean_data
,
variance_data
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU layer_norm kernel return wrong value[%d %s]"
,
r
,
...
...
@@ -57,6 +61,8 @@ class LayerNormXPUKernel : public framework::OpKernel<T> {
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
...
...
@@ -75,19 +81,24 @@ class LayerNormGradXPUKernel : public framework::OpKernel<T> {
auto
*
dbias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
auto
*
x_data
=
x
->
data
<
T
>
();
const
auto
*
dy_data
=
dy
->
data
<
T
>
();
const
auto
*
mean_data
=
mean
->
data
<
T
>
();
const
auto
*
variance_data
=
variance
->
data
<
T
>
();
const
auto
*
scale_data
=
(
scale
==
nullptr
?
nullptr
:
scale
->
data
<
T
>
());
const
auto
*
mean_data
=
mean
->
data
<
float
>
();
const
auto
*
variance_data
=
variance
->
data
<
float
>
();
const
auto
*
scale_data
=
(
scale
==
nullptr
?
nullptr
:
scale
->
data
<
float
>
());
auto
*
dscale_data
=
(
dscale
==
nullptr
?
nullptr
:
dscale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
auto
*
dbias_data
=
(
dbias
==
nullptr
?
nullptr
:
dbias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
(
dscale
==
nullptr
?
nullptr
:
dscale
->
mutable_data
<
float
>
(
ctx
.
GetPlace
()));
auto
*
dbias_data
=
(
dbias
==
nullptr
?
nullptr
:
dbias
->
mutable_data
<
float
>
(
ctx
.
GetPlace
()));
auto
*
dx_data
=
(
dx
==
nullptr
?
nullptr
:
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
layer_norm_grad
(
dev_ctx
.
x_context
(),
x_data
,
dy_data
,
dx_data
,
left
,
right
,
epsilon
,
scale_data
,
mean_data
,
variance_data
,
dscale_data
,
dbias_data
);
int
r
=
xpu
::
layer_norm_grad
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
const
XPUType
*>
(
dy_data
),
reinterpret_cast
<
XPUType
*>
(
dx_data
),
left
,
right
,
epsilon
,
scale_data
,
mean_data
,
variance_data
,
dscale_data
,
dbias_data
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
...
...
@@ -103,9 +114,13 @@ namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL
(
layer_norm
,
ops
::
LayerNormXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
LayerNormXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
LayerNormXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
layer_norm_grad
,
ops
::
LayerNormGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
LayerNormGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
LayerNormGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif // PADDLE_WITH_XPU
paddle/fluid/operators/mean_op_xpu.cc
浏览文件 @
86a6be1a
...
...
@@ -23,24 +23,33 @@ namespace operators {
template
<
typename
DeviceContext
,
typename
T
>
class
MeanXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
const
float
*
x_data
=
input
->
data
<
float
>
();
float
*
y_data
=
output
->
data
<
float
>
();
int
r
=
xpu
::
mean
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
input
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error, Mean op execution not succeed, error code=%d"
,
r
));
const
T
*
x_data
=
input
->
data
<
T
>
();
T
*
y_data
=
output
->
data
<
T
>
();
std
::
vector
<
int
>
x_shape
;
x_shape
.
push_back
(
1
);
x_shape
.
push_back
(
input
->
numel
());
std
::
vector
<
int
>
rdims
=
{
1
};
int
r
=
xpu
::
reduce_mean
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
XPUType
*>
(
y_data
),
x_shape
,
rdims
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU reduce_mean kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
MeanGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
OG
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
...
...
@@ -49,14 +58,24 @@ class MeanGradXPUKernel : public framework::OpKernel<T> {
auto
IG
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
IG
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
float
*
dx
=
IG
->
data
<
float
>
();
const
float
*
dy
=
OG
->
data
<
float
>
();
int
r
=
xpu
::
mean_grad
(
dev_ctx
.
x_context
(),
dx
,
dy
,
IG
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error. Mean_grad execution not succeed, error code=%d"
,
r
));
XPUType
*
dx
=
reinterpret_cast
<
XPUType
*>
(
IG
->
data
<
T
>
());
const
T
*
dy
=
OG
->
data
<
T
>
();
T
dy0_value
;
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
memory
::
Copy
(
platform
::
CPUPlace
(),
&
dy0_value
,
BOOST_GET_CONST
(
platform
::
XPUPlace
,
OG
->
place
()),
dy
,
sizeof
(
T
));
float
dy0_fp32
=
static_cast
<
float
>
(
dy0_value
);
dy0_fp32
=
dy0_fp32
/
static_cast
<
float
>
(
IG
->
numel
());
int
r
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
dx
,
IG
->
numel
(),
static_cast
<
XPUType
>
(
dy0_fp32
));
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU constant kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
...
...
@@ -65,8 +84,12 @@ class MeanGradXPUKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
mean
,
ops
::
MeanXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
mean
,
ops
::
MeanXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
MeanXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
mean_grad
,
ops
::
MeanGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
MeanGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
MeanGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/optimizers/adam_op_xpu.cc
浏览文件 @
86a6be1a
...
...
@@ -113,27 +113,27 @@ class AdamOpXPUKernel : public framework::OpKernel<T> {
bool
use_global_beta_pow
=
ctx
.
Attr
<
bool
>
(
"use_global_beta_pow"
);
VLOG
(
4
)
<<
"use_global_beta_pow:"
<<
use_global_beta_pow
;
T
beta1
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
float
beta1
=
static_cast
<
float
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
if
(
ctx
.
HasInput
(
"Beta1Tensor"
))
{
auto
*
beta1_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta1Tensor"
);
beta1
=
static_cast
<
T
>
(
GetAttrFromTensor
(
beta1_tensor
));
beta1
=
static_cast
<
float
>
(
GetAttrFromTensor
(
beta1_tensor
));
}
T
beta2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
float
beta2
=
static_cast
<
float
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
if
(
ctx
.
HasInput
(
"Beta2Tensor"
))
{
auto
*
beta2_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta2Tensor"
);
beta2
=
static_cast
<
T
>
(
GetAttrFromTensor
(
beta2_tensor
));
beta2
=
static_cast
<
float
>
(
GetAttrFromTensor
(
beta2_tensor
));
}
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
float
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
if
(
ctx
.
HasInput
(
"EpsilonTensor"
))
{
auto
*
epsilon_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"EpsilonTensor"
);
epsilon
=
static_cast
<
T
>
(
GetAttrFromTensor
(
epsilon_tensor
));
epsilon
=
static_cast
<
float
>
(
GetAttrFromTensor
(
epsilon_tensor
));
}
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
grad
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Input"
,
"Grad"
,
"Adam"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
const
T
*
beta1_pow_ptr
=
beta1_pow
.
template
data
<
T
>();
const
T
*
beta2_pow_ptr
=
beta2_pow
.
template
data
<
T
>();
const
float
*
beta1_pow_ptr
=
beta1_pow
.
template
data
<
float
>();
const
float
*
beta2_pow_ptr
=
beta2_pow
.
template
data
<
float
>();
Tensor
xpu_beta1_pow
;
Tensor
xpu_beta2_pow
;
if
(
beta1_pow
.
place
()
==
platform
::
CPUPlace
()
&&
...
...
@@ -141,50 +141,49 @@ class AdamOpXPUKernel : public framework::OpKernel<T> {
TensorCopy
(
beta1_pow
,
ctx
.
GetPlace
(),
dev_ctx
,
&
xpu_beta1_pow
);
TensorCopy
(
beta2_pow
,
ctx
.
GetPlace
(),
dev_ctx
,
&
xpu_beta2_pow
);
dev_ctx
.
Wait
();
beta1_pow_ptr
=
xpu_beta1_pow
.
template
data
<
T
>();
beta2_pow_ptr
=
xpu_beta2_pow
.
template
data
<
T
>();
beta1_pow_ptr
=
xpu_beta1_pow
.
template
data
<
float
>();
beta2_pow_ptr
=
xpu_beta2_pow
.
template
data
<
float
>();
}
int
r
=
xpu
::
adam
(
dev_ctx
.
x_context
(),
grad
.
template
data
<
T
>(),
mom1
.
template
data
<
T
>(),
mom2
.
template
data
<
T
>(),
param
.
template
data
<
T
>(),
beta1_pow_ptr
,
beta2_pow_ptr
,
beta1
,
beta2
,
epsilon
,
lr
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
param
.
numel
());
int
r
=
xpu
::
adam
(
dev_ctx
.
x_context
(),
grad
.
template
data
<
T
>(),
mom1
.
template
data
<
T
>(),
mom2
.
template
data
<
T
>(),
param
.
template
data
<
float
>(),
beta1_pow_ptr
,
beta2_pow_ptr
,
lr
.
template
data
<
float
>(),
mom1_out
.
template
mutable_data
<
float
>(
ctx
.
GetPlace
()),
mom2_out
.
template
mutable_data
<
float
>(
ctx
.
GetPlace
()),
param_out
.
template
mutable_data
<
float
>(
ctx
.
GetPlace
()),
beta1
,
beta2
,
epsilon
,
param
.
numel
());
if
(
!
use_global_beta_pow
)
{
// update in cpu and then copy to xpu
if
(
beta1_pow
.
place
()
==
platform
::
CPUPlace
()
&&
beta2_pow
.
place
()
==
platform
::
CPUPlace
())
{
const
T
*
beta1_pow_p
=
beta1_pow
.
template
data
<
T
>();
beta1_pow_out
->
mutable_data
<
T
>
(
platform
::
CPUPlace
())[
0
]
=
const
float
*
beta1_pow_p
=
beta1_pow
.
template
data
<
float
>();
beta1_pow_out
->
mutable_data
<
float
>
(
platform
::
CPUPlace
())[
0
]
=
beta1
*
beta1_pow_p
[
0
];
const
T
*
beta2_pow_p
=
beta2_pow
.
template
data
<
T
>();
beta2_pow_out
->
mutable_data
<
T
>
(
platform
::
CPUPlace
())[
0
]
=
const
float
*
beta2_pow_p
=
beta2_pow
.
template
data
<
float
>();
beta2_pow_out
->
mutable_data
<
float
>
(
platform
::
CPUPlace
())[
0
]
=
beta2
*
beta2_pow_p
[
0
];
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
}
else
{
T
cpu_beta1_pow_out_data
;
T
cpu_beta2_pow_out_data
;
memory
::
Copy
(
platform
::
CPUPlace
(),
&
cpu_beta1_pow_out_data
,
BOOST_GET_CONST
(
platform
::
XPUPlace
,
beta1_pow
.
place
()),
beta1_pow_ptr
,
sizeof
(
T
));
cpu_beta1_pow_out_data
=
cpu_beta1_pow_out_data
*
beta1
;
memory
::
Copy
(
platform
::
CPUPlace
(),
&
cpu_beta2_pow_out_data
,
BOOST_GET_CONST
(
platform
::
XPUPlace
,
beta2_pow
.
place
()),
beta2_pow_ptr
,
sizeof
(
T
));
cpu_beta2_pow_out_data
=
cpu_beta2_pow_out_data
*
beta2
;
T
*
beta1_pow_out_p
=
beta1_pow_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
beta2_pow_out_p
=
beta2_pow_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
XPUPlace
,
ctx
.
GetPlace
()),
beta1_pow_out_p
,
platform
::
CPUPlace
(),
&
cpu_beta1_pow_out_data
,
sizeof
(
T
));
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
XPUPlace
,
ctx
.
GetPlace
()),
beta2_pow_out_p
,
platform
::
CPUPlace
(),
&
cpu_beta2_pow_out_data
,
sizeof
(
T
));
float
*
beta1_pow_out_p
=
beta1_pow_out
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
float
*
beta2_pow_out_p
=
beta2_pow_out
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta1_pow_ptr
,
beta1_pow_out_p
,
beta1_pow
.
numel
(),
false
,
beta1
,
0.0
f
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel scale occur error in adamw error code "
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta2_pow_ptr
,
beta2_pow_out_p
,
beta2_pow
.
numel
(),
false
,
beta2
,
0.0
f
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel scale occur error in adamw error code "
,
r
,
XPUAPIErrorMsg
[
r
]));
}
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
...
...
paddle/fluid/operators/optimizers/adamw_op_xpu.cc
0 → 100644
浏览文件 @
86a6be1a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "gflags/gflags.h"
#include "paddle/fluid/operators/optimizers/adam_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
#ifdef PADDLE_WITH_XPU
template
<
typename
T
>
class
AdamwOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
using
paddle
::
framework
::
LoDTensor
;
auto
&
param
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Param"
),
"Input"
,
"Param"
,
"Adam"
);
// auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
auto
&
mom1
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Moment1"
),
"Input"
,
"Moment1"
,
"Adam"
);
auto
&
mom2
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Moment2"
),
"Input"
,
"Moment2"
,
"Adam"
);
auto
&
lr
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"LearningRate"
),
"Input"
,
"LearningRate"
,
"Adam"
);
auto
&
beta1_pow
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Beta1Pow"
),
"Input"
,
"Beta1Pow"
,
"Adam"
);
auto
&
beta2_pow
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Beta2Pow"
),
"Input"
,
"Beta2Pow"
,
"Adam"
);
auto
&
param_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
),
"Output"
,
"ParamOut"
,
"Adam"
);
auto
&
mom1_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"Moment1Out"
),
"Output"
,
"Moment1Out"
,
"Adam"
);
auto
&
mom2_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"Moment2Out"
),
"Output"
,
"Moment2Out"
,
"Adam"
);
auto
*
beta1_pow_out
=
ctx
.
Output
<
LoDTensor
>
(
"Beta1PowOut"
);
auto
*
beta2_pow_out
=
ctx
.
Output
<
LoDTensor
>
(
"Beta2PowOut"
);
bool
skip_update
=
false
;
if
(
ctx
.
HasInput
(
"SkipUpdate"
))
{
auto
*
skip_update_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"SkipUpdate"
);
PADDLE_ENFORCE_EQ
(
skip_update_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(SkipUpdate) size must be 1, but get %d"
,
skip_update_tensor
->
numel
()));
std
::
vector
<
bool
>
skip_update_vec
;
TensorToVector
(
*
skip_update_tensor
,
ctx
.
device_context
(),
&
skip_update_vec
);
skip_update
=
skip_update_vec
[
0
];
}
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
// skip_update=true, just copy input to output, and TensorCopy will call
// mutable_data
if
(
skip_update
)
{
VLOG
(
4
)
<<
"Adam skip update"
;
framework
::
TensorCopy
(
param
,
ctx
.
GetPlace
(),
dev_ctx
,
&
param_out
);
framework
::
TensorCopy
(
mom1
,
ctx
.
GetPlace
(),
dev_ctx
,
&
mom1_out
);
framework
::
TensorCopy
(
mom2
,
ctx
.
GetPlace
(),
dev_ctx
,
&
mom2_out
);
framework
::
TensorCopy
(
beta1_pow
,
ctx
.
GetPlace
(),
dev_ctx
,
beta1_pow_out
);
framework
::
TensorCopy
(
beta2_pow
,
ctx
.
GetPlace
(),
dev_ctx
,
beta2_pow_out
);
return
;
}
bool
with_decay
=
ctx
.
Attr
<
bool
>
(
"with_decay"
);
PADDLE_ENFORCE_EQ
(
beta1_pow_out
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong size, Expected beta1 pow "
"output size is 1, but received "
"value is:%d."
,
beta1_pow_out
->
numel
()));
PADDLE_ENFORCE_EQ
(
beta2_pow_out
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong size, Expected beta2 pow "
"output size is 1, but received "
"value is:%d."
,
beta2_pow_out
->
numel
()));
bool
use_global_beta_pow
=
ctx
.
Attr
<
bool
>
(
"use_global_beta_pow"
);
VLOG
(
4
)
<<
"use_global_beta_pow:"
<<
use_global_beta_pow
;
float
beta1
=
static_cast
<
float
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
if
(
ctx
.
HasInput
(
"Beta1Tensor"
))
{
auto
*
beta1_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta1Tensor"
);
beta1
=
static_cast
<
float
>
(
GetAttrFromTensor
(
beta1_tensor
));
}
float
beta2
=
static_cast
<
float
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
if
(
ctx
.
HasInput
(
"Beta2Tensor"
))
{
auto
*
beta2_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta2Tensor"
);
beta2
=
static_cast
<
float
>
(
GetAttrFromTensor
(
beta2_tensor
));
}
float
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
if
(
ctx
.
HasInput
(
"EpsilonTensor"
))
{
auto
*
epsilon_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"EpsilonTensor"
);
epsilon
=
static_cast
<
float
>
(
GetAttrFromTensor
(
epsilon_tensor
));
}
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
grad
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Input"
,
"Grad"
,
"Adam"
);
const
float
*
beta1_pow_ptr
=
beta1_pow
.
template
data
<
float
>();
const
float
*
beta2_pow_ptr
=
beta2_pow
.
template
data
<
float
>();
Tensor
xpu_beta1_pow
;
Tensor
xpu_beta2_pow
;
if
(
beta1_pow
.
place
()
==
platform
::
CPUPlace
()
&&
beta2_pow
.
place
()
==
platform
::
CPUPlace
())
{
TensorCopy
(
beta1_pow
,
ctx
.
GetPlace
(),
dev_ctx
,
&
xpu_beta1_pow
);
TensorCopy
(
beta2_pow
,
ctx
.
GetPlace
(),
dev_ctx
,
&
xpu_beta2_pow
);
dev_ctx
.
Wait
();
beta1_pow_ptr
=
xpu_beta1_pow
.
template
data
<
float
>();
beta2_pow_ptr
=
xpu_beta2_pow
.
template
data
<
float
>();
}
if
(
with_decay
)
{
float
coeff
=
ctx
.
Attr
<
float
>
(
"coeff"
);
int
r
=
xpu
::
adamw
(
dev_ctx
.
x_context
(),
grad
.
template
data
<
T
>(),
mom1
.
template
data
<
float
>(),
mom2
.
template
data
<
float
>(),
param
.
template
data
<
T
>(),
beta1_pow_ptr
,
beta2_pow_ptr
,
lr
.
template
data
<
float
>(),
mom1_out
.
template
mutable_data
<
float
>(
ctx
.
GetPlace
()),
mom2_out
.
template
mutable_data
<
float
>(
ctx
.
GetPlace
()),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
beta1
,
beta2
,
epsilon
,
coeff
,
param
.
numel
());
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel adamw occur error in adamw error code "
,
r
,
XPUAPIErrorMsg
[
r
]));
}
else
{
int
r
=
xpu
::
adam
(
dev_ctx
.
x_context
(),
grad
.
template
data
<
T
>(),
mom1
.
template
data
<
float
>(),
mom2
.
template
data
<
float
>(),
param
.
template
data
<
T
>(),
beta1_pow_ptr
,
beta2_pow_ptr
,
lr
.
template
data
<
float
>(),
mom1_out
.
template
mutable_data
<
float
>(
ctx
.
GetPlace
()),
mom2_out
.
template
mutable_data
<
float
>(
ctx
.
GetPlace
()),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
beta1
,
beta2
,
epsilon
,
param
.
numel
());
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel adam occur error in adamw error code "
,
r
,
XPUAPIErrorMsg
[
r
]));
}
if
(
!
use_global_beta_pow
)
{
// update in cpu and then copy to xpu
if
(
beta1_pow
.
place
()
==
platform
::
CPUPlace
()
&&
beta2_pow
.
place
()
==
platform
::
CPUPlace
())
{
const
float
*
beta1_pow_p
=
beta1_pow
.
template
data
<
float
>();
beta1_pow_out
->
mutable_data
<
float
>
(
platform
::
CPUPlace
())[
0
]
=
beta1
*
beta1_pow_p
[
0
];
const
float
*
beta2_pow_p
=
beta2_pow
.
template
data
<
float
>();
beta2_pow_out
->
mutable_data
<
float
>
(
platform
::
CPUPlace
())[
0
]
=
beta2
*
beta2_pow_p
[
0
];
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
}
else
{
float
*
beta1_pow_out_p
=
beta1_pow_out
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
float
*
beta2_pow_out_p
=
beta2_pow_out
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta1_pow_ptr
,
beta1_pow_out_p
,
beta1_pow
.
numel
(),
false
,
beta1
,
0.0
f
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel scale occur error in adamw error code "
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta2_pow_ptr
,
beta2_pow_out_p
,
beta2_pow
.
numel
(),
false
,
beta2
,
0.0
f
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel scale occur error in adamw error code "
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
}
else
{
PADDLE_ENFORCE_EQ
(
1
,
2
,
platform
::
errors
::
InvalidArgument
(
"Variable type not supported by adamw_op"
));
}
}
};
#endif
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL
(
adamw
,
ops
::
AdamwOpXPUKernel
<
float
>
);
#endif
paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc
浏览文件 @
86a6be1a
...
...
@@ -54,9 +54,11 @@ class SoftmaxWithCrossEntropyXPUKernel : public framework::OpKernel<T> {
int
len
=
logits
->
numel
();
T
*
clip_logits_data
=
clip_logits
.
mutable_data
<
T
>
(
context
.
GetPlace
(),
len
*
sizeof
(
T
));
r
=
xpu
::
clip_v2
(
dev_ctx
.
x_context
(),
logits
->
data
<
float
>
(),
clip_logits_data
,
len
,
static_cast
<
float
>
(
-
1e20
),
static_cast
<
float
>
(
1e20
));
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error. clip "
...
...
@@ -108,10 +110,88 @@ class SoftmaxWithCrossEntropyXPUKernel : public framework::OpKernel<T> {
}
}
};
template
<
typename
T
>
class
SoftmaxWithCrossEntropyGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
Tensor
*
labels
=
context
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
logit_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
logit_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
Tensor
*
softmax
=
context
.
Input
<
Tensor
>
(
"Softmax"
);
const
bool
use_softmax
=
context
.
Attr
<
bool
>
(
"use_softmax"
);
const
bool
soft_label
=
context
.
Attr
<
bool
>
(
"soft_label"
);
auto
ignore_index
=
context
.
Attr
<
int
>
(
"ignore_index"
);
const
int
rank
=
logit_grad
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
context
.
Attr
<
int
>
(
"axis"
),
rank
);
PADDLE_ENFORCE_EQ
(
axis
,
rank
-
1
,
platform
::
errors
::
InvalidArgument
(
"axis should == rank - 1"
));
const
int
n
=
SizeToAxis
(
axis
,
logit_grad
->
dims
());
const
int
d
=
SizeFromAxis
(
axis
,
logit_grad
->
dims
());
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
XPUDeviceContext
>();
int
r
=
XPU_SUCCESS
;
if
(
soft_label
)
{
r
=
xpu
::
soft_softmax_with_cross_entropy_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
labels
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
softmax
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
logit_grad
->
data
<
T
>
()),
use_softmax
,
n
,
d
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(soft_softmax_with_cross_entropy_grad) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
else
{
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
*
labels_int_ptr_l3
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
labels
->
numel
());
r
=
xpu
::
cast_v2
<
int64_t
,
int32_t
>
(
dev_ctx
.
x_context
(),
labels
->
data
<
int64_t
>
(),
labels_int_ptr_l3
,
labels
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(cast_v2) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
hard_softmax_with_cross_entropy_grad
<
XPUType
,
int
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
->
data
<
T
>
()),
labels_int_ptr_l3
,
reinterpret_cast
<
const
XPUType
*>
(
softmax
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
logit_grad
->
data
<
T
>
()),
ignore_index
,
use_softmax
,
n
,
d
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(hard_softmax_with_cross_entropy_grad) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
softmax_with_cross_entropy
,
ops
::
SoftmaxWithCrossEntropyXPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
softmax_with_cross_entropy_grad
,
ops
::
SoftmaxWithCrossEntropyGradXPUKernel
<
float
>
,
ops
::
SoftmaxWithCrossEntropyGradXPUKernel
<
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/sum_op_xpu.cc
浏览文件 @
86a6be1a
...
...
@@ -21,6 +21,8 @@ using framework::Tensor;
template
<
typename
DeviceContext
,
typename
T
>
class
SumXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
in_vars
=
context
.
MultiInputVar
(
"X"
);
...
...
@@ -35,8 +37,7 @@ class SumXPUKernel : public framework::OpKernel<T> {
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
std
::
vector
<
const
float
*>
ptrs
(
N
,
nullptr
);
int
valid_count
=
0
;
std
::
vector
<
const
XPUType
*>
ptrs
;
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
in_vars
[
i
]
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
...
...
@@ -45,30 +46,14 @@ class SumXPUKernel : public framework::OpKernel<T> {
if
(
in_t
.
numel
()
==
0
)
{
continue
;
}
ptrs
[
valid_count
]
=
reinterpret_cast
<
const
float
*>
(
in_t
.
data
<
T
>
());
valid_count
++
;
}
int
r
=
xpu
::
sum_batch
(
dev_ctx
.
x_context
(),
ptrs
.
data
(),
out
->
data
<
T
>
(),
valid_count
,
out
->
numel
());
if
(
r
==
xpu
::
Error_t
::
INVALID_PARAM
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
InvalidArgument
(
"XPU kernel error of SumOp, error message: INVALID_PARAM, "
"please check your input & output."
));
}
else
if
(
r
==
xpu
::
Error_t
::
RUNTIME_ERROR
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
Unavailable
(
"XPU kernel error of SumOp, error message: "
"RUNTIME_ERROR, please check whether Baidu "
"Kunlun Card is properly installed."
));
}
else
if
(
r
==
xpu
::
Error_t
::
NO_ENOUGH_WORKSPACE
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU kernel error of SumOp, error "
"message: NO_ENOUGH_WORKSPACE, XPU "
"has no enough memory."
));
ptrs
.
push_back
(
reinterpret_cast
<
const
XPUType
*>
(
in_t
.
data
<
T
>
()));
}
int
r
=
xpu
::
sum
(
dev_ctx
.
x_context
(),
ptrs
,
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
out
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU sum kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
...
...
@@ -78,5 +63,7 @@ class SumXPUKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
sum
,
ops
::
SumXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
sum
,
ops
::
SumXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
SumXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/transpose_op_xpu.cc
浏览文件 @
86a6be1a
...
...
@@ -26,6 +26,8 @@ using framework::Tensor;
template
<
typename
DeviceContext
,
typename
T
>
class
TransposeXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
...
...
@@ -46,8 +48,9 @@ class TransposeXPUKernel : public framework::OpKernel<T> {
x_shape_host
[
i
]
=
x_dims
[
i
];
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
x_shape_host
,
axis
);
int
r
=
xpu
::
transpose
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
XPUType
*>
(
y_data
),
x_shape_host
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error! error code=%d"
,
r
));
...
...
@@ -56,6 +59,8 @@ class TransposeXPUKernel : public framework::OpKernel<T> {
template
<
typename
DeviceContext
,
typename
T
>
class
TransposeGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out_grad
=
...
...
@@ -77,8 +82,11 @@ class TransposeGradXPUKernel : public framework::OpKernel<T> {
out_shape_host
[
i
]
=
out_grad
->
dims
()[
i
];
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
out_grad
->
data
<
T
>
(),
x_grad
->
data
<
T
>
(),
out_shape_host
,
reversed_axis
);
int
r
=
xpu
::
transpose
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
x_grad
->
data
<
T
>
()),
out_shape_host
,
reversed_axis
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error! error code=%d"
,
r
));
...
...
@@ -92,15 +100,23 @@ namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL
(
transpose
,
ops
::
TransposeXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
TransposeXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
TransposeXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
transpose_grad
,
ops
::
TransposeGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
TransposeGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
TransposeGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
transpose2
,
ops
::
TransposeXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
TransposeXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
TransposeXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
transpose2_grad
,
ops
::
TransposeGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
TransposeGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
TransposeGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif // PADDLE_WITH_XPU
paddle/fluid/platform/xpu/xpu2_op_list.h
浏览文件 @
86a6be1a
...
...
@@ -79,6 +79,35 @@ XPUOpMap& get_kl2_ops() {
{
"batch_norm"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"batch_norm_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"layer_norm"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"layer_norm_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"mean"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"mean_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"adam"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"adamw"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"softmax_with_cross_entropy"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"softmax_with_cross_entropy_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"sum"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"transpose"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"transpose_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"transpose2"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"transpose2_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
// AddMore
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录