Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
86263b2f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
86263b2f
编写于
3月 06, 2018
作者:
T
Tao Luo
提交者:
GitHub
3月 06, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8765 from JiayiFeng/dev_update_cluster_doc
update cluster_train page
上级
6720681c
a5899ca1
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
17 addition
and
3 deletion
+17
-3
doc/v2/howto/cluster/index_cn.rst
doc/v2/howto/cluster/index_cn.rst
+17
-3
未找到文件。
doc/v2/howto/cluster/index_cn.rst
浏览文件 @
86263b2f
分布式训练
==========
本节将介绍如何使用PaddlePaddle在不同的集群框架下完成分布式训练。分布式训练架构如下图所示:
深度学习模型的效果好坏与数据量的大小往往有直接的关系:相同的模型,在增大训练数据集后一般都能取得更好的效果。但是当数据量增大到一定程度后,单台计算机已经难以承受。这时,使用多台计算机进行分布式训练就是一个很自然的解决方案。在分布式训练中,训练数据被分割为多份,参与训练的多台机器分别读取自己的数据进行训练,并协同对整体模型的参数进行更新。
分布式训练一般有着如下图所示的架构:
.. image:: src/ps_cn.png
:width: 500
...
...
@@ -10,13 +12,25 @@
- 计算节点(Trainer): 每个trainer启动后读取切分好的一部分数据,开始神经网络的“前馈”和“后馈”计算,并和参数服务器通信。在完成一定量数据的训练后,上传计算得出的梯度(gradients),然后下载优化更新后的神经网络参数(parameters)。
- 参数服务器(Parameter server):每个参数服务器只保存整个神经网络所有参数的一部分。参数服务器接收从计算节点上传的梯度,并完成参数优化更新,再将更新后的参数下发到每个计算节点。
这样,通过计算节点和参数服务器的分布式协作,可以完成神经网络的SGD方法的训练。PaddlePaddle可以同时支持同步随机梯度下降(SGD)和异步随机梯度下降
。
通过计算节点和参数服务器的分布式协作,可以完成神经网络的同步随机梯度下降(SGD)方法的训练。PaddlePaddle同时支持同步随机梯度下降(SGD)和异步随机梯度下降(ASGD)
。
在
使用同步SGD训练神经网络时,PaddlePaddle使用同步屏障(barrier),使梯度的提交和参数的更新按照顺序方式执行。在异步SGD中,则并不会等待所有trainer提交梯度才更新参数,这样极大地提高了计算的并行性:参数服务器之间不相互依赖,并行地接收梯度和更新参数,参数服务器也不会等待计算节点全部都提交梯度之后才开始下一步,计算节点之间也不会相互依赖,并行地执行模型的训练。可以看出,虽然异步SGD方式会提高参数更新并行度, 但是并不能保证参数同步更新,在任意时间某一台参数服务器上保存的参数可能比另一台要更新,与同步SGD相比,梯度会有噪声。
在
开始集群训练之前,需要先进行集群配置、PaddlePaddle安装等准备工作,了解如何通过这些步骤来配置分布式训练所需的基本环境:
.. toctree::
:maxdepth: 1
preparations_cn.md
集群训练有大量可配置的参数,例如使用的机器数量、通信端口等。了解如何通过设置启动参数的方式,对分布式训练的过程进行配置:
.. toctree::
:maxdepth: 1
cmd_argument_cn.md
PaddlePaddle可以兼容各种不同的集群。每种集群各有优势,使用的具体方式也有区别:
.. toctree::
:maxdepth: 1
multi_cluster/index_cn.rst
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录