Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
848cabfc
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
848cabfc
编写于
5月 20, 2021
作者:
L
liym27
提交者:
GitHub
5月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish code for setitem and getitem (#32911)
上级
738bf20e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
311 addition
and
289 deletion
+311
-289
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+2
-289
python/paddle/fluid/tests/unittests/test_variable.py
python/paddle/fluid/tests/unittests/test_variable.py
+3
-0
python/paddle/fluid/variable_index.py
python/paddle/fluid/variable_index.py
+306
-0
未找到文件。
python/paddle/fluid/framework.py
浏览文件 @
848cabfc
...
@@ -39,6 +39,7 @@ from . import unique_name
...
@@ -39,6 +39,7 @@ from . import unique_name
import
paddle.version
as
fluid_version
import
paddle.version
as
fluid_version
import
warnings
import
warnings
import
functools
import
functools
from
.variable_index
import
_getitem_impl_
,
_setitem_impl_
__all__
=
[
__all__
=
[
'Program'
,
'Program'
,
...
@@ -778,141 +779,6 @@ class ParameterMetaClass(VariableMetaClass):
...
@@ -778,141 +779,6 @@ class ParameterMetaClass(VariableMetaClass):
return
issubclass
(
t
,
Parameter
)
return
issubclass
(
t
,
Parameter
)
def
_getitem_impl_
(
var
,
item
):
"""
Slice the variable.
Args:
item(int/slice/tuple) : the index.
Returns:
Sliced variable
"""
if
not
isinstance
(
item
,
tuple
):
item
=
[
item
]
decrease_axes
=
[]
axes
=
[]
starts
=
[]
ends
=
[]
steps
=
[]
use_strided_slice
=
False
reverse_axis
=
[]
max_integer
=
2
**
31
-
1
for
dim
,
slice_item
in
enumerate
(
item
):
if
isinstance
(
slice_item
,
slice
):
start
=
slice_item
.
start
end
=
slice_item
.
stop
step
=
slice_item
.
step
if
start
is
None
and
end
is
None
and
step
is
None
:
continue
step
=
1
if
step
is
None
else
step
if
start
is
None
and
end
is
None
:
assert
(
step
==
-
1
)
reverse_axis
.
append
(
dim
)
continue
if
start
is
None
:
start
=
0
if
end
is
None
:
end
=
max_integer
else
:
decrease_axes
.
append
(
dim
)
start
=
slice_item
step
=
1
end
=
slice_item
+
1
if
slice_item
!=
-
1
else
max_integer
axes
.
append
(
dim
)
starts
.
append
(
start
)
ends
.
append
(
end
)
steps
.
append
(
step
)
use_strided_slice
=
True
if
step
!=
1
else
use_strided_slice
inputs
=
{
'Input'
:
[
var
]}
attrs
=
{
'axes'
:
axes
,
'starts'
:
[],
'ends'
:
[],
'decrease_axis'
:
decrease_axes
}
if
use_strided_slice
==
True
:
attrs
[
'strides'
]
=
[]
infer_flags
=
list
(
1
for
i
in
range
(
len
(
axes
)))
from
.layers
import
utils
def
deal_attrs
(
attr
,
attr_name
,
tensor_attr_name
,
inputs
,
infer_flags
):
if
utils
.
_contain_var
(
attr
):
inputs
[
tensor_attr_name
]
=
utils
.
_convert_to_tensor_list
(
attr
,
dtype
=
"int64"
)
for
i
,
dim
in
enumerate
(
attr
):
if
isinstance
(
dim
,
Variable
):
attrs
[
attr_name
].
append
(
-
1
)
infer_flags
[
i
]
=
-
1
else
:
attrs
[
attr_name
].
append
(
dim
)
else
:
attrs
[
attr_name
]
=
attr
deal_attrs
(
starts
,
"starts"
,
"StartsTensorList"
,
inputs
,
infer_flags
)
deal_attrs
(
ends
,
"ends"
,
"EndsTensorList"
,
inputs
,
infer_flags
)
deal_attrs
(
steps
,
"strides"
,
"StridesTensorList"
,
inputs
,
infer_flags
)
# infer_flags
attrs
[
'infer_flags'
]
=
infer_flags
out
=
var
target_block
=
default_main_program
().
current_block
()
if
use_strided_slice
==
False
and
len
(
axes
)
>
0
:
# append slice_op here
slice_out_var
=
target_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
var
.
name
+
"_slice"
),
dtype
=
var
.
dtype
)
target_block
.
append_op
(
type
=
"slice"
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
[
slice_out_var
]},
attrs
=
attrs
)
out
=
slice_out_var
elif
use_strided_slice
==
True
and
len
(
axes
)
>
0
:
strided_slice_out_var
=
target_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
var
.
name
+
"_strided_slice"
),
dtype
=
var
.
dtype
)
target_block
.
append_op
(
type
=
"strided_slice"
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
[
strided_slice_out_var
]},
attrs
=
attrs
)
out
=
strided_slice_out_var
if
len
(
reverse_axis
)
>
0
:
reverse_out_var
=
target_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
var
.
name
+
"_slice_reverse"
),
dtype
=
var
.
dtype
)
target_block
.
append_op
(
type
=
"reverse"
,
inputs
=
{
'X'
:
out
},
outputs
=
{
'Out'
:
[
reverse_out_var
]},
attrs
=
{
'axis'
:
reverse_axis
})
out
=
reverse_out_var
return
out
@
six
.
add_metaclass
(
VariableMetaClass
)
@
six
.
add_metaclass
(
VariableMetaClass
)
class
Variable
(
object
):
class
Variable
(
object
):
"""
"""
...
@@ -1768,160 +1634,7 @@ class Variable(object):
...
@@ -1768,160 +1634,7 @@ class Variable(object):
return
_getitem_impl_
(
self
,
item
)
return
_getitem_impl_
(
self
,
item
)
def
__setitem__
(
self
,
item
,
value
):
def
__setitem__
(
self
,
item
,
value
):
inputs
=
{
'Input'
:
self
}
return
_setitem_impl_
(
self
,
item
,
value
)
# 1. Parse item
if
not
isinstance
(
item
,
tuple
):
item
=
[
item
]
decrease_axes
=
[]
axes
=
[]
starts
=
[]
ends
=
[]
steps
=
[]
max_integer
=
sys
.
maxsize
def
replace_ellipsis
(
item
):
# Use slice(None) to replace Ellipsis.
# For var, var.shape = [3,4,5,6]
#
# var[..., 1:2] -> var[:, :, :, 1:2]
# var[0, ...] -> var[0]
# var[0, ..., 1:2] -> var[0, :, :, 1:2]
item
=
list
(
item
)
# Remove Variable to skip bug when counting Ellipsis
item_remove_var
=
[
ele
for
ele
in
item
if
not
isinstance
(
ele
,
Variable
)
]
ell_count
=
item_remove_var
.
count
(
Ellipsis
)
if
ell_count
==
0
:
return
item
elif
ell_count
>
1
:
raise
IndexError
(
"An index can only have a single ellipsis ('...')"
)
ell_idx
=
item
.
index
(
Ellipsis
)
if
ell_idx
==
len
(
item
)
-
1
:
return
item
[:
-
1
]
else
:
item
[
ell_idx
:
ell_idx
+
1
]
=
[
slice
(
None
)]
*
(
len
(
self
.
shape
)
-
len
(
item
)
+
1
)
return
item
item
=
replace_ellipsis
(
item
)
for
dim
,
slice_item
in
enumerate
(
item
):
if
isinstance
(
slice_item
,
slice
):
start
=
slice_item
.
start
end
=
slice_item
.
stop
step
=
slice_item
.
step
if
start
is
None
and
end
is
None
and
step
is
None
:
continue
step
=
1
if
step
is
None
else
step
# TODO: support cases when step < 1
if
not
isinstance
(
step
,
Variable
)
and
step
==
0
:
raise
ValueError
(
"When assign a value to a paddle.Tensor, step can not be 0, "
"but received step is {}."
.
format
(
step
))
if
isinstance
(
step
,
Variable
)
and
(
start
is
None
or
end
is
None
):
raise
ValueError
(
"When assign a value to a paddle.Tensor, it's not supported that "
"the start or end is None when the type of step is paddle.Tensor."
)
if
start
is
None
:
start
=
0
if
step
>
0
else
max_integer
if
end
is
None
:
end
=
max_integer
if
step
>
0
else
(
0
-
max_integer
)
else
:
decrease_axes
.
append
(
dim
)
start
=
slice_item
end
=
slice_item
+
1
if
slice_item
!=
-
1
else
max_integer
step
=
1
axes
.
append
(
dim
)
starts
.
append
(
start
)
ends
.
append
(
end
)
steps
.
append
(
step
)
attrs
=
{
'axes'
:
axes
,
'starts'
:
starts
,
'ends'
:
ends
,
'steps'
:
steps
,
'decrease_axes'
:
decrease_axes
}
from
.layers
import
utils
if
utils
.
_contain_var
(
starts
):
inputs
[
'StartsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
starts
)
del
attrs
[
'starts'
]
if
utils
.
_contain_var
(
ends
):
inputs
[
'EndsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
ends
)
del
attrs
[
'ends'
]
if
utils
.
_contain_var
(
steps
):
inputs
[
'StepsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
steps
)
del
attrs
[
'steps'
]
# 2. Parse value
dtype
=
self
.
dtype
attrs
[
'dtype'
]
=
dtype
from
.data_feeder
import
convert_dtype
# 2.1 value is an integer of float
if
isinstance
(
value
,
(
int
,
float
)):
value
=
np
.
array
([
value
]).
astype
(
convert_dtype
(
dtype
))
# 2.2 value is a np.ndarray
if
isinstance
(
value
,
np
.
ndarray
):
shape
=
list
(
value
.
shape
)
if
dtype
==
core
.
VarDesc
.
VarType
.
BOOL
:
value_name
=
"bool_values"
values
=
[
bool
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
value_name
=
"fp32_values"
values
=
[
float
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP64
:
value_name
=
"fp64_values"
values
=
[
float
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
value_name
=
"int32_values"
values
=
[
int
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
value_name
=
"int64_values"
values
=
[
int
(
v
)
for
v
in
value
.
flat
]
else
:
raise
TypeError
(
"When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
"the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
"received %s."
%
convert_dtype
(
dtype
))
attrs
[
value_name
]
=
values
attrs
[
"shape"
]
=
shape
elif
isinstance
(
value
,
Variable
):
inputs
[
"ValueTensor"
]
=
value
else
:
raise
TypeError
(
"Only support to assign an integer, float, numpy.ndarray or "
"paddle.Tensor to a paddle.Tensor, but received {}"
.
format
(
type
(
value
)))
cur_block
=
default_main_program
().
current_block
()
cur_block
.
append_op
(
type
=
"set_value"
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
self
},
attrs
=
attrs
)
return
self
def
get_value
(
self
,
scope
=
None
):
def
get_value
(
self
,
scope
=
None
):
"""
"""
...
...
python/paddle/fluid/tests/unittests/test_variable.py
浏览文件 @
848cabfc
...
@@ -15,12 +15,15 @@
...
@@ -15,12 +15,15 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
paddle
from
paddle.fluid.framework
import
default_main_program
,
Program
,
convert_np_dtype_to_dtype_
,
in_dygraph_mode
from
paddle.fluid.framework
import
default_main_program
,
Program
,
convert_np_dtype_to_dtype_
,
in_dygraph_mode
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
import
numpy
as
np
import
numpy
as
np
paddle
.
enable_static
()
class
TestVariable
(
unittest
.
TestCase
):
class
TestVariable
(
unittest
.
TestCase
):
def
test_np_dtype_convert
(
self
):
def
test_np_dtype_convert
(
self
):
...
...
python/paddle/fluid/variable_index.py
0 → 100644
浏览文件 @
848cabfc
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
numpy
as
np
from
.
import
unique_name
from
.
import
core
MAX_INTEGER
=
2
**
31
-
1
def
replace_ellipsis
(
var
,
item
):
from
.framework
import
Variable
# Use slice(None) to replace Ellipsis.
# For var, var.shape = [3,4,5,6]
#
# var[..., 1:2] -> var[:, :, :, 1:2]
# var[0, ...] -> var[0]
# var[0, ..., 1:2] -> var[0, :, :, 1:2]
item
=
list
(
item
)
# Remove Variable to skip bug when counting Ellipsis
item_remove_var
=
[
ele
for
ele
in
item
if
not
isinstance
(
ele
,
Variable
)]
ell_count
=
item_remove_var
.
count
(
Ellipsis
)
if
ell_count
==
0
:
return
item
elif
ell_count
>
1
:
raise
IndexError
(
"An index can only have a single ellipsis ('...')"
)
ell_idx
=
item
.
index
(
Ellipsis
)
if
ell_idx
==
len
(
item
)
-
1
:
return
item
[:
-
1
]
else
:
item
[
ell_idx
:
ell_idx
+
1
]
=
[
slice
(
None
)]
*
(
len
(
var
.
shape
)
-
len
(
item
)
+
1
)
return
item
def
is_integer_or_scalar_tensor
(
ele
):
from
.framework
import
Variable
if
isinstance
(
ele
,
int
):
return
True
elif
isinstance
(
ele
,
Variable
):
if
len
(
ele
.
shape
)
==
1
and
ele
.
shape
[
0
]
==
1
:
return
True
return
False
def
deal_attrs
(
attrs
,
attr
,
attr_name
,
tensor_attr_name
,
inputs
,
infer_flags
):
from
.framework
import
Variable
from
.layers
import
utils
if
utils
.
_contain_var
(
attr
):
inputs
[
tensor_attr_name
]
=
utils
.
_convert_to_tensor_list
(
attr
,
dtype
=
"int64"
)
for
i
,
dim
in
enumerate
(
attr
):
if
isinstance
(
dim
,
Variable
):
attrs
[
attr_name
].
append
(
-
1
)
infer_flags
[
i
]
=
-
1
else
:
attrs
[
attr_name
].
append
(
dim
)
else
:
attrs
[
attr_name
]
=
attr
def
_getitem_impl_
(
var
,
item
):
"""
Slice the variable.
Args:
item(int/slice/tuple) : the index.
Returns:
Sliced variable
"""
from
.framework
import
default_main_program
if
not
isinstance
(
item
,
tuple
):
item
=
(
item
,
)
decrease_axes
=
[]
axes
=
[]
starts
=
[]
ends
=
[]
steps
=
[]
reverse_axis
=
[]
use_strided_slice
=
False
for
dim
,
slice_item
in
enumerate
(
item
):
if
is_integer_or_scalar_tensor
(
slice_item
):
decrease_axes
.
append
(
dim
)
start
=
slice_item
step
=
1
end
=
slice_item
+
1
if
slice_item
!=
-
1
else
MAX_INTEGER
elif
isinstance
(
slice_item
,
slice
):
start
=
slice_item
.
start
end
=
slice_item
.
stop
step
=
slice_item
.
step
if
start
is
None
and
end
is
None
and
step
is
None
:
continue
step
=
1
if
step
is
None
else
step
if
start
is
None
and
end
is
None
:
assert
(
step
==
-
1
)
reverse_axis
.
append
(
dim
)
continue
start
=
0
if
start
is
None
else
start
end
=
MAX_INTEGER
if
end
is
None
else
end
else
:
raise
IndexError
(
"Valid index accept int or slice or ellipsis, but received {}."
.
format
(
slice_item
))
axes
.
append
(
dim
)
starts
.
append
(
start
)
ends
.
append
(
end
)
steps
.
append
(
step
)
use_strided_slice
=
True
if
step
!=
1
else
use_strided_slice
inputs
=
{
'Input'
:
[
var
]}
attrs
=
{
'axes'
:
axes
,
'starts'
:
[],
'ends'
:
[],
'decrease_axis'
:
decrease_axes
}
if
use_strided_slice
:
attrs
[
'strides'
]
=
[]
infer_flags
=
[
1
]
*
len
(
axes
)
deal_attrs
(
attrs
,
starts
,
"starts"
,
"StartsTensorList"
,
inputs
,
infer_flags
)
deal_attrs
(
attrs
,
ends
,
"ends"
,
"EndsTensorList"
,
inputs
,
infer_flags
)
deal_attrs
(
attrs
,
steps
,
"strides"
,
"StridesTensorList"
,
inputs
,
infer_flags
)
attrs
[
'infer_flags'
]
=
infer_flags
out
=
var
if
len
(
axes
)
>
0
:
target_block
=
default_main_program
().
current_block
()
op_type
=
"strided_slice"
if
use_strided_slice
else
"slice"
slice_out_var
=
target_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
var
.
name
+
"_"
+
op_type
),
dtype
=
var
.
dtype
)
target_block
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
[
slice_out_var
]},
attrs
=
attrs
)
out
=
slice_out_var
if
len
(
reverse_axis
)
>
0
:
from
.layers.tensor
import
reverse
out
=
reverse
(
out
,
axis
=
reverse_axis
)
return
out
def
_setitem_impl_
(
var
,
item
,
value
):
from
.framework
import
default_main_program
,
Variable
inputs
=
{
'Input'
:
var
}
# 1. Parse item
if
not
isinstance
(
item
,
tuple
):
item
=
(
item
,
)
decrease_axes
=
[]
axes
=
[]
starts
=
[]
ends
=
[]
steps
=
[]
item
=
replace_ellipsis
(
var
,
item
)
for
dim
,
slice_item
in
enumerate
(
item
):
if
is_integer_or_scalar_tensor
(
slice_item
):
decrease_axes
.
append
(
dim
)
start
=
slice_item
end
=
slice_item
+
1
if
slice_item
!=
-
1
else
MAX_INTEGER
step
=
1
elif
isinstance
(
slice_item
,
slice
):
start
=
slice_item
.
start
end
=
slice_item
.
stop
step
=
slice_item
.
step
if
start
is
None
and
end
is
None
and
step
is
None
:
continue
step
=
1
if
step
is
None
else
step
if
not
isinstance
(
step
,
Variable
)
and
step
==
0
:
raise
ValueError
(
"When assign a value to a paddle.Tensor, step can not be 0, "
"but received step is {}."
.
format
(
step
))
if
isinstance
(
step
,
Variable
)
and
(
start
is
None
or
end
is
None
):
raise
ValueError
(
"When assign a value to a paddle.Tensor, it's not supported that "
"the start or end is None when the type of step is paddle.Tensor."
)
if
start
is
None
:
start
=
0
if
step
>
0
else
MAX_INTEGER
if
end
is
None
:
end
=
MAX_INTEGER
if
step
>
0
else
(
0
-
MAX_INTEGER
)
else
:
raise
IndexError
(
"Valid index accept int or slice or ellipsis, but received {}."
.
format
(
slice_item
))
axes
.
append
(
dim
)
starts
.
append
(
start
)
ends
.
append
(
end
)
steps
.
append
(
step
)
attrs
=
{
'axes'
:
axes
,
'starts'
:
starts
,
'ends'
:
ends
,
'steps'
:
steps
,
'decrease_axes'
:
decrease_axes
}
from
.layers
import
utils
if
utils
.
_contain_var
(
starts
):
inputs
[
'StartsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
starts
)
del
attrs
[
'starts'
]
if
utils
.
_contain_var
(
ends
):
inputs
[
'EndsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
ends
)
del
attrs
[
'ends'
]
if
utils
.
_contain_var
(
steps
):
inputs
[
'StepsTensorList'
]
=
utils
.
_convert_to_tensor_list
(
steps
)
del
attrs
[
'steps'
]
# 2. Parse value
dtype
=
var
.
dtype
attrs
[
'dtype'
]
=
dtype
from
.data_feeder
import
convert_dtype
# 2.1 value is an integer of float
if
isinstance
(
value
,
(
int
,
float
)):
value
=
np
.
array
([
value
]).
astype
(
convert_dtype
(
dtype
))
# 2.2 value is a np.ndarray
if
isinstance
(
value
,
np
.
ndarray
):
shape
=
list
(
value
.
shape
)
if
dtype
==
core
.
VarDesc
.
VarType
.
BOOL
:
value_name
=
"bool_values"
values
=
[
bool
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
value_name
=
"fp32_values"
values
=
[
float
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP64
:
value_name
=
"fp64_values"
values
=
[
float
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
value_name
=
"int32_values"
values
=
[
int
(
v
)
for
v
in
value
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
value_name
=
"int64_values"
values
=
[
int
(
v
)
for
v
in
value
.
flat
]
else
:
raise
TypeError
(
"When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
"the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
"received %s."
%
convert_dtype
(
dtype
))
attrs
[
value_name
]
=
values
attrs
[
"shape"
]
=
shape
elif
isinstance
(
value
,
Variable
):
inputs
[
"ValueTensor"
]
=
value
else
:
raise
TypeError
(
"Only support to assign an integer, float, numpy.ndarray or "
"paddle.Tensor to a paddle.Tensor, but received {}"
.
format
(
type
(
value
)))
cur_block
=
default_main_program
().
current_block
()
cur_block
.
append_op
(
type
=
"set_value"
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
var
},
attrs
=
attrs
)
return
var
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录