Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
8295eb91
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8295eb91
编写于
11月 10, 2016
作者:
G
gangliao
提交者:
GitHub
11月 10, 2016
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #287 from gangliao/bilinear
Add bilinear interpolation layer
上级
cfc965d5
f27ff4d8
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
925 addition
and
5 deletion
+925
-5
doc/ui/api/trainer_config_helpers/layers.rst
doc/ui/api/trainer_config_helpers/layers.rst
+6
-0
paddle/cuda/include/hl_cnn.h
paddle/cuda/include/hl_cnn.h
+64
-0
paddle/cuda/include/stub/hl_cnn_stub.h
paddle/cuda/include/stub/hl_cnn_stub.h
+28
-0
paddle/cuda/src/hl_cuda_cnn.cu
paddle/cuda/src/hl_cuda_cnn.cu
+133
-1
paddle/gserver/layers/BilinearInterpLayer.cpp
paddle/gserver/layers/BilinearInterpLayer.cpp
+95
-0
paddle/gserver/layers/BilinearInterpLayer.h
paddle/gserver/layers/BilinearInterpLayer.h
+46
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+21
-0
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+163
-0
paddle/math/Matrix.h
paddle/math/Matrix.h
+56
-0
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+67
-0
proto/ModelConfig.proto.m4
proto/ModelConfig.proto.m4
+11
-1
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+32
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+49
-2
python/paddle/trainer_config_helpers/tests/configs/generate_protostr.sh
...trainer_config_helpers/tests/configs/generate_protostr.sh
+1
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr
...pers/tests/configs/protostr/test_bilinear_interp.protostr
+123
-0
python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py
...iner_config_helpers/tests/configs/test_bilinear_interp.py
+30
-0
未找到文件。
doc/ui/api/trainer_config_helpers/layers.rst
浏览文件 @
8295eb91
...
...
@@ -275,6 +275,12 @@ interpolation_layer
:members: interpolation_layer
:noindex:
bilinear_interp_layer
----------------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: bilinear_interp_layer
:noindex:
power_layer
-----------
.. automodule:: paddle.trainer_config_helpers.layers
...
...
paddle/cuda/include/hl_cnn.h
浏览文件 @
8295eb91
...
...
@@ -240,6 +240,70 @@ extern void hl_CMRNorm_backward(
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
);
/**
* @brief Bilinear interpolation forward.
*
* @param[in] inData input value.
* @param[in] inImgH input image height.
* @param[in] inImgW input image width.
* @param[in] inputH input batchSize.
* @param[in] inputW input image data dim.
* @param[out] outData output value.
* @param[in] outImgH output image height.
* @param[in] outImgW output image width.
* @param[in] outputH output batchSize.
* @param[in] outputW output image data dim.
* @param[in] numChannels number of channels.
* @param[in] ratioH inImgH / outImgH.
* @param[in] ratioW inImgW / outImgW.
*
*/
extern
void
hl_bilinear_forward
(
const
real
*
inData
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
real
*
outData
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
/**
* @brief Bilinear interpolation backward.
*
* @param[out] inGrad input gradient.
* @param[in] inImgH input image height.
* @param[in] inImgW input image width.
* @param[in] inputH input batchSize.
* @param[in] inputW input image data dim.
* @param[in] outGrad output gradient.
* @param[in] outImgH output image height.
* @param[in] outImgW output image width.
* @param[in] outputH output batchSize.
* @param[in] outputW output image data dim.
* @param[in] numChannels number of channels.
* @param[in] ratioH inImgH / outImgH.
* @param[in] ratioW inImgW / outImgW.
*
*/
extern
void
hl_bilinear_backward
(
real
*
inGrad
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
const
real
*
outGrad
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
/**
* @brief MaxOut forward.
*
...
...
paddle/cuda/include/stub/hl_cnn_stub.h
浏览文件 @
8295eb91
...
...
@@ -89,6 +89,34 @@ inline void hl_CMRNorm_backward(
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
)
{}
inline
void
hl_bilinear_forward
(
const
real
*
inData
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
real
*
outData
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{}
inline
void
hl_bilinear_backward
(
real
*
inGrad
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
const
real
*
outGrad
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{}
inline
void
hl_maxout_forward
(
const
real
*
inData
,
real
*
outData
,
int
*
idData
,
size_t
batchSize
,
size_t
size
,
size_t
featLen
,
size_t
group
)
{}
...
...
paddle/cuda/src/hl_cuda_cnn.cu
浏览文件 @
8295eb91
...
...
@@ -522,7 +522,7 @@ void hl_CMRNorm_backward(size_t frameCnt, const real* inV,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
)
{
size_t
threadsNum
=
frameCnt
*
height
*
width
;
size_t
blocksX
=
(
threadsNum
+
1024
-
1
)
/
1024
;
size_t
blocksX
=
(
threadsNum
+
1024
-
1
)
/
1024
;
size_t
blocksY
=
1
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocksX
,
blocksY
);
...
...
@@ -532,6 +532,138 @@ void hl_CMRNorm_backward(size_t frameCnt, const real* inV,
CHECK_SYNC
(
"hl_CMRNorm_backward"
);
}
__global__
void
KeBilinearInterpFw
(
const
real
*
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
real
*
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
int
nthreads
=
outputH
*
outputW
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
nthreads
)
{
int
outIdH
=
tid
/
outputW
;
int
outIdW
=
tid
%
outputW
;
int
inImgSize
=
inputW
/
numChannels
;
int
outImgSize
=
outputW
/
numChannels
;
int
channelId
=
outIdW
/
outImgSize
;
int
outImgIdy
=
(
outIdW
%
outImgSize
)
/
outImgW
;
int
inImgIdy
=
ratioH
*
outImgIdy
;
int
hId
=
(
inImgIdy
<
inImgH
-
1
)
?
1
:
0
;
real
h1lambda
=
ratioH
*
outImgIdy
-
inImgIdy
;
real
h2lambda
=
1.
f
-
h1lambda
;
int
outImgIdx
=
tid
%
outImgW
;
int
inImgIdx
=
ratioW
*
outImgIdx
;
int
wId
=
(
inImgIdx
<
inImgW
-
1
)
?
1
:
0
;
real
w1lambda
=
ratioW
*
outImgIdx
-
inImgIdx
;
real
w2lambda
=
1.
f
-
w1lambda
;
const
real
*
inPos
=
&
in
[
outIdH
*
inputW
+
channelId
*
inImgSize
+
inImgIdy
*
inImgW
+
inImgIdx
];
// bilinear interpolation
out
[
outIdH
*
outputW
+
outIdW
]
=
h2lambda
*
(
w2lambda
*
inPos
[
0
]
+
w1lambda
*
inPos
[
wId
])
+
h1lambda
*
(
w2lambda
*
inPos
[
hId
*
inImgW
]
+
w1lambda
*
inPos
[
hId
*
inImgW
+
wId
]);
}
}
void
hl_bilinear_forward
(
const
real
*
inData
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
real
*
outData
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
int
threadNum
=
outputH
*
outputW
;
int
blocks
=
(
threadNum
+
1024
-
1
)
/
1024
;
KeBilinearInterpFw
<<<
blocks
,
1024
,
0
,
STREAM_DEFAULT
>>>
(
inData
,
inImgH
,
inImgW
,
inputH
,
inputW
,
outData
,
outImgH
,
outImgW
,
outputH
,
outputW
,
numChannels
,
ratioH
,
ratioW
);
CHECK_SYNC
(
"hl_bilinear_forward failed"
);
}
__global__
void
KeBilinearInterpBw
(
real
*
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
const
real
*
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
int
nthreads
=
outputH
*
outputW
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
nthreads
)
{
int
outIdH
=
tid
/
outputW
;
int
outIdW
=
tid
%
outputW
;
int
inImgSize
=
inputW
/
numChannels
;
int
outImgSize
=
outputW
/
numChannels
;
int
channelId
=
outIdW
/
outImgSize
;
int
outImgIdy
=
(
outIdW
%
outImgSize
)
/
outImgW
;
int
inImgIdy
=
ratioH
*
outImgIdy
;
int
hId
=
(
inImgIdy
<
inImgH
-
1
)
?
1
:
0
;
real
h1lambda
=
ratioH
*
outImgIdy
-
inImgIdy
;
real
h2lambda
=
1.
f
-
h1lambda
;
int
outImgIdx
=
tid
%
outImgW
;
int
inImgIdx
=
ratioW
*
outImgIdx
;
int
wId
=
(
inImgIdx
<
inImgW
-
1
)
?
1
:
0
;
real
w1lambda
=
ratioW
*
outImgIdx
-
inImgIdx
;
real
w2lambda
=
1.
f
-
w1lambda
;
real
*
inPos
=
&
in
[
outIdH
*
inputW
+
channelId
*
inImgSize
+
inImgIdy
*
inImgW
+
inImgIdx
];
const
real
*
outPos
=
&
out
[
outIdH
*
outputW
+
outIdW
];
atomicAdd
(
&
inPos
[
0
],
h2lambda
*
w2lambda
*
outPos
[
0
]);
atomicAdd
(
&
inPos
[
wId
],
h2lambda
*
w1lambda
*
outPos
[
0
]);
atomicAdd
(
&
inPos
[
hId
*
inImgW
],
h1lambda
*
w2lambda
*
outPos
[
0
]);
atomicAdd
(
&
inPos
[
hId
*
inImgW
+
wId
],
h1lambda
*
w1lambda
*
outPos
[
0
]);
}
}
void
hl_bilinear_backward
(
real
*
inGrad
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
const
real
*
outGrad
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
int
threadNum
=
outputH
*
outputW
;
int
blocks
=
(
threadNum
+
1024
-
1
)
/
1024
;
KeBilinearInterpBw
<<<
blocks
,
1024
,
0
,
STREAM_DEFAULT
>>>
(
inGrad
,
inImgH
,
inImgW
,
inputH
,
inputW
,
outGrad
,
outImgH
,
outImgW
,
outputH
,
outputW
,
numChannels
,
ratioH
,
ratioW
);
CHECK_SYNC
(
"hl_bilinear_backward failed"
);
}
__global__
void
maxoutFpCompute
(
size_t
nthreads
,
const
real
*
inData
,
real
*
outData
,
int
*
idData
,
size_t
size
,
size_t
featLen
,
size_t
groups
)
{
...
...
paddle/gserver/layers/BilinearInterpLayer.cpp
0 → 100644
浏览文件 @
8295eb91
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "BilinearInterpLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
REGISTER_LAYER
(
bilinear_interp
,
BilinearInterpLayer
);
size_t
BilinearInterpLayer
::
getSize
()
{
inImgH_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
();
inImgW_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
();
const
BilinearInterpConfig
&
conf
=
config_
.
inputs
(
0
).
bilinear_interp_conf
();
if
(
inImgH_
==
0
)
{
inImgH_
=
conf
.
img_size_y
();
}
if
(
inImgW_
==
0
)
{
inImgW_
=
conf
.
img_size_x
();
}
outImgH_
=
conf
.
out_size_y
();
outImgW_
=
conf
.
out_size_x
();
numChannels_
=
conf
.
num_channels
();
CHECK
(
outImgH_
>
0
&&
outImgW_
>
0
);
CHECK
(
inImgH_
>
0
&&
inImgW_
>
0
);
CHECK
(
numChannels_
);
ratioH_
=
(
outImgH_
>
1
)
?
static_cast
<
real
>
(
inImgH_
-
1
)
/
(
outImgH_
-
1
)
:
0.
f
;
ratioW_
=
(
outImgW_
>
1
)
?
static_cast
<
real
>
(
inImgW_
-
1
)
/
(
outImgW_
-
1
)
:
0.
f
;
getOutput
().
setFrameHeight
(
outImgH_
);
getOutput
().
setFrameWidth
(
outImgW_
);
return
outImgH_
*
outImgW_
*
numChannels_
;
}
bool
BilinearInterpLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_EQ
(
1
,
config_
.
inputs_size
());
return
true
;
}
void
BilinearInterpLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
size_t
batchSize
=
getInput
(
0
).
getBatchSize
();
size_t
size
=
getSize
();
{
REGISTER_TIMER_INFO
(
"FwResetTimer"
,
getName
().
c_str
());
resetOutput
(
batchSize
,
size
);
}
MatrixPtr
inV
=
getInputValue
(
0
);
MatrixPtr
outV
=
getOutputValue
();
{
REGISTER_TIMER_INFO
(
"FwBilinearInterpTimer"
,
getName
().
c_str
());
outV
->
bilinearForward
(
*
inV
,
inImgH_
,
inImgW_
,
outImgH_
,
outImgW_
,
numChannels_
,
ratioH_
,
ratioW_
);
}
}
void
BilinearInterpLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
(
void
)
callback
;
MatrixPtr
inputG
=
getInputGrad
(
0
);
MatrixPtr
outG
=
getOutputGrad
();
{
REGISTER_TIMER_INFO
(
"BwBilinearInterpTimer"
,
getName
().
c_str
());
if
(
inputG
)
{
inputG
->
bilinearBackward
(
*
outG
,
outImgH_
,
outImgW_
,
inImgH_
,
inImgW_
,
numChannels_
,
ratioH_
,
ratioW_
);
}
}
}
}
// namespace paddle
paddle/gserver/layers/BilinearInterpLayer.h
0 → 100644
浏览文件 @
8295eb91
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Layer.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief A layer for bilinear interpolation which is
* used on conv layer output.
*
* @note The config file api is bilinear_interp_layer.
*/
class
BilinearInterpLayer
:
public
Layer
{
protected:
size_t
outImgH_
,
outImgW_
;
size_t
inImgH_
,
inImgW_
;
real
ratioH_
,
ratioW_
;
size_t
numChannels_
;
public:
explicit
BilinearInterpLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
virtual
~
BilinearInterpLayer
()
{}
size_t
getSize
();
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
void
forward
(
PassType
passType
);
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
);
};
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
8295eb91
...
...
@@ -175,6 +175,27 @@ TEST(Projection, conv) {
}
#endif
TEST
(
Layer
,
BilinearInterpLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"bilinear_interp"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
4096
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
BilinearInterpConfig
*
bilinear
=
input
->
mutable_bilinear_interp_conf
();
bilinear
->
set_img_size_x
(
32
);
bilinear
->
set_img_size_y
(
32
);
bilinear
->
set_num_channels
(
4
);
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
outSize
:
{
32
,
64
})
{
bilinear
->
set_out_size_x
(
outSize
);
bilinear
->
set_out_size_y
(
outSize
);
testLayerGrad
(
config
,
"bilinear_interp"
,
10
,
false
,
useGpu
);
}
}
}
TEST
(
Layer
,
concat
)
{
TestConfig
config
;
config
.
biasSize
=
0
;
...
...
paddle/math/Matrix.cpp
浏览文件 @
8295eb91
...
...
@@ -23,6 +23,7 @@ limitations under the License. */
#include "paddle/utils/Logging.h"
#include <string.h>
#include "hl_cnn.h"
#include "hl_gpu.h"
#include "hl_table_apply.h"
#include "hl_top_k.h"
...
...
@@ -1231,6 +1232,62 @@ void GpuMatrix::addColumnVector(const Matrix& b) {
BaseMatrix
::
addColVector
(
const_cast
<
Matrix
&>
(
b
));
}
void
GpuMatrix
::
bilinearForward
(
const
Matrix
&
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
CHECK
(
dynamic_cast
<
const
GpuMatrix
*>
(
&
in
));
const
size_t
outputW
=
getWidth
();
const
size_t
outputH
=
getHeight
();
const
size_t
inputW
=
in
.
getWidth
();
const
size_t
inputH
=
in
.
getHeight
();
real
*
outData
=
getData
();
const
real
*
inData
=
in
.
getData
();
if
(
inImgH
==
outImgW
&&
inImgW
==
outImgW
)
{
this
->
copyFrom
(
in
);
}
else
{
hl_bilinear_forward
(
inData
,
inImgH
,
inImgW
,
inputH
,
inputW
,
outData
,
outImgH
,
outImgW
,
outputH
,
outputW
,
numChannels
,
ratioH
,
ratioW
);
}
}
void
GpuMatrix
::
bilinearBackward
(
const
Matrix
&
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
CHECK
(
dynamic_cast
<
const
GpuMatrix
*>
(
&
out
));
const
size_t
inputW
=
getWidth
();
const
size_t
inputH
=
getHeight
();
const
size_t
outputW
=
out
.
getWidth
();
const
size_t
outputH
=
out
.
getHeight
();
real
*
inGrad
=
getData
();
const
real
*
outGrad
=
out
.
getData
();
if
(
outImgH
==
inImgH
&&
outImgW
==
inImgW
)
{
this
->
add
(
const_cast
<
Matrix
&>
(
out
));
}
else
{
hl_bilinear_backward
(
inGrad
,
inImgH
,
inImgW
,
inputH
,
inputW
,
outGrad
,
outImgH
,
outImgW
,
outputH
,
outputW
,
numChannels
,
ratioH
,
ratioW
);
}
}
/**
* CpuMatrix
*/
...
...
@@ -3841,6 +3898,112 @@ void CpuMatrix::classificationErrorMulti(Matrix& output, Matrix& label,
}
}
void
CpuMatrix
::
bilinearForward
(
const
Matrix
&
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
CHECK
(
dynamic_cast
<
const
CpuMatrix
*>
(
&
in
));
size_t
outputW
=
getWidth
();
size_t
batchSize
=
getHeight
();
size_t
inputW
=
in
.
getWidth
();
size_t
inputH
=
in
.
getHeight
();
size_t
inPosOffset
=
inImgH
*
inImgW
;
size_t
outPosOffset
=
outImgH
*
outImgW
;
(
void
)(
inputH
);
real
*
outData
=
getData
();
const
real
*
inData
=
in
.
getData
();
if
(
inImgH
==
outImgH
&&
inImgW
==
outImgW
)
{
this
->
copyFrom
(
in
);
}
else
{
for
(
size_t
k
=
0
;
k
<
batchSize
;
++
k
)
{
// loop for batches
for
(
size_t
i
=
0
;
i
<
outImgH
;
++
i
)
{
// loop for images
size_t
h
=
ratioH
*
i
;
size_t
hid
=
(
h
<
inImgH
-
1
)
?
1
:
0
;
real
h1lambda
=
ratioH
*
i
-
h
;
real
h2lambda
=
1
-
h1lambda
;
for
(
size_t
j
=
0
;
j
<
outImgW
;
++
j
)
{
size_t
w
=
ratioW
*
j
;
size_t
wid
=
(
w
<
inImgW
-
1
)
?
1
:
0
;
real
w1lambda
=
ratioW
*
j
-
w
;
real
w2lambda
=
1
-
w1lambda
;
// calculate four position for bilinear interpolation
const
real
*
inPos
=
&
inData
[
k
*
inputW
+
h
*
inImgW
+
w
];
real
*
outPos
=
&
outData
[
k
*
outputW
+
i
*
outImgW
+
j
];
for
(
size_t
c
=
0
;
c
<
numChannels
;
++
c
)
{
// loop for channels
// bilinear interpolation
outPos
[
0
]
=
h2lambda
*
(
w2lambda
*
inPos
[
0
]
+
w1lambda
*
inPos
[
wid
])
+
h1lambda
*
(
w2lambda
*
inPos
[
hid
*
inImgW
]
+
w1lambda
*
inPos
[
hid
*
inImgW
+
wid
]);
inPos
+=
inPosOffset
;
outPos
+=
outPosOffset
;
}
}
}
}
}
}
void
CpuMatrix
::
bilinearBackward
(
const
Matrix
&
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
CHECK
(
dynamic_cast
<
const
CpuMatrix
*>
(
&
out
));
size_t
inputW
=
getWidth
();
size_t
inputH
=
getHeight
();
size_t
outputW
=
out
.
getWidth
();
size_t
batchSize
=
out
.
getHeight
();
size_t
inPosOffset
=
inImgH
*
inImgW
;
size_t
outPosOffset
=
outImgH
*
outImgW
;
(
void
)(
inputH
);
real
*
inGrad
=
getData
();
const
real
*
outGrad
=
out
.
getData
();
if
(
inImgH
==
outImgH
&&
inImgW
==
outImgW
)
{
this
->
add
(
const_cast
<
Matrix
&>
(
out
));
}
else
{
for
(
size_t
k
=
0
;
k
<
batchSize
;
++
k
)
{
// loop for batches
for
(
size_t
i
=
0
;
i
<
outImgH
;
++
i
)
{
// loop for images
size_t
h
=
ratioH
*
i
;
size_t
hid
=
(
h
<
inImgH
-
1
)
?
1
:
0
;
real
h1lambda
=
ratioH
*
i
-
h
;
real
h2lambda
=
1
-
h1lambda
;
for
(
size_t
j
=
0
;
j
<
outImgW
;
++
j
)
{
size_t
w
=
ratioW
*
j
;
size_t
wid
=
(
w
<
inImgW
-
1
)
?
1
:
0
;
real
w1lambda
=
ratioW
*
j
-
w
;
real
w2lambda
=
1
-
w1lambda
;
real
*
inPos
=
&
inGrad
[
k
*
inputW
+
h
*
inImgW
+
w
];
const
real
*
outPos
=
&
outGrad
[
k
*
outputW
+
i
*
outImgW
+
j
];
for
(
size_t
c
=
0
;
c
<
numChannels
;
++
c
)
{
// loop for channels
inPos
[
0
]
+=
h2lambda
*
w2lambda
*
outPos
[
0
];
inPos
[
wid
]
+=
h2lambda
*
w1lambda
*
outPos
[
0
];
inPos
[
hid
*
inImgW
]
+=
h1lambda
*
w2lambda
*
outPos
[
0
];
inPos
[
hid
*
inImgW
+
wid
]
+=
h1lambda
*
w1lambda
*
outPos
[
0
];
inPos
+=
inPosOffset
;
outPos
+=
outPosOffset
;
}
}
}
}
}
}
////////////////////////////////////////////////////////////////
// functions executed via cpu //
////////////////////////////////////////////////////////////////
...
...
paddle/math/Matrix.h
浏览文件 @
8295eb91
...
...
@@ -995,6 +995,26 @@ public:
virtual
void
paramReluBackwardDiff
(
Matrix
&
oGrad
,
Matrix
&
data
,
Matrix
&
W
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
}
virtual
void
bilinearForward
(
const
Matrix
&
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
}
virtual
void
bilinearBackward
(
const
Matrix
&
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
}
};
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Matrix
&
mat
)
{
...
...
@@ -1265,6 +1285,24 @@ public:
int
contextLength
,
int
contextStart
,
int
totalPad
,
size_t
beginPad
);
void
bilinearForward
(
const
Matrix
&
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
void
bilinearBackward
(
const
Matrix
&
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
};
class
CpuMatrix
:
public
Matrix
{
...
...
@@ -1553,6 +1591,24 @@ public:
void
multiBinaryLabelCrossEntropy
(
Matrix
&
output
,
Matrix
&
label
);
void
multiBinaryLabelCrossEntropyBp
(
Matrix
&
output
,
Matrix
&
label
);
void
classificationErrorMulti
(
Matrix
&
output
,
Matrix
&
label
,
real
threshold
);
void
bilinearForward
(
const
Matrix
&
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
void
bilinearBackward
(
const
Matrix
&
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
};
class
SharedCpuMatrix
:
public
CpuMatrix
{
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
8295eb91
...
...
@@ -90,6 +90,73 @@ void MatrixCheckErr(const Matrix& matrix1, const Matrix& matrix2) {
EXPECT_EQ
(
count
,
0
)
<<
"There are "
<<
count
<<
" different element."
;
}
void
testBilinearFwdBwd
(
int
numSamples
,
int
imgSizeH
,
int
imgSizeW
,
int
channels
)
{
int
inWidth
=
imgSizeH
*
imgSizeW
*
channels
;
int
outWidth
=
2
*
imgSizeH
*
2
*
imgSizeW
*
channels
;
real
ratioH
=
0.5
;
real
ratioW
=
0.5
;
// forward
MatrixPtr
input
=
CpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
false
);
MatrixPtr
inputGpu
=
GpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
true
);
MatrixPtr
target
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
MatrixPtr
targetGpu
=
GpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
true
);
MatrixPtr
targetCheck
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
input
->
randomizeUniform
();
inputGpu
->
copyFrom
(
*
input
);
target
->
bilinearForward
(
*
input
,
imgSizeH
,
imgSizeW
,
2
*
imgSizeH
,
2
*
imgSizeW
,
channels
,
ratioH
,
ratioW
);
targetGpu
->
bilinearForward
(
*
inputGpu
,
imgSizeH
,
imgSizeW
,
2
*
imgSizeH
,
2
*
imgSizeW
,
channels
,
ratioH
,
ratioW
);
// check
targetCheck
->
copyFrom
(
*
targetGpu
);
MatrixCheckErr
(
*
target
,
*
targetCheck
);
// backward
MatrixPtr
inputGrad
=
CpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
false
);
MatrixPtr
inputGpuGrad
=
GpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
true
);
MatrixPtr
targetGrad
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
MatrixPtr
targetGpuGrad
=
GpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
true
);
MatrixPtr
targetCheckGrad
=
CpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
false
);
inputGrad
->
randomizeUniform
();
targetGrad
->
randomizeUniform
();
inputGpuGrad
->
copyFrom
(
*
inputGrad
);
targetGpuGrad
->
copyFrom
(
*
targetGrad
);
inputGrad
->
bilinearBackward
(
*
targetGrad
,
2
*
imgSizeH
,
2
*
imgSizeW
,
imgSizeH
,
imgSizeW
,
channels
,
ratioH
,
ratioW
);
inputGpuGrad
->
bilinearBackward
(
*
targetGpuGrad
,
2
*
imgSizeH
,
2
*
imgSizeW
,
imgSizeH
,
imgSizeW
,
channels
,
ratioH
,
ratioW
);
// check
targetCheckGrad
->
copyFrom
(
*
inputGpuGrad
);
MatrixCheckErr
(
*
inputGrad
,
*
targetCheckGrad
);
}
TEST
(
Matrix
,
BilinearFwdBwd
)
{
for
(
auto
numSamples
:
{
5
,
10
})
{
for
(
auto
channels
:
{
8
,
16
})
{
for
(
auto
imgSizeH
:
{
14
,
28
})
{
for
(
auto
imgSizeW
:
{
16
,
30
})
{
VLOG
(
3
)
<<
" numSamples="
<<
numSamples
<<
" channels="
<<
channels
<<
" imgSizeH="
<<
imgSizeH
<<
" imgSizeW="
<<
imgSizeW
;
testBilinearFwdBwd
(
numSamples
,
imgSizeH
,
imgSizeW
,
channels
);
}
}
}
}
}
void
testMatrixProjectionForward
(
int
contextStart
,
int
contextLength
,
bool
padding
,
int
batchSize
,
int
inputDim
)
{
MatrixPtr
cpuInput
=
std
::
make_shared
<
CpuMatrix
>
(
batchSize
,
inputDim
);
...
...
proto/ModelConfig.proto.m4
浏览文件 @
8295eb91
...
...
@@ -212,6 +212,15 @@ message OperatorConfig {
optional int32 num_filters = 7;
}
message BilinearInterpConfig {
// The size of input feature map.
optional uint32 img_size_x = 1;
optional uint32 img_size_y = 2;
// The size of output feature map.
required uint32 out_size_x = 3;
required uint32 out_size_y = 4;
required uint32 num_channels = 5;
}
message ImageConfig {
// The image data dimensionality.
...
...
@@ -234,7 +243,8 @@ message LayerInputConfig {
// If the input layer has multi-output.
// Set the argument name.
optional string input_layer_argument = 9;
optional MaxOutConfig maxout_conf = 10;
optional BilinearInterpConfig bilinear_interp_conf = 10;
optional MaxOutConfig maxout_conf = 11;
}
message LayerConfig {
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
8295eb91
...
...
@@ -465,6 +465,7 @@ class Input(Cfg):
sparse_update
=
None
,
gradient_clipping_threshold
=
None
,
conv
=
None
,
bilinear_interp
=
None
,
norm
=
None
,
pool
=
None
,
image
=
None
,
...
...
@@ -768,6 +769,16 @@ class Conv(Cfg):
if
output_x
is
not
None
:
config_assert
(
output_x
<=
0
)
# please refer to the comments in proto/ModelConfig.proto
@
config_class
class
BilinearInterp
(
Cfg
):
def
__init__
(
self
,
out_size_x
=
None
,
out_size_y
=
None
,
num_channels
=
None
):
self
.
add_keys
(
locals
())
# please refer to the comments in proto/ModelConfig.proto
@
config_class
class
Pool
(
Cfg
):
...
...
@@ -1008,6 +1019,11 @@ def TestData(data_config, async_load_data=None):
" Data definition"
)
g_config
.
test_data_config
.
async_load_data
=
async_load_data
def
parse_bilinear
(
bilinear
,
input_layer_name
,
bilinear_conf
):
bilinear_conf
.
out_size_x
=
bilinear
.
out_size_x
;
bilinear_conf
.
out_size_y
=
bilinear
.
out_size_y
;
bilinear_conf
.
num_channels
=
bilinear
.
num_channels
;
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
...
...
@@ -2470,6 +2486,22 @@ class InterpolationLayer(LayerBase):
config_assert
(
input_layer1
.
size
==
input_layer2
.
size
,
'the two vector inputs should be of the same size'
)
@
config_layer
(
'bilinear_interp'
)
class
BilinearInterpLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
BilinearInterpLayer
,
self
).
__init__
(
name
,
'bilinear_interp'
,
0
,
inputs
=
inputs
,
**
xargs
)
input_layer
=
self
.
get_input_layer
(
0
)
parse_bilinear
(
self
.
inputs
[
0
].
bilinear_interp
,
input_layer
.
name
,
self
.
config
.
inputs
[
0
].
bilinear_interp_conf
);
conf
=
self
.
inputs
[
0
].
bilinear_interp
self
.
set_layer_size
(
conf
.
out_size_x
*
conf
.
out_size_y
*
conf
.
num_channels
)
@
config_layer
(
'sum_to_one_norm'
)
class
SumToOneNormLayer
(
LayerBase
):
def
__init__
(
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
8295eb91
...
...
@@ -40,8 +40,8 @@ __all__ = ["full_matrix_projection", "AggregateLevel", "ExpandLevel",
'img_cmrnorm_layer'
,
'addto_layer'
,
'concat_layer'
,
'lstm_step_layer'
,
'recurrent_group'
,
'memory'
,
'StaticInput'
,
'expand_layer'
,
'scaling_layer'
,
'power_layer'
,
'interpolation_layer'
,
'
trans
_layer'
,
'sum_to_one_norm_layer'
,
'power_layer'
,
'interpolation_layer'
,
'
bilinear_interp
_layer'
,
'
trans_layer'
,
'
sum_to_one_norm_layer'
,
'get_output_layer'
,
'LayerType'
,
'context_projection'
,
'beam_search'
,
'maxid_layer'
,
'GeneratedInput'
,
'SubsequenceInput'
,
'gru_step_layer'
,
'recurrent_layer'
,
...
...
@@ -94,6 +94,7 @@ class LayerType(object):
EXPAND_LAYER
=
'expand'
INTERPOLATION_LAYER
=
'interpolation'
BILINEAR_INTERP_LAYER
=
'bilinear_interp'
POWER_LAYER
=
'power'
SCALING_LAYER
=
'scaling'
TRANS_LAYER
=
'trans'
...
...
@@ -1259,6 +1260,52 @@ def interpolation_layer(input, weight, name=None, layer_attr=None):
size
=
input
[
0
].
size
)
@
wrap_name_default
()
@
layer_support
()
def
bilinear_interp_layer
(
input
,
out_size_x
=
None
,
out_size_y
=
None
,
name
=
None
,
layer_attr
=
None
):
"""
This layer is to implement bilinear interpolation on conv layer output.
Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation
The simple usage is:
.. code-block:: python
bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
:param input: A input layer.
:type input: LayerOutput.
:param out_size_x: bilinear interpolation output width.
:type out_size_x: int|None
:param out_size_y: bilinear interpolation output height.
:type out_size_y: int|None
:param name: The layer's name, which cna not be specified.
:type name: None|basestring
:param layer_attr: Extra Layer attribute.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert
input
.
layer_type
==
LayerType
.
CONV_LAYER
assert
isinstance
(
input
.
activation
,
LinearActivation
)
assert
out_size_x
>
0
and
out_size_y
>
0
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
Layer
(
name
=
name
,
inputs
=
Input
(
input
.
name
,
bilinear_interp
=
BilinearInterp
(
out_size_x
=
out_size_x
,
out_size_y
=
out_size_y
,
num_channels
=
num_channels
)),
type
=
LayerType
.
BILINEAR_INTERP_LAYER
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
BILINEAR_INTERP_LAYER
,
parents
=
[
input
],
num_filters
=
num_channels
)
@
wrap_name_default
()
@
layer_support
()
def
power_layer
(
input
,
weight
,
name
=
None
,
layer_attr
=
None
):
...
...
python/paddle/trainer_config_helpers/tests/configs/generate_protostr.sh
浏览文件 @
8295eb91
...
...
@@ -11,7 +11,7 @@ test_sequence_pooling test_lstmemory_layer test_grumemory_layer
last_first_seq test_expand_layer test_ntm_layers test_hsigmoid
img_layers img_trans_layers util_layers simple_rnn_layers unused_layers test_cost_layers
test_rnn_group shared_fc shared_lstm test_cost_layers_with_weight
test_maxout test_bi_grumemory math_ops
)
test_
bilinear_interp test_
maxout test_bi_grumemory math_ops
)
for
conf
in
${
configs
[*]
}
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr
0 → 100644
浏览文件 @
8295eb91
type: "nn"
layers {
name: "data"
type: "data"
size: 2304
active_type: ""
}
layers {
name: "__conv_0__"
type: "exconv"
size: 36864
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___conv_0__.w0"
conv_conf {
filter_size: 3
channels: 1
stride: 1
padding: 1
groups: 1
filter_channels: 1
output_x: 48
img_size: 48
caffe_mode: true
filter_size_y: 3
padding_y: 1
stride_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
num_filters: 16
shared_biases: true
}
layers {
name: "__bilinear_interp_layer_0__"
type: "bilinear_interp"
size: 65536
active_type: ""
inputs {
input_layer_name: "__conv_0__"
bilinear_interp_conf {
out_size_x: 64
out_size_y: 64
num_channels: 16
}
}
}
layers {
name: "__pool_0__"
type: "pool"
size: 16384
active_type: ""
inputs {
input_layer_name: "__bilinear_interp_layer_0__"
pool_conf {
pool_type: "max-projection"
channels: 4
size_x: 2
stride: 2
output_x: 64
img_size: 128
padding: 0
size_y: 2
stride_y: 2
output_y: 64
img_size_y: 128
padding_y: 0
}
}
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 384
active_type: "tanh"
inputs {
input_layer_name: "__pool_0__"
input_parameter_name: "___fc_layer_0__.w0"
}
}
parameters {
name: "___conv_0__.w0"
size: 144
initial_mean: 0.0
initial_std: 0.471404520791
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___conv_0__.wbias"
size: 16
initial_mean: 0.0
initial_std: 0.0
dims: 16
dims: 1
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_0__.w0"
size: 6291456
initial_mean: 0.0
initial_std: 0.0078125
dims: 16384
dims: 384
initial_strategy: 0
initial_smart: true
}
input_layer_names: "data"
output_layer_names: "__fc_layer_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__conv_0__"
layer_names: "__bilinear_interp_layer_0__"
layer_names: "__pool_0__"
layer_names: "__fc_layer_0__"
input_layer_names: "data"
output_layer_names: "__fc_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py
0 → 100644
浏览文件 @
8295eb91
from
paddle.trainer_config_helpers
import
*
settings
(
batch_size
=
1000
,
learning_rate
=
1e-5
)
data
=
data_layer
(
name
=
'data'
,
size
=
2304
)
conv
=
img_conv_layer
(
input
=
data
,
filter_size
=
3
,
num_channels
=
1
,
num_filters
=
16
,
padding
=
1
,
act
=
LinearActivation
(),
bias_attr
=
True
)
bilinear
=
bilinear_interp_layer
(
input
=
conv
,
out_size_x
=
64
,
out_size_y
=
64
)
pool
=
img_pool_layer
(
input
=
bilinear
,
num_channels
=
4
,
pool_size
=
2
,
stride
=
2
,
pool_type
=
MaxPooling
())
fc
=
fc_layer
(
input
=
pool
,
size
=
384
,
bias_attr
=
False
)
outputs
(
fc
)
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录