提交 822cf978 编写于 作者: Z zchen0211

more test and bn fix

上级 40483c11
......@@ -117,9 +117,6 @@ class BatchNormKernel<platform::GPUPlace, T> : public framework::OpKernel<T> {
math::SetConstant<platform::GPUPlace, T> functor;
functor(ctx.device_context(), saved_mean, 0);
functor(ctx.device_context(), saved_variance, 0);
// FIXME(qiao) should not set zero self
functor(ctx.device_context(), mean_out, 0);
functor(ctx.device_context(), variance_out, 0);
auto handle = ctx.cuda_device_context().cudnn_handle();
......
......@@ -104,14 +104,14 @@ class TestBatchNormOp(OpTest):
self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg)
def test_python(self):
data_format = "NHWC"
data_format = "NCHW"
epsilon = 0.00001
momentum = 0.9
# N, H, W, C: 2, 3, 4, 2
channel_num = 2
x_shape = [2, 3, 4, channel_num]
scale_shape = [channel_num]
n, h, w, c = 2, 3, 4, 2
x_shape = [n, h, w, c]
scale_shape = [c]
x_val = np.random.random_sample(x_shape).astype(np.float32)
scale_val = np.random.random_sample(scale_shape).astype(np.float32)
......@@ -131,7 +131,7 @@ class TestBatchNormOp(OpTest):
# running N, C, H, W case
# should produce the same results
x_shape2 = [2, channel_num, 3, 4]
x_shape2 = [n, c, h, w]
x_val2 = np.transpose(x_val, (0, 3, 1, 2))
y_out2, saved_mean2, var_ref2 = _reference_training(
x_val2, scale_val, bias_val, epsilon, "NCHW")
......@@ -146,12 +146,15 @@ class TestBatchNormOp(OpTest):
# test backward now
# NHWC
y_grad = np.ones(x_shape).astype(np.float32)
self.y_grad = np.random.random_sample(x_shape).astype(np.float32)
y_grad = self.y_grad
# y_grad = np.ones(x_shape).astype(np.float32)
x_grad_ref, scale_grad_ref, bias_grad_ref = _reference_grad(
x_val, y_grad, scale_val, saved_mean, var_ref, epsilon, "NHWC")
# NCHW
y_grad2 = np.ones(x_shape2).astype(np.float32)
y_grad2 = np.transpose(y_grad, (0, 3, 1, 2))
# y_grad2 = np.ones(x_shape2).astype(np.float32)
x_grad_ref2, scale_grad_ref2, bias_grad_ref2 = _reference_grad(
x_val2, y_grad2, scale_val, saved_mean2, var_ref2, epsilon, "NCHW")
......@@ -168,7 +171,7 @@ class TestBatchNormOp(OpTest):
epsilon = 0.00001
momentum = 0.9
# N, H, W, C: 2, 3, 4, 2
# N, H, W, C: 12, 3, 4, 2
n, h, w, c = 2, 3, 4, 2
if data_format == "NHWC":
......@@ -279,6 +282,8 @@ class TestBatchNormOp(OpTest):
None, place)
# check gradient output
print 'var x_grad tensor: ', str(place), np.array(x_grad_tensor)
print 'var x_grad by python: ', str(place), x_grad_ref
self.__assert_close(x_grad_tensor, x_grad_ref, "x_grad")
self.__assert_close(scale_grad_tensor, scale_grad_ref, "scale_grad")
self.__assert_close(bias_grad_tensor, bias_grad_ref, "bias_grad")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册