Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
7f85dfeb
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7f85dfeb
编写于
5月 14, 2020
作者:
H
hutuxian
提交者:
GitHub
5月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Upgrade Error Message for AucOP & MultiplexOP (#24458)
上级
027f9953
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
120 addition
and
36 deletion
+120
-36
paddle/fluid/operators/metrics/auc_op.cc
paddle/fluid/operators/metrics/auc_op.cc
+13
-9
paddle/fluid/operators/multiplex_op.cc
paddle/fluid/operators/multiplex_op.cc
+30
-17
paddle/fluid/operators/multiplex_op.cu
paddle/fluid/operators/multiplex_op.cu
+5
-3
paddle/fluid/operators/multiplex_op.h
paddle/fluid/operators/multiplex_op.h
+4
-2
python/paddle/fluid/layers/metric_op.py
python/paddle/fluid/layers/metric_op.py
+2
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+9
-3
python/paddle/fluid/tests/unittests/test_auc_op.py
python/paddle/fluid/tests/unittests/test_auc_op.py
+22
-1
python/paddle/fluid/tests/unittests/test_inference_model_io.py
...n/paddle/fluid/tests/unittests/test_inference_model_io.py
+1
-1
python/paddle/fluid/tests/unittests/test_multiplex_op.py
python/paddle/fluid/tests/unittests/test_multiplex_op.py
+34
-0
未找到文件。
paddle/fluid/operators/metrics/auc_op.cc
浏览文件 @
7f85dfeb
...
...
@@ -23,29 +23,33 @@ class AucOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Predict"
),
"Input of Out should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input of Label should not be null."
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Predict"
),
"Input"
,
"Predict"
,
"Auc"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Label"
),
"Input"
,
"Label"
,
"Auc"
);
auto
predict_width
=
ctx
->
GetInputDim
(
"Predict"
)[
1
];
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_LE
(
predict_width
,
2
,
"Only support binary classification,"
"prediction dims[1] should be 1 or 2"
);
platform
::
errors
::
InvalidArgument
(
"Only support binary classification,"
"prediction dims[1] should be 1 or 2"
));
}
auto
predict_height
=
ctx
->
GetInputDim
(
"Predict"
)[
0
];
auto
label_height
=
ctx
->
GetInputDim
(
"Label"
)[
0
];
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
predict_height
,
label_height
,
"Out and Label should have same height."
);
platform
::
errors
::
InvalidArgument
(
"Out and Label should have same height."
));
}
int
num_pred_buckets
=
ctx
->
Attrs
().
Get
<
int
>
(
"num_thresholds"
)
+
1
;
int
slide_steps
=
ctx
->
Attrs
().
Get
<
int
>
(
"slide_steps"
);
PADDLE_ENFORCE_GE
(
num_pred_buckets
,
1
,
"num_thresholds must larger than 1"
);
PADDLE_ENFORCE_GE
(
slide_steps
,
0
,
"slide_steps must be natural number"
);
PADDLE_ENFORCE_GE
(
num_pred_buckets
,
1
,
platform
::
errors
::
InvalidArgument
(
"num_thresholds must larger than 1"
));
PADDLE_ENFORCE_GE
(
slide_steps
,
0
,
platform
::
errors
::
InvalidArgument
(
"slide_steps must be natural number"
));
ctx
->
SetOutputDim
(
"AUC"
,
{
1
});
...
...
paddle/fluid/operators/multiplex_op.cc
浏览文件 @
7f85dfeb
...
...
@@ -26,28 +26,39 @@ class MultiplexOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Ids"
),
"Input(Ids) shouldn't be null."
);
PADDLE_ENFORCE
(
!
ctx
->
Inputs
(
"X"
).
empty
(),
"MultiInput(X) shouldn't be empty."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) shouldn't be null."
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Ids"
),
"Input"
,
"Ids"
,
"Multiplex"
);
PADDLE_ENFORCE_NE
(
ctx
->
Inputs
(
"X"
).
empty
(),
true
,
platform
::
errors
::
InvalidArgument
(
"MultiInput(X) shouldn't be empty."
));
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"Multiplex"
);
auto
ids_dim
=
ctx
->
GetInputDim
(
"Ids"
);
PADDLE_ENFORCE
(
ids_dim
.
size
()
==
2
&&
ids_dim
[
1
]
==
1
,
"The index tensor must be a vector with size batchSize x 1."
);
PADDLE_ENFORCE_EQ
(
ids_dim
.
size
(),
2
,
platform
::
errors
::
PreconditionNotMet
(
"The index tensor must be a vector with 2 dimensions"
));
PADDLE_ENFORCE_EQ
(
ids_dim
[
1
],
1
,
platform
::
errors
::
PreconditionNotMet
(
"The index tensor must be a vector with batchSize x 1."
));
auto
ins_dims
=
ctx
->
GetInputsDim
(
"X"
);
auto
num_ins
=
ins_dims
.
size
();
PADDLE_ENFORCE
(
num_ins
>
1
,
"multiplex operator should have more than "
"one candidate input tensors."
);
PADDLE_ENFORCE_GT
(
num_ins
,
1
,
platform
::
errors
::
InvalidArgument
(
"multiplex operator should have more than "
"one candidate input tensors."
));
auto
in_dim
=
ins_dims
[
0
];
PADDLE_ENFORCE
(
in_dim
.
size
()
>=
2
,
"The rank of candidate tensors must be not less than 2."
);
PADDLE_ENFORCE_GE
(
in_dim
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The rank of candidate tensors must be not less than 2."
));
for
(
size_t
i
=
1
;
i
<
num_ins
;
i
++
)
{
auto
dim
=
ins_dims
[
i
];
PADDLE_ENFORCE
(
in_dim
==
dim
,
"All the candidate tensors must have the same size."
);
PADDLE_ENFORCE_EQ
(
in_dim
,
dim
,
platform
::
errors
::
PreconditionNotMet
(
"All the candidate tensors must have the same size."
));
}
ctx
->
SetOutputDim
(
"Out"
,
in_dim
);
}
...
...
@@ -115,9 +126,11 @@ class MultiplexGradOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
dxs
=
ctx
->
Outputs
(
framework
::
GradVarName
(
"X"
));
PADDLE_ENFORCE
(
!
dxs
.
empty
(),
"Output(X@Grad) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null."
);
PADDLE_ENFORCE_NE
(
dxs
.
empty
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(X@Grad) should not be null."
));
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
framework
::
GradVarName
(
"Out"
),
"MultiplexGrad"
);
auto
dout_dim
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
std
::
vector
<
framework
::
DDim
>
(
dxs
.
size
(),
dout_dim
));
...
...
paddle/fluid/operators/multiplex_op.cu
浏览文件 @
7f85dfeb
...
...
@@ -40,9 +40,11 @@ class MultiplexGPUKernel : public framework::OpKernel<T> {
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
ctx
.
GetPlace
());
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
int32_t
k
=
index
[
i
];
PADDLE_ENFORCE_GE
(
k
,
0
,
"index must be nonnegative."
);
PADDLE_ENFORCE_LT
((
size_t
)
k
,
ins
.
size
(),
"index exceeds the number of candidate tensors."
);
PADDLE_ENFORCE_GE
(
k
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"index must be nonnegative."
));
PADDLE_ENFORCE_LT
(
static_cast
<
size_t
>
(
k
),
ins
.
size
(),
platform
::
errors
::
PreconditionNotMet
(
"index exceeds the number of candidate tensors."
));
memory
::
Copy
(
place
,
out
->
data
<
T
>
()
+
i
*
cols
,
place
,
ins
[
k
]
->
data
<
T
>
()
+
i
*
cols
,
cols
*
sizeof
(
T
),
stream
);
}
...
...
paddle/fluid/operators/multiplex_op.h
浏览文件 @
7f85dfeb
...
...
@@ -38,9 +38,11 @@ class MultiplexCPUKernel : public framework::OpKernel<T> {
BOOST_GET_CONST
(
platform
::
CPUPlace
,
ctx
.
GetPlace
());
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
int32_t
k
=
index
[
i
];
PADDLE_ENFORCE_GE
(
k
,
0
,
"index must be nonnegative."
);
PADDLE_ENFORCE_GE
(
k
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"index must be nonnegative."
));
PADDLE_ENFORCE_LT
(
static_cast
<
size_t
>
(
k
),
ins
.
size
(),
"index exceeds the number of candidate tensors."
);
platform
::
errors
::
PreconditionNotMet
(
"index exceeds the number of candidate tensors."
));
memory
::
Copy
(
place
,
out
->
data
<
T
>
()
+
i
*
cols
,
place
,
ins
[
k
]
->
data
<
T
>
()
+
i
*
cols
,
cols
*
sizeof
(
T
));
}
...
...
python/paddle/fluid/layers/metric_op.py
浏览文件 @
7f85dfeb
...
...
@@ -175,6 +175,8 @@ def auc(input,
#[array([0.5])]
"""
helper
=
LayerHelper
(
"auc"
,
**
locals
())
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'auc'
)
check_variable_and_dtype
(
label
,
'label'
,
[
'int32'
,
'int64'
],
'auc'
)
auc_out
=
helper
.
create_variable_for_type_inference
(
dtype
=
"float64"
)
batch_auc_out
=
helper
.
create_variable_for_type_inference
(
dtype
=
"float64"
)
# make tp, tn, fp, fn persistable, so that can accumulate all batches.
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
7f85dfeb
...
...
@@ -5607,9 +5607,15 @@ def multiplex(inputs, index):
"""
helper = LayerHelper('multiplex', **locals())
if not isinstance(inputs, list) and len(inputs) < 2:
raise ValueError("inputs should be a list object and contains at least "
"2 elements.")
check_type(inputs, 'inputs', (list), 'multiplex')
if len(inputs) < 2:
raise ValueError(
"inputs should be a list object with at least 2 elements.")
for id, x in enumerate(inputs):
check_variable_and_dtype(x, 'input[' + str(id) + ']',
['float32', 'float64', 'int32', 'int64'],
'multiplex')
check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')
out = helper.create_variable_for_type_inference(inputs[0].dtype)
helper.append_op(
...
...
python/paddle/fluid/tests/unittests/test_auc_op.py
浏览文件 @
7f85dfeb
...
...
@@ -18,6 +18,7 @@ import unittest
import
numpy
as
np
from
op_test
import
OpTest
from
paddle.fluid
import
metrics
import
paddle.fluid
as
fluid
class
TestAucOp
(
OpTest
):
...
...
@@ -104,5 +105,25 @@ class TestGlobalAucOp(OpTest):
self
.
check_output
()
if
__name__
==
"__main__"
:
class
TestAucOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
def
test_type1
():
data1
=
fluid
.
data
(
name
=
"input1"
,
shape
=
[
-
1
,
2
],
dtype
=
"int"
)
label1
=
fluid
.
data
(
name
=
"label1"
,
shape
=
[
-
1
],
dtype
=
"int"
)
result1
=
fluid
.
layers
.
auc
(
input
=
data1
,
label
=
label1
)
self
.
assertRaises
(
TypeError
,
test_type1
)
def
test_type2
():
data2
=
fluid
.
data
(
name
=
"input2"
,
shape
=
[
-
1
,
2
],
dtype
=
"float32"
)
label2
=
fluid
.
data
(
name
=
"label2"
,
shape
=
[
-
1
],
dtype
=
"float32"
)
result2
=
fluid
.
layers
.
auc
(
input
=
data2
,
label
=
label2
)
self
.
assertRaises
(
TypeError
,
test_type2
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_inference_model_io.py
浏览文件 @
7f85dfeb
...
...
@@ -142,7 +142,7 @@ class TestSaveInferenceModel(unittest.TestCase):
# fake program without feed/fetch
with
program_guard
(
program
,
init_program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
2
],
dtype
=
'float32'
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'
floa
t32'
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'
in
t32'
)
predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
2
,
act
=
'softmax'
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
y
)
auc_var
,
batch_auc_var
,
auc_states
=
fluid
.
layers
.
auc
(
input
=
predict
,
...
...
python/paddle/fluid/tests/unittests/test_multiplex_op.py
浏览文件 @
7f85dfeb
...
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
class
TestMultiplexOp
(
OpTest
):
...
...
@@ -57,5 +58,38 @@ class TestMultiplexOp(OpTest):
self
.
check_grad
([
'x1'
,
'x2'
,
'x4'
],
'Out'
,
no_grad_set
=
set
(
'x3'
))
class
TestMultiplexOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
x1
=
fluid
.
data
(
name
=
'x1'
,
shape
=
[
None
,
2
],
dtype
=
'int64'
)
x2
=
fluid
.
data
(
name
=
'x2'
,
shape
=
[
None
,
2
],
dtype
=
'int64'
)
index
=
fluid
.
data
(
name
=
'index'
,
shape
=
[
None
,
1
],
dtype
=
'int32'
)
def
test_list
():
# the inputs type must be list
fluid
.
layers
.
multiplex
(
inputs
=
x1
,
index
=
index
)
self
.
assertRaises
(
TypeError
,
test_list
)
def
test_len
():
fluid
.
layers
.
multiplex
(
inputs
=
[
x1
],
index
=
index
)
self
.
assertRaises
(
ValueError
,
test_len
)
def
test_type
():
y1
=
fluid
.
data
(
name
=
'y1'
,
shape
=
[
None
,
2
],
dtype
=
'int16'
)
y2
=
fluid
.
data
(
name
=
'y2'
,
shape
=
[
None
,
2
],
dtype
=
'int16'
)
fluid
.
layers
.
multiplex
(
inputs
=
[
y1
,
y2
],
index
=
index
)
self
.
assertRaises
(
TypeError
,
test_type
)
def
test_type2
():
index2
=
fluid
.
data
(
name
=
'index2'
,
shape
=
[
None
,
1
],
dtype
=
'int16'
)
fluid
.
layers
.
multiplex
(
inputs
=
[
x1
,
x2
],
index
=
index2
)
self
.
assertRaises
(
TypeError
,
test_type2
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录