Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
7d653216
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7d653216
编写于
9月 26, 2017
作者:
C
Cao Ying
提交者:
GitHub
9月 26, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4237 from lcy-seso/optimize_cross_entropy_kernel
optimize cross entropy kernel.
上级
1c0a4c90
000d7511
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
242 addition
and
171 deletion
+242
-171
paddle/operators/accuracy_op.cu
paddle/operators/accuracy_op.cu
+6
-2
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+51
-32
paddle/operators/cross_entropy_op.cu
paddle/operators/cross_entropy_op.cu
+92
-55
paddle/operators/cross_entropy_op.h
paddle/operators/cross_entropy_op.h
+56
-58
paddle/operators/lookup_table_op.cu
paddle/operators/lookup_table_op.cu
+8
-3
paddle/operators/top_k_op.cu
paddle/operators/top_k_op.cu
+6
-4
python/paddle/v2/framework/tests/test_cross_entropy_op.py
python/paddle/v2/framework/tests/test_cross_entropy_op.py
+23
-17
未找到文件。
paddle/operators/accuracy_op.cu
浏览文件 @
7d653216
...
...
@@ -69,8 +69,12 @@ class AccuracyOpCUDAKernel : public framework::OpKernel {
return
;
}
AccuracyCudaKernel
<
PADDLE_CUDA_NUM_THREADS
><<<
1
,
PADDLE_CUDA_NUM_THREADS
>>>
(
num_samples
,
infer_width
,
inference_data
,
label_data
,
accuracy_data
);
AccuracyCudaKernel
<
PADDLE_CUDA_NUM_THREADS
><<<
1
,
PADDLE_CUDA_NUM_THREADS
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
num_samples
,
infer_width
,
inference_data
,
label_data
,
accuracy_data
);
}
};
...
...
paddle/operators/cross_entropy_op.cc
浏览文件 @
7d653216
...
...
@@ -23,27 +23,28 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X)
must not be
null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X)
should be not
null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Y"
),
"Output(Y) must not be null."
);
"Input(Label) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Y"
),
"Output(Y) should be not null."
);
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
2
,
"Input(X)'s rank
must
be 2."
);
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
2
,
"Input(X)'s rank
should
be 2."
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
2
,
"Input(Label)'s rank
must
be 2."
);
"Input(Label)'s rank
should
be 2."
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
label
->
dims
()[
0
],
"The 1st dimension of Input(X) and Input(Label)
must
"
"The 1st dimension of Input(X) and Input(Label)
should
"
"be equal."
);
if
(
ctx
.
Attr
<
bool
>
(
"soft
_l
abel"
))
{
if
(
ctx
.
Attr
<
bool
>
(
"soft
L
abel"
))
{
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
1
],
label
->
dims
()[
1
],
"If Attr(soft
_label) == true, T
he 2nd dimension of "
"Input(X) and Input(Label)
must
be equal."
);
"If Attr(soft
Label) == true, t
he 2nd dimension of "
"Input(X) and Input(Label)
should
be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label
->
dims
()[
1
],
1
,
"If Attr(soft
_label) == false, T
he 2nd dimension of "
"Input(Label)
must
be 1."
);
"If Attr(soft
Label) == false, t
he 2nd dimension of "
"Input(Label)
should
be 1."
);
}
ctx
.
Output
<
Tensor
>
(
"Y"
)
->
Resize
({
x
->
dims
()[
0
],
1
});
...
...
@@ -57,35 +58,38 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X)
must not be
null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X)
should be not
null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label)
must not be
null."
);
"Input(Label)
should be not
null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
)),
"Input(Y@GRAD) must not be null."
);
"Input(Y@GRAD) shoudl be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
framework
::
GradVarName
(
"X"
)),
"Output(X@GRAD) should be not null."
);
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dy
->
dims
().
size
(),
2
,
"Input(Y@Grad)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
2
,
"Input(X)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
dy
->
dims
().
size
(),
2
,
"Input(Y@Grad)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
2
,
"Input(Label)'s rank
must
be 2."
);
"Input(Label)'s rank
should
be 2."
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
label
->
dims
()[
0
],
"The 1st dimension of Input(X) and Input(Label)
must
"
"The 1st dimension of Input(X) and Input(Label)
should
"
"be equal."
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
dy
->
dims
()[
0
],
"The 1st dimension of Input(X) and Input(Y@Grad)
must
"
"The 1st dimension of Input(X) and Input(Y@Grad)
should
"
"be equal."
);
PADDLE_ENFORCE_EQ
(
dy
->
dims
()[
1
],
1
,
"The 2nd dimension of Input(Y@Grad)
must
be 1."
);
if
(
ctx
.
Attr
<
bool
>
(
"soft
_l
abel"
))
{
"The 2nd dimension of Input(Y@Grad)
should
be 1."
);
if
(
ctx
.
Attr
<
bool
>
(
"soft
L
abel"
))
{
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
1
],
label
->
dims
()[
1
],
"
If Attr(soft_label) == true, T
he 2nd dimension of "
"Input(X) and Input(Label)
must
be equal."
);
"
When Attr(softLabel) == true, t
he 2nd dimension of "
"Input(X) and Input(Label)
should
be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label
->
dims
()[
1
],
1
,
"
If Attr(soft_label) == false, T
he 2nd dimension of "
"Input(Label)
must
be 1."
);
"
When Attr(softLabel) == false, t
he 2nd dimension of "
"Input(Label)
should
be 1."
);
}
auto
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
...
...
@@ -98,24 +102,39 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
CrossEntropyOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The first input of CrossEntropyOp"
);
AddInput
(
"Label"
,
"The second input of CrossEntropyOp"
);
AddOutput
(
"Y"
,
"The output of CrossEntropyOp"
);
AddAttr
<
bool
>
(
"soft_label"
,
"Is soft label. Default zero."
)
AddInput
(
"X"
,
"(Tensor, default Tensor<float>), a 2-D tensor with shape N x D, "
"where N is the batch size and D is the number of classes. "
"This input is a probability computed by the previous operator, "
"which is almost always the result of a softmax operator."
);
AddInput
(
"Label"
,
"(Tensor, default Tensor<int>), the ground truth which is "
"a 2-D tensor. "
"When softLabel is set to false, `Label` is a Tensor<int> with shape "
"[N x 1]. "
"When softLabel is set to true, `Label` is a Tensor<float/double> "
"with shape [N x K]."
);
AddOutput
(
"Y"
,
"(Tensor, default Tensor<float>), a 2-D tensor "
"with shape [N x 1]. The cross entropy loss."
);
AddAttr
<
bool
>
(
"softLabel"
,
"(bool, default false), a flag to indicate whether to interpretate "
"the given labels as soft labels."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
CrossEntropy Operator.
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
soft
_label = F
alse, Label[i, 0] indicates the class index for sample i:
soft
Label = f
alse, Label[i, 0] indicates the class index for sample i:
Y[i] = -log(X[i, Label[i]])
2) Soft-label cross-entropy:
soft
_label = T
rue, Label[i, j] indicates the soft label of class j
soft
Label = t
rue, Label[i, j] indicates the soft label of class j
for sample i:
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
...
...
paddle/operators/cross_entropy_op.cu
浏览文件 @
7d653216
...
...
@@ -28,26 +28,49 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
D
);
Y
[
i
]
=
-
tolerable_value
(
log
(
X
[
i
*
D
+
label
[
i
]]));
Y
[
i
]
=
-
TolerableValue
<
T
>
()
(
log
(
X
[
i
*
D
+
label
[
i
]]));
}
}
template
<
typename
T
>
__device__
__forceinline__
T
sum_single_warp
(
T
val
)
{
val
+=
__shfl_down
(
val
,
16
);
val
+=
__shfl_down
(
val
,
8
);
val
+=
__shfl_down
(
val
,
4
);
val
+=
__shfl_down
(
val
,
2
);
val
+=
__shfl_down
(
val
,
1
);
return
val
;
}
template
<
typename
T
>
__global__
void
SoftCrossEntropyKernel
(
T
*
Y
,
const
T
*
X
,
const
T
*
label
,
const
int
N
,
const
int
D
)
{
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
sum
=
static_cast
<
T
>
(
0
);
for
(
int
j
=
0
;
j
<
D
;
j
++
)
{
sum
+=
label
[
i
*
D
+
j
]
*
tolerable_value
(
log
(
X
[
i
*
D
+
j
]));
}
Y
[
i
]
=
-
sum
;
const
int
class_num
)
{
int
tid
=
threadIdx
.
x
;
extern
__shared__
T
d_sum
[];
d_sum
[
tid
]
=
0
;
int
cur_idx
=
tid
;
int
next_idx
=
blockIdx
.
x
*
class_num
+
tid
;
while
(
cur_idx
<
class_num
)
{
d_sum
[
tid
]
+=
TolerableValue
<
T
>
()(
std
::
log
(
X
[
next_idx
]))
*
label
[
next_idx
];
next_idx
+=
blockDim
.
x
;
cur_idx
+=
blockDim
.
x
;
}
__syncthreads
();
for
(
unsigned
int
stride
=
blockDim
.
x
>>
1
;
stride
>=
32
;
stride
>>=
1
)
{
if
(
tid
<
stride
)
d_sum
[
tid
]
+=
d_sum
[
tid
+
stride
];
__syncthreads
();
}
T
val
=
d_sum
[
tid
];
val
=
sum_single_warp
<
T
>
(
val
);
if
(
tid
==
0
)
Y
[
blockIdx
.
x
]
=
-
val
;
}
// TODO(qingqing): make zero setting a
n
common function.
// TODO(qingqing): make zero setting a common function.
template
<
typename
T
>
__global__
void
z
ero
(
T
*
X
,
const
int
N
)
{
__global__
void
Z
ero
(
T
*
X
,
const
int
N
)
{
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
X
[
i
]
=
0.0
;
...
...
@@ -71,13 +94,10 @@ template <typename T>
__global__
void
SoftCrossEntropyGradientKernel
(
T
*
dX
,
const
T
*
dY
,
const
T
*
X
,
const
T
*
label
,
const
int
N
,
const
int
D
)
{
// TOOD(qingqing): optimize for this kernel
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
for
(
int
j
=
0
;
j
<
D
;
++
j
)
{
int
idx
=
i
*
D
+
j
;
dX
[
idx
]
=
-
label
[
idx
]
*
dY
[
i
]
/
X
[
idx
];
}
int
ids
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
ids
<
N
*
D
)
{
int
row_ids
=
ids
/
D
;
dX
[
ids
]
=
-
label
[
ids
]
*
dY
[
row_ids
]
/
X
[
ids
];
}
}
...
...
@@ -86,29 +106,36 @@ class CrossEntropyOpCUDAKernel : public framework::OpKernel {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"
It must use GPUPla
ce."
);
"
This kernel only runs on GPU devi
ce."
);
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
y
=
ctx
.
Output
<
Tensor
>
(
"Y
"
);
auto
label
=
ctx
.
Input
<
Tensor
>
(
"Label
"
);
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label
"
);
Tensor
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y
"
);
auto
*
x_data
=
x
->
data
<
T
>
();
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
y_data
=
y
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
T
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
n
=
x
->
dims
()[
0
];
int
d
=
x
->
dims
()[
1
];
int
block
=
512
;
int
grid
=
(
n
+
block
-
1
)
/
block
;
// TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext.
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
int
batch_size
=
x
->
dims
()[
0
];
int
class_num
=
x
->
dims
()[
1
];
if
(
ctx
.
Attr
<
bool
>
(
"softLabel"
))
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
SoftCrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
y_data
,
x_data
,
label_data
,
n
,
d
);
int
block
=
class_num
>
512
?
512
:
pow
(
2
,
int
(
std
::
log2
(
class_num
)));
SoftCrossEntropyKernel
<
T
><<<
batch_size
,
block
,
block
*
sizeof
(
T
),
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
y_data
,
x_data
,
label_data
,
class_num
);
}
else
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
CrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
y_data
,
x_data
,
label_data
,
n
,
d
);
int
block
=
512
;
int
grid
=
(
batch_size
+
block
-
1
)
/
block
;
CrossEntropyKernel
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
y_data
,
x_data
,
label_data
,
batch_size
,
class_num
);
}
}
};
...
...
@@ -118,33 +145,43 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use GPUPlace."
);
"This kernel only runs on GPU device."
);
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
)
);
auto
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
const
T
*
dy_data
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
))
->
data
<
T
>
(
);
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(
));
const
T
*
x_data
=
x
->
data
<
T
>
(
);
auto
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
dy_data
=
dy
->
data
<
T
>
();
auto
*
x_data
=
x
->
data
<
T
>
();
int
batch_size
=
x
->
dims
()[
0
];
int
class_num
=
x
->
dims
()[
1
];
int
n
=
x
->
dims
()[
0
];
int
d
=
x
->
dims
()[
1
];
int
block
=
512
;
int
grid
=
(
n
*
d
+
block
-
1
)
/
block
;
zero
<
T
><<<
grid
,
block
>>>
(
dx_data
,
n
*
d
);
grid
=
(
n
+
block
-
1
)
/
block
;
// TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext.
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
int
grid
=
(
batch_size
*
class_num
+
block
-
1
)
/
block
;
if
(
ctx
.
Attr
<
bool
>
(
"softLabel"
))
{
auto
*
label_data
=
label
->
data
<
T
>
();
SoftCrossEntropyGradientKernel
<
T
><<<
grid
,
block
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
n
,
d
);
SoftCrossEntropyGradientKernel
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
batch_size
,
class_num
);
}
else
{
Zero
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
dx_data
,
batch_size
*
class_num
);
auto
*
label_data
=
label
->
data
<
int
>
();
CrossEntropyGradientKernel
<
T
><<<
grid
,
block
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
n
,
d
);
grid
=
(
batch_size
+
block
-
1
)
/
block
;
CrossEntropyGradientKernel
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
batch_size
,
class_num
);
}
}
};
...
...
paddle/operators/cross_entropy_op.h
浏览文件 @
7d653216
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/hostdevice.h"
...
...
@@ -20,53 +21,51 @@ namespace paddle {
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
HOSTDEVICE
T
tolerable_value
(
const
T
x
)
{
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
const
T
kApproInf
=
1e20
;
if
(
x
==
INFINITY
)
{
return
kApproInf
;
struct
TolerableValue
{
HOSTDEVICE
T
operator
()(
const
T
&
x
)
const
{
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
const
T
kApproInf
=
1e20
;
if
(
x
==
INFINITY
)
return
kApproInf
;
if
(
x
==
-
INFINITY
)
return
-
kApproInf
;
return
x
;
}
if
(
x
==
-
INFINITY
)
{
return
-
kApproInf
;
}
return
x
;
}
};
template
<
typename
T
>
class
CrossEntropyOpKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
x_data
=
x
->
data
<
T
>
();
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
y_data
=
y
->
data
<
T
>
();
int
batch_size
=
x
->
dims
()[
0
];
int
class_num
=
x
->
dims
()[
1
];
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
int
index
=
0
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
T
sum
=
static_cast
<
T
>
(
0
);
for
(
int
j
=
0
;
j
<
class_num
;
++
j
)
{
sum
+=
label_data
[
index
]
*
tolerable_value
(
std
::
log
(
x_data
[
index
]));
y_data
[
i
]
=
-
sum
;
index
++
;
}
}
"This kernel only runs on CPU."
);
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
T
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
int
batch_size
=
x
->
dims
()[
0
];
if
(
ctx
.
Attr
<
bool
>
(
"softLabel"
))
{
auto
prob
=
EigenMatrix
<
T
>::
From
(
*
x
);
auto
lbl_mat
=
EigenMatrix
<
T
>::
From
(
*
labels
);
auto
loss
=
EigenMatrix
<
T
>::
From
(
*
y
);
loss
.
device
(
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
-
((
lbl_mat
*
prob
.
log
().
unaryExpr
(
TolerableValue
<
T
>
()))
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
)));
}
else
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
const
int
class_num
=
x
->
dims
()[
1
];
const
T
*
x_data
=
x
->
data
<
T
>
();
const
int
*
label_data
=
labels
->
data
<
int
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
index
=
i
*
class_num
+
label_data
[
i
];
y_data
[
i
]
=
-
tolerable_value
(
std
::
log
(
x_data
[
index
]));
y_data
[
i
]
=
-
TolerableValue
<
T
>
()
(
std
::
log
(
x_data
[
index
]));
}
}
}
...
...
@@ -77,33 +76,32 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"
It must use CPUPlace
."
);
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
)
);
auto
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y
"
));
auto
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
"
This kernel only runs on CPU
."
);
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
)
);
const
Tensor
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X
"
));
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()
);
auto
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
dy_data
=
dy
->
data
<
T
>
();
auto
*
x_data
=
x
->
data
<
T
>
();
int
batch_size
=
x
->
dims
()[
0
];
int
class_num
=
x
->
dims
()[
1
];
// TODO(qingqing): make zero setting an common function.
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
int
index
=
0
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
j
=
0
;
j
<
class_num
;
++
j
)
{
dx_data
[
index
]
=
-
label_data
[
index
]
*
dy_data
[
i
]
/
x_data
[
index
];
index
++
;
}
}
if
(
ctx
.
Attr
<
bool
>
(
"softLabel"
))
{
auto
x_mat
=
EigenMatrix
<
T
>::
From
(
*
x
);
auto
dy_mat
=
EigenMatrix
<
T
>::
From
(
*
dy
);
auto
lbl_mat
=
EigenMatrix
<
T
>::
From
(
*
label
);
auto
dx_mat
=
EigenMatrix
<
T
>::
From
(
*
dx
);
dx_mat
.
device
(
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
-
(
lbl_mat
*
dy_mat
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
class_num
))
/
x_mat
);
}
else
{
auto
*
label_data
=
label
->
data
<
int
>
();
int
batch_size
=
x
->
dims
()[
0
];
const
T
*
dy_data
=
dy
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
const
int
*
label_data
=
label
->
data
<
int
>
();
// TODO(qingqing): make zero setting a common function.
memset
(
dx_data
,
0
,
sizeof
(
T
)
*
batch_size
*
class_num
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
PADDLE_ASSERT
(
label_data
[
i
]
>=
0
||
label_data
[
i
]
<
class_num
);
int
index
=
i
*
class_num
+
label_data
[
i
];
...
...
paddle/operators/lookup_table_op.cu
浏览文件 @
7d653216
...
...
@@ -77,7 +77,10 @@ class LookupTableCUDAKernel : public framework::OpKernel {
dim3
threads
(
128
,
8
);
dim3
grids
(
8
,
1
);
LookupTable
<
T
,
128
,
8
,
8
><<<
grids
,
threads
>>>
(
output
,
table
,
ids
,
N
,
K
,
D
);
LookupTable
<
T
,
128
,
8
,
8
><<<
grids
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
output
,
table
,
ids
,
N
,
K
,
D
);
}
};
...
...
@@ -102,8 +105,10 @@ class LookupTableGradCUDAKernel : public framework::OpKernel {
dim3
threads
(
128
,
8
);
dim3
grids
(
8
,
1
);
LookupTableGrad
<
T
,
128
,
8
,
8
><<<
grids
,
threads
>>>
(
d_table
,
d_output
,
ids
,
N
,
K
,
D
);
LookupTableGrad
<
T
,
128
,
8
,
8
><<<
grids
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
d_table
,
d_output
,
ids
,
N
,
K
,
D
);
}
};
...
...
paddle/operators/top_k_op.cu
浏览文件 @
7d653216
...
...
@@ -301,14 +301,16 @@ class TopkOpCUDAKernel : public framework::OpKernel {
// NOTE: pass lds and dim same to input width.
// NOTE: old matrix implementation of stride is different to eigen.
// TODO(typhoonzero): launch kernel on specified stream.
// TODO(typhoonzero): refine this kernel.
dim3
threads
(
256
,
1
);
dim3
grid
(
input_height
,
1
);
KeMatrixTopK
<
T
,
5
,
256
><<<
grid
,
threads
>>>
(
output_data
,
output
->
dims
()[
1
],
indices_data
,
input_data
,
input_width
,
input_width
,
int
(
k
));
KeMatrixTopK
<
T
,
5
,
256
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
output_data
,
output
->
dims
()[
1
],
indices_data
,
input_data
,
input_width
,
input_width
,
int
(
k
));
}
};
...
...
python/paddle/v2/framework/tests/test_cross_entropy_op.py
浏览文件 @
7d653216
...
...
@@ -4,22 +4,24 @@ from op_test import OpTest
class
TestCrossEntropyOp1
(
OpTest
):
"""Test
standard cross-entropy, with index representation of
labels.
"""Test
cross-entropy with discrete one-hot
labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
30
class_num
=
10
X
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
=
np
.
random
.
randint
(
0
,
class_num
,
(
batch_size
,
1
),
dtype
=
"int32"
)
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
X
[
i
][
label
[
i
][
0
]])]
for
i
in
range
(
X
.
shape
[
0
])],
dtype
=
"float32"
)
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
False
}
self
.
attrs
=
{
"softLabel"
:
False
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -29,13 +31,14 @@ class TestCrossEntropyOp1(OpTest):
class
TestCrossEntropyOp2
(
OpTest
):
"""Test
soft-label cross-entropy, with vecte
rized soft labels.
"""Test
cross-entropy with vecto
rized soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
10
class_num
=
5
batch_size
=
5
class_num
=
37
X
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
=
np
.
random
.
uniform
(
0.1
,
1.0
,
...
...
@@ -43,46 +46,49 @@ class TestCrossEntropyOp2(OpTest):
label
/=
label
.
sum
(
axis
=
1
,
keepdims
=
True
)
cross_entropy
=
(
-
label
*
np
.
log
(
X
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
X
,
'Label'
:
label
}
self
.
outputs
=
{
'Y'
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
True
}
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"softLabel"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
)
self
.
check_grad
([
"X"
],
"Y"
,
max_relative_error
=
0.05
)
class
TestCrossEntropyOp3
(
OpTest
):
"""Test one-hot cross-entropy, with vecterized one-hot representation of
labels.
"""Test cross-entropy with vectorized one-hot representation of labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
30
class_num
=
10
batch_size
=
5
class_num
=
17
X
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label_index
=
np
.
random
.
randint
(
0
,
class_num
,
(
batch_size
),
dtype
=
"int32"
)
label
=
np
.
zeros
(
X
.
shape
)
label
[
np
.
arange
(
batch_size
),
label_index
]
=
1
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
X
[
i
][
label_index
[
i
]])]
for
i
in
range
(
X
.
shape
[
0
])],
dtype
=
"float32"
)
cross_entropy2
=
(
-
label
*
np
.
log
(
X
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
X
,
'Label'
:
label
}
self
.
outputs
=
{
'Y'
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
True
}
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"softLabel"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
)
self
.
check_grad
([
"X"
],
"Y"
,
max_relative_error
=
0.05
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录