提交 7cb19a59 编写于 作者: T tensor-tang

fuse elementwise_add and relu

上级 3c249283
......@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/jit_kernel.h" // TODO(TJ): add deps
DECLARE_int32(paddle_num_threads);
......@@ -30,20 +31,25 @@ inline void FCCompute(const BlasT<DeviceContext, T>& blas, const int M,
if (B == NULL) {
return;
}
if (relu) {
const auto& vaddrelu = jitkernel::KernelPool::Instance()
.template Get<jitkernel::VAddReluKernel<T>>(N);
for (int i = 0; i < M; i++) {
T* dst = Y + i * N;
vaddrelu->Compute(B, dst, dst);
}
} else {
const auto& vadd = jitkernel::KernelPool::Instance()
.template Get<jitkernel::VAddKernel<T>>(N);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for if (FLAGS_paddle_num_threads > 1)
#endif
for (int i = 0; i < M; i++) {
blas.AXPY(N, static_cast<T>(1), B, Y + i * N);
for (int i = 0; i < M; i++) {
T* dst = Y + i * N;
vadd->Compute(B, dst, dst);
}
}
if (!relu) {
return;
}
// TODO(TJ): fuse relu
LOG(FATAL) << "Not implemented!";
}
} // namespace math
......
......@@ -86,6 +86,12 @@ class VAddBiasKernel : public Kernel {
virtual void Compute(const T a, const T *x, T *y) const = 0;
};
template <typename T>
class VAddReluKernel : public Kernel {
public:
virtual void Compute(const T *x, const T *y, T *z) const = 0;
};
template <typename T>
class VActKernel : public Kernel {
public:
......
......@@ -378,11 +378,102 @@ class VIdentityKernelImpl : public VIdentityKernel<T> {
void Compute(const T* x, T* y) const override {}
};
/* VAddRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddReluKernelImpl : public VAddReluKernel<T> {
public:
explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() { this->num_ = d; }
void Compute(const T* x, const T* y, T* z) const override {
for (int i = 0; i < this->num_; ++i) {
z[i] = x[i] + y[i];
z[i] = z[i] > 0 ? z[i] : 0;
}
}
};
#define INTRI8_FLOAT(isa) \
template <> \
void VAddReluKernelImpl<float, isa, kEQ8>::Compute( \
const float* x, const float* y, float* z) const { \
__m256 tmpx = _mm256_loadu_ps(x); \
__m256 tmpy = _mm256_loadu_ps(y); \
tmpy = _mm256_add_ps(tmpx, tmpy); \
tmpy = _mm256_max_ps(tmpy, _mm256_setzero_ps()); \
_mm256_storeu_ps(z, tmpy); \
}
#define INTRI16_FLOAT(isa) \
template <> \
void VAddReluKernelImpl<float, isa, kEQ16>::Compute( \
const float* x, const float* y, float* z) const { \
__m256 zeros = _mm256_setzero_ps(); \
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(y); \
tmp0 = _mm256_add_ps(tmp0, tmp1); \
tmp0 = _mm256_max_ps(tmp0, zeros); \
tmp1 = _mm256_loadu_ps(x + 8); \
__m256 tmp2 = _mm256_loadu_ps(y + 8); \
tmp1 = _mm256_add_ps(tmp1, tmp2); \
tmp1 = _mm256_max_ps(tmp1, zeros); \
_mm256_storeu_ps(z, tmp0); \
_mm256_storeu_ps(z + 8, tmp1); \
}
#define INTRI_COMMON_FLOAT(isa, block) \
template <> \
VAddReluKernelImpl<float, isa, block>::VAddReluKernelImpl(int d) \
: VAddReluKernel<float>() { \
this->num_ = d; \
this->end_ = d - d % AVX_FLOAT_BLOCK; \
this->rest_ = d - this->end_; \
} \
template <> \
void VAddReluKernelImpl<float, isa, block>::Compute( \
const float* x, const float* y, float* z) const { \
__m256 zeros = _mm256_setzero_ps(); \
for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \
__m256 tmpx = _mm256_loadu_ps(x + i); \
__m256 tmpy = _mm256_loadu_ps(y + i); \
tmpy = _mm256_add_ps(tmpx, tmpy); \
tmpy = _mm256_max_ps(tmpy, zeros); \
_mm256_storeu_ps(z + i, tmpy); \
} \
for (int i = this->end_; i < this->num_; ++i) { \
z[i] = x[i] + y[i]; \
z[i] = z[i] > 0 ? z[i] : 0; \
} \
}
#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_COMMON_FLOAT(jit::avx, kGT8LT16);
INTRI_COMMON_FLOAT(jit::avx, kGT16);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_COMMON_FLOAT(jit::avx2, kGT8LT16);
INTRI_COMMON_FLOAT(jit::avx2, kGT16);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_COMMON_FLOAT(jit::avx512f, kGT8LT16);
INTRI_COMMON_FLOAT(jit::avx512f, kGT16);
#endif
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_COMMON_FLOAT
REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
REGISTER_JITKERNEL(vscal, VScalKernel);
REGISTER_JITKERNEL(vaddb, VAddBiasKernel);
REGISTER_JITKERNEL(vrelu, VReluKernel);
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
REGISTER_JITKERNEL(videntity, VIdentityKernel);
} // namespace jitkernel
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册