未验证 提交 7a58431c 编写于 作者: Z zhang wenhui 提交者: GitHub

fix norm api doc, test=develop (#27652)

* fix norm api doc, test=develop

* fix error message, test=develop

* fix api norm, test=develop

* add adagrad, test=develop

* fix bug, test=develop

* fix bug, test=develop

* add spetral_norm, test=develop

* fix adagrad, test=develop

* merge , test=develop
上级 3eb106da
...@@ -381,7 +381,8 @@ class BatchNormKernel<platform::CPUDeviceContext, T> ...@@ -381,7 +381,8 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
break; break;
} }
default: default:
PADDLE_THROW("Unknown storage order: %s", data_layout_str); PADDLE_THROW(platform::errors::InvalidArgument(
"Unknown storage order: %s", data_layout_str));
} }
// if MomentumTensor is set, use MomentumTensor value, momentum // if MomentumTensor is set, use MomentumTensor value, momentum
...@@ -446,7 +447,8 @@ class BatchNormKernel<platform::CPUDeviceContext, T> ...@@ -446,7 +447,8 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
break; break;
} }
default: default:
PADDLE_THROW("Unknown storage order: %d", data_layout); PADDLE_THROW(platform::errors::InvalidArgument(
"Unknown storage order: %d", data_layout));
} }
} }
}; };
...@@ -799,7 +801,8 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T> ...@@ -799,7 +801,8 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
break; break;
} }
default: default:
PADDLE_THROW("Unknown storage order: %s", data_layout_str); PADDLE_THROW(platform::errors::InvalidArgument(
"Unknown storage order: %s", data_layout_str));
} }
} }
}; };
......
...@@ -108,7 +108,8 @@ void FlListenAndServOp::RunSyncLoop(framework::Executor *executor, ...@@ -108,7 +108,8 @@ void FlListenAndServOp::RunSyncLoop(framework::Executor *executor,
auto optimize_blocks = auto optimize_blocks =
Attr<std::vector<framework::BlockDesc *>>(kOptimizeBlocks); Attr<std::vector<framework::BlockDesc *>>(kOptimizeBlocks);
PADDLE_ENFORCE_GE(num_blocks, 2, PADDLE_ENFORCE_GE(num_blocks, 2,
"server program should have at least 2 blocks"); platform::errors::InvalidArgument(
"server program should have at least 2 blocks"));
// Prepare all the server block // Prepare all the server block
std::vector<int> optimize_blocks_list; std::vector<int> optimize_blocks_list;
...@@ -192,7 +193,8 @@ void FlListenAndServOp::RunImpl(const framework::Scope &scope, ...@@ -192,7 +193,8 @@ void FlListenAndServOp::RunImpl(const framework::Scope &scope,
auto fan_in = Attr<int>("Fanin"); auto fan_in = Attr<int>("Fanin");
auto inputs = Inputs("X"); auto inputs = Inputs("X");
PADDLE_ENFORCE_EQ(!rpc_service_, true, "rpc_service_ must null"); PADDLE_ENFORCE_EQ(!rpc_service_, true, platform::errors::InvalidArgument(
"rpc_service_ must null"));
std::string endpoint = Attr<std::string>("endpoint"); std::string endpoint = Attr<std::string>("endpoint");
VLOG(4) << "sync_mode:" << sync_mode << ", fan_in:" << fan_in VLOG(4) << "sync_mode:" << sync_mode << ", fan_in:" << fan_in
...@@ -215,7 +217,8 @@ void FlListenAndServOp::RunImpl(const framework::Scope &scope, ...@@ -215,7 +217,8 @@ void FlListenAndServOp::RunImpl(const framework::Scope &scope,
Attr<std::vector<framework::BlockDesc *>>(kOptimizeBlocks); Attr<std::vector<framework::BlockDesc *>>(kOptimizeBlocks);
PADDLE_ENFORCE_GE( PADDLE_ENFORCE_GE(
optimize_blocks.size(), 1, optimize_blocks.size(), 1,
"optimize blocks should be 1 at least on the pserver side."); platform::errors::InvalidArgument(
"optimize blocks should be 1 at least on the pserver side."));
auto *program = optimize_blocks[0]->Program(); auto *program = optimize_blocks[0]->Program();
framework::Executor executor(dev_place); framework::Executor executor(dev_place);
......
...@@ -3674,10 +3674,11 @@ def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None): ...@@ -3674,10 +3674,11 @@ def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle
weight = fluid.data(name='weight', shape=[2, 8, 32, 32], dtype='float32') paddle.enable_static()
x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2) weight = paddle.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
""" """
helper = LayerHelper('spectral_norm', **locals()) helper = LayerHelper('spectral_norm', **locals())
check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from op_test import OpTest
import math
class TestAdagradOpV2(unittest.TestCase):
def test_v20_coverage(self):
paddle.disable_static()
inp = paddle.rand(shape=[10, 10])
linear = paddle.nn.Linear(10, 10)
out = linear(inp)
loss = paddle.mean(out)
adagrad = paddle.optimizer.Adagrad(
learning_rate=0.1, parameters=linear.parameters())
out.backward()
adagrad.step()
adagrad.clear_grad()
if __name__ == "__main__":
unittest.main()
...@@ -1369,7 +1369,7 @@ class TestLayer(LayerTest): ...@@ -1369,7 +1369,7 @@ class TestLayer(LayerTest):
dy_rlt_value = dy_ret.numpy() dy_rlt_value = dy_ret.numpy()
with self.dynamic_graph(): with self.dynamic_graph():
instanceNorm = paddle.nn.InstanceNorm(num_channels=shape[1]) instanceNorm = nn.InstanceNorm(num_channels=shape[1])
dy_ret = instanceNorm(base.to_variable(input)) dy_ret = instanceNorm(base.to_variable(input))
dy_rlt_value2 = dy_ret.numpy() dy_rlt_value2 = dy_ret.numpy()
...@@ -1380,7 +1380,7 @@ class TestLayer(LayerTest): ...@@ -1380,7 +1380,7 @@ class TestLayer(LayerTest):
with self.static_graph(): with self.static_graph():
# the input of InstanceNorm must be Variable. # the input of InstanceNorm must be Variable.
def test_Variable(): def test_Variable():
instanceNorm = paddle.nn.InstanceNorm(num_channels=shape[1]) instanceNorm = nn.InstanceNorm(num_channels=shape[1])
ret1 = instanceNorm(input) ret1 = instanceNorm(input)
self.assertRaises(TypeError, test_Variable) self.assertRaises(TypeError, test_Variable)
...@@ -1388,7 +1388,7 @@ class TestLayer(LayerTest): ...@@ -1388,7 +1388,7 @@ class TestLayer(LayerTest):
# the input dtype of InstanceNorm must be float32 or float64 # the input dtype of InstanceNorm must be float32 or float64
def test_type(): def test_type():
input = np.random.random(shape).astype('int32') input = np.random.random(shape).astype('int32')
instanceNorm = paddle.nn.InstanceNorm(num_channels=shape[1]) instanceNorm = nn.InstanceNorm(num_channels=shape[1])
ret2 = instanceNorm(input) ret2 = instanceNorm(input)
self.assertRaises(TypeError, test_type) self.assertRaises(TypeError, test_type)
......
...@@ -139,7 +139,6 @@ from .layer.norm import SyncBatchNorm #DEFINE_ALIAS ...@@ -139,7 +139,6 @@ from .layer.norm import SyncBatchNorm #DEFINE_ALIAS
from .layer.norm import GroupNorm #DEFINE_ALIAS from .layer.norm import GroupNorm #DEFINE_ALIAS
from .layer.norm import LayerNorm #DEFINE_ALIAS from .layer.norm import LayerNorm #DEFINE_ALIAS
from .layer.norm import SpectralNorm #DEFINE_ALIAS from .layer.norm import SpectralNorm #DEFINE_ALIAS
from .layer.norm import InstanceNorm #DEFINE_ALIAS
from .layer.norm import InstanceNorm1d #DEFINE_ALIAS from .layer.norm import InstanceNorm1d #DEFINE_ALIAS
from .layer.norm import InstanceNorm2d #DEFINE_ALIAS from .layer.norm import InstanceNorm2d #DEFINE_ALIAS
from .layer.norm import InstanceNorm3d #DEFINE_ALIAS from .layer.norm import InstanceNorm3d #DEFINE_ALIAS
......
...@@ -102,7 +102,7 @@ from .norm import SyncBatchNorm #DEFINE_ALIAS ...@@ -102,7 +102,7 @@ from .norm import SyncBatchNorm #DEFINE_ALIAS
from .norm import GroupNorm #DEFINE_ALIAS from .norm import GroupNorm #DEFINE_ALIAS
from .norm import LayerNorm #DEFINE_ALIAS from .norm import LayerNorm #DEFINE_ALIAS
from .norm import SpectralNorm #DEFINE_ALIAS from .norm import SpectralNorm #DEFINE_ALIAS
from .norm import InstanceNorm #DEFINE_ALIAS #from .norm import InstanceNorm #DEFINE_ALIAS
from .norm import LocalResponseNorm #DEFINE_ALIAS from .norm import LocalResponseNorm #DEFINE_ALIAS
# from .rnn import RNNCell #DEFINE_ALIAS # from .rnn import RNNCell #DEFINE_ALIAS
# from .rnn import GRUCell #DEFINE_ALIAS # from .rnn import GRUCell #DEFINE_ALIAS
......
...@@ -28,7 +28,7 @@ ...@@ -28,7 +28,7 @@
# TODO: define normalization api # TODO: define normalization api
import six import six
from ...fluid.dygraph.nn import InstanceNorm #from ...fluid.dygraph.nn import InstanceNorm
from ...fluid.dygraph import BatchNorm #DEFINE_ALIAS from ...fluid.dygraph import BatchNorm #DEFINE_ALIAS
#from ...fluid.dygraph import GroupNorm #DEFINE_ALIAS #from ...fluid.dygraph import GroupNorm #DEFINE_ALIAS
...@@ -54,19 +54,9 @@ from ...fluid.dygraph.base import no_grad ...@@ -54,19 +54,9 @@ from ...fluid.dygraph.base import no_grad
from .. import functional as F from .. import functional as F
__all__ = [ __all__ = [
'BatchNorm', 'BatchNorm', 'GroupNorm', 'LayerNorm', 'SpectralNorm', 'BatchNorm1d',
'GroupNorm', 'BatchNorm2d', 'BatchNorm3d', 'InstanceNorm1d', 'InstanceNorm2d',
'LayerNorm', 'InstanceNorm3d', 'SyncBatchNorm', 'LocalResponseNorm'
'SpectralNorm',
'InstanceNorm',
'BatchNorm1d',
'BatchNorm2d',
'BatchNorm3d',
'InstanceNorm1d',
'InstanceNorm2d',
'InstanceNorm3d',
'SyncBatchNorm',
'LocalResponseNorm',
] ]
......
...@@ -20,11 +20,12 @@ __all__ = [ ...@@ -20,11 +20,12 @@ __all__ = [
] ]
from ..fluid.optimizer import Momentum, Adagrad, Dpsgd, DecayedAdagrad, Ftrl,\ from ..fluid.optimizer import Momentum, Dpsgd, DecayedAdagrad, Ftrl,\
AdagradOptimizer, DpsgdOptimizer, DecayedAdagradOptimizer, \ AdagradOptimizer, DpsgdOptimizer, DecayedAdagradOptimizer, \
FtrlOptimizer, AdadeltaOptimizer FtrlOptimizer, AdadeltaOptimizer
from .optimizer import Optimizer from .optimizer import Optimizer
from .adagrad import Adagrad
from .adam import Adam from .adam import Adam
from .adamw import AdamW from .adamw import AdamW
from .adamax import Adamax from .adamax import Adamax
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable
__all__ = ["Adagrad"]
class Adagrad(Optimizer):
"""
The Adaptive Gradient optimizer (Adagrad for short) use an optimization described
in paper: `Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.
The parameter ``param_out`` update rule with gradient ``grad``:
.. math::
moment\_out &= moment + grad * grad
param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
The original paper does not have the ``epsilon`` attribute. It is added here
in our implementation as also proposed `Per-parameter adaptive learning rate
methods <http://cs231n.github.io/neural-networks-3/#ada>`_
for numerical stability to avoid the division by zero error.
Args:
learning_rate (float|Tensor): The learning rate used to update ``Parameter``.
It can be a float value or a ``Variable`` with a float type.
epsilon (float, optional): A small float value for numerical stability.
The default value is 1e-06.
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
It canbe a float value as coeff of L2 regularization or \
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
the regularization setting here in optimizer will be ignored for this parameter. \
Otherwise, the regularization setting here in optimizer will take effect. \
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies,
ClipGradByGlobalNorm, ClipGradByNorm and ClipGradByValue. Default None,
meaning there is no gradient clipping.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
initial_accumulator_value (float, optional): Initial value for moment accumulator.
The default value is 0.0.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
inp = paddle.rand(shape=[10, 10])
linear = paddle.nn.Linear(10, 10)
out = linear(inp)
loss = paddle.mean(out)
adagrad = paddle.optimizer.Adagrad(learning_rate=0.1,
parameters=linear.parameters())
out.backward()
adagrad.step()
adagrad.clear_grad()
"""
_moment_acc_str = "moment"
def __init__(self,
learning_rate,
epsilon=1.0e-6,
parameters=None,
weight_decay=None,
grad_clip=None,
name=None,
initial_accumulator_value=0.0):
assert learning_rate is not None
assert epsilon is not None
super(Adagrad, self).__init__(
learning_rate=learning_rate,
parameters=parameters,
weight_decay=weight_decay,
grad_clip=grad_clip,
name=name)
self.type = "adagrad"
self._epsilon = epsilon
self.initial_accumulator_value = initial_accumulator_value
def _create_accumulators(self, block, parameters):
assert isinstance(block, framework.Block)
for p in parameters:
self._add_accumulator(
self._moment_acc_str,
p,
fill_value=self.initial_accumulator_value)
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
moment_acc = self._get_accumulator(self._moment_acc_str,
param_and_grad[0])
# Create the adagrad optimizer op
adagrad_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"Moment": moment_acc,
"LearningRate": self._create_param_lr(param_and_grad)
},
outputs={"ParamOut": param_and_grad[0],
"MomentOut": moment_acc},
attrs={"epsilon": self._epsilon},
stop_gradient=True)
return adagrad_op
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册