未验证 提交 790cadd1 编写于 作者: H houj04 提交者: GitHub

add sigmoid_cross_entropy_with_logits to kl1 (#38586)

* add sigmoid cross entropy with logits to kl1. test=kunlun

* add sigmoid cross entropy with logits to kl1. test=kunlun
上级 ceec1e21
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <vector>
#include "paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class SigmoidCrossEntropyWithLogitsXPUKernel : public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(
platform::is_xpu_place(context.GetPlace()), true,
platform::errors::Unavailable("This kernel only runs on XPU."));
// input and output data
auto* input = context.Input<Tensor>("X");
auto* label = context.Input<Tensor>("Label");
auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
// attrs
bool normalize = context.Attr<bool>("normalize");
PADDLE_ENFORCE_EQ(
normalize, false,
platform::errors::InvalidArgument("normalize only support true now."));
int ignore_index = context.Attr<int>("ignore_index");
PADDLE_ENFORCE_EQ(ignore_index, kIgnoreIndex,
platform::errors::InvalidArgument(
"ignore_index only support %d now.", kIgnoreIndex));
int r = xpu::sigmoid_cross_entropy_with_logits(
dev_ctx.x_context(), reinterpret_cast<const XPUType*>(input->data<T>()),
reinterpret_cast<const XPUType*>(label->data<T>()),
reinterpret_cast<XPUType*>(output->data<T>()), 1, input->numel());
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External("XPU sigmoid_cross_entropy_with_logits "
"kernel return wrong value[%d %s]",
r, XPUAPIErrorMsg[r]));
}
};
template <typename DeviceContext, typename T>
class SigmoidCrossEntropyWithLogitsGradXPUKernel
: public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(
platform::is_xpu_place(context.GetPlace()), true,
platform::errors::Unavailable("This kernel only runs on XPU."));
// input and output data
auto* input = context.Input<Tensor>("X");
auto* label = context.Input<Tensor>("Label");
auto* dy = context.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
dx->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::sigmoid_cross_entropy_with_logits_grad(
dev_ctx.x_context(), reinterpret_cast<const XPUType*>(input->data<T>()),
reinterpret_cast<const XPUType*>(label->data<T>()),
reinterpret_cast<const XPUType*>(dy->data<T>()),
reinterpret_cast<XPUType*>(dx->data<T>()), 1, input->numel());
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External("XPU sigmoid_cross_entropy_with_logits_grad "
"kernel return wrong value[%d %s]",
r, XPUAPIErrorMsg[r]));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(sigmoid_cross_entropy_with_logits,
ops::SigmoidCrossEntropyWithLogitsXPUKernel<
paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(sigmoid_cross_entropy_with_logits_grad,
ops::SigmoidCrossEntropyWithLogitsGradXPUKernel<
paddle::platform::XPUDeviceContext, float>);
#endif
......@@ -249,6 +249,10 @@ XPUOpMap& get_kl1_ops() {
pOpKernelType(vartype::INT32, XPUPlace()),
pOpKernelType(vartype::BOOL, XPUPlace()),
pOpKernelType(vartype::FP32, XPUPlace())})},
{"sigmoid_cross_entropy_with_logits_grad",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"sigmoid_cross_entropy_with_logits",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"sigmoid_grad",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"sigmoid", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append("..")
from op_test_xpu import OpTest, XPUOpTest
from op_test import skip_check_grad_ci
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.framework import convert_np_dtype_to_dtype_
from scipy.special import logit
from scipy.special import expit
paddle.enable_static()
class TestSigmoidCrossEntropyWithLogitsOp1(XPUOpTest):
"""Test sigmoid_cross_entropy_with_logit_op with binary label
"""
def setUp(self):
self.op_type = "sigmoid_cross_entropy_with_logits"
self.set_xpu()
self.init_dtype()
batch_size = 64
num_classes = 20
self.inputs = {
'X': logit(
np.random.uniform(0, 1, (batch_size, num_classes))
.astype(self.dtype)),
'Label': np.random.randint(0, 2, (batch_size, num_classes))
.astype(self.dtype)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X = expit(self.inputs['X'])
term1 = self.inputs['Label'] * np.log(sigmoid_X)
term2 = (1 - self.inputs['Label']) * np.log(1 - sigmoid_X)
self.outputs = {'Out': -term1 - term2}
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(self.place, ['X'], 'Out')
def set_xpu(self):
self.__class__.use_xpu = True
self.place = paddle.XPUPlace(0)
def init_dtype(self):
self.dtype = np.float32
class TestSigmoidCrossEntropyWithLogitsOp3(
TestSigmoidCrossEntropyWithLogitsOp1):
"""Test sigmoid_cross_entropy_with_logit_op with probabalistic label
"""
def setUp(self):
self.op_type = "sigmoid_cross_entropy_with_logits"
self.set_xpu()
self.init_dtype()
batch_size = 64
num_classes = 20
self.inputs = {
'X': logit(
np.random.uniform(0, 1, (batch_size, num_classes))
.astype(self.dtype)),
'Label': np.random.uniform(0, 1, (batch_size, num_classes))
.astype(self.dtype)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X = expit(self.inputs['X'])
term1 = self.inputs['Label'] * np.log(sigmoid_X)
term2 = (1 - self.inputs['Label']) * np.log(1 - sigmoid_X)
self.outputs = {'Out': -term1 - term2}
class TestSigmoidCrossEntropyWithLogitsOp5(
TestSigmoidCrossEntropyWithLogitsOp1):
"""Test sigmoid_cross_entropy_with_logit_op with probabalistic label
"""
def setUp(self):
self.op_type = "sigmoid_cross_entropy_with_logits"
self.set_xpu()
self.init_dtype()
batch_size = [10, 10]
num_classes = 20
self.inputs = {
'X': logit(
np.random.uniform(0, 1, tuple(batch_size + [num_classes]))
.astype(self.dtype)),
'Label': np.random.uniform(0, 1, tuple(batch_size + [num_classes]))
.astype(self.dtype)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X = expit(self.inputs['X'])
term1 = self.inputs['Label'] * np.log(sigmoid_X)
term2 = (1 - self.inputs['Label']) * np.log(1 - sigmoid_X)
self.outputs = {'Out': -term1 - term2}
class TestSigmoidCrossEntropyWithLogitsOp6(
TestSigmoidCrossEntropyWithLogitsOp1):
"""Test sigmoid_cross_entropy_with_logit_op with binary label
"""
def setUp(self):
self.op_type = "sigmoid_cross_entropy_with_logits"
self.set_xpu()
self.init_dtype()
batch_size = [10, 10]
num_classes = 20
self.inputs = {
'X': logit(
np.random.uniform(0, 1, tuple(batch_size + [num_classes]))
.astype(self.dtype)),
'Label': np.random.randint(0, 2, tuple(batch_size + [num_classes]))
.astype(self.dtype)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X = expit(self.inputs['X'])
term1 = self.inputs['Label'] * np.log(sigmoid_X)
term2 = (1 - self.inputs['Label']) * np.log(1 - sigmoid_X)
self.outputs = {'Out': -term1 - term2}
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册