Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
789263b4
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
789263b4
编写于
8月 17, 2017
作者:
Y
Yu Yang
提交者:
GitHub
8月 17, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5 from jacquesqiao/fix-sgd
Fix sgd
上级
e28e0073
230e613c
变更
25
隐藏空白更改
内联
并排
Showing
25 changed file
with
272 addition
and
143 deletion
+272
-143
CMakeLists.txt
CMakeLists.txt
+2
-2
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+3
-3
paddle/framework/framework.proto
paddle/framework/framework.proto
+1
-1
paddle/framework/grad_op_builder.cc
paddle/framework/grad_op_builder.cc
+1
-1
paddle/framework/grad_op_builder_test.cc
paddle/framework/grad_op_builder_test.cc
+2
-2
paddle/framework/operator.h
paddle/framework/operator.h
+2
-5
paddle/gserver/layers/MKLDNNFcLayer.cpp
paddle/gserver/layers/MKLDNNFcLayer.cpp
+6
-2
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+20
-7
paddle/gserver/tests/MKLDNNTester.h
paddle/gserver/tests/MKLDNNTester.h
+1
-1
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+1
-1
paddle/operators/mean_op.h
paddle/operators/mean_op.h
+2
-1
paddle/operators/sgd_op.h
paddle/operators/sgd_op.h
+1
-1
paddle/operators/sigmoid_op.cc
paddle/operators/sigmoid_op.cc
+2
-1
paddle/operators/sigmoid_op.h
paddle/operators/sigmoid_op.h
+1
-1
paddle/parameter/Parameter.cpp
paddle/parameter/Parameter.cpp
+6
-4
paddle/parameter/Parameter.h
paddle/parameter/Parameter.h
+35
-2
paddle/pserver/ParameterServer2.cpp
paddle/pserver/ParameterServer2.cpp
+4
-3
paddle/trainer/TrainerConfigHelper.cpp
paddle/trainer/TrainerConfigHelper.cpp
+0
-2
paddle/utils/Flags.cpp
paddle/utils/Flags.cpp
+0
-1
paddle/utils/Flags.h
paddle/utils/Flags.h
+0
-1
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+117
-97
python/paddle/v2/framework/tests/test_gradient_checker.py
python/paddle/v2/framework/tests/test_gradient_checker.py
+43
-0
python/paddle/v2/framework/tests/test_mean_op.py
python/paddle/v2/framework/tests/test_mean_op.py
+8
-0
python/paddle/v2/framework/tests/test_sigmoid_op.py
python/paddle/v2/framework/tests/test_sigmoid_op.py
+13
-4
未找到文件。
CMakeLists.txt
浏览文件 @
789263b4
...
...
@@ -137,9 +137,9 @@ set(EXTERNAL_LIBS
)
if
(
WITH_GPU
)
list
(
APPEND EXTERNAL_LIB
${
CUDA_LIBRARIES
}
${
CUDA_rt_LIBRARY
}
)
list
(
APPEND EXTERNAL_LIB
S
${
CUDA_LIBRARIES
}
${
CUDA_rt_LIBRARY
}
)
if
(
NOT WITH_DSO
)
list
(
APPEND EXTERNAL_LIB
${
CUDNN_LIBRARY
}
${
CUDA_CUBLAS_LIBRARIES
}
${
CUDA_curand_LIBRARY
}
)
list
(
APPEND EXTERNAL_LIB
S
${
CUDNN_LIBRARY
}
${
CUDA_CUBLAS_LIBRARIES
}
${
CUDA_curand_LIBRARY
}
)
endif
(
NOT WITH_DSO
)
endif
(
WITH_GPU
)
...
...
paddle/framework/backward_test.cc
浏览文件 @
789263b4
...
...
@@ -32,9 +32,9 @@ class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
public:
RowWiseAddOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input X of Add"
).
AsNo
Gradient
();
AddInput
(
"b"
,
"Bias of Add"
).
AsNo
Gradient
();
AddOutput
(
"Out"
,
"Out of Add"
).
AsNo
Gradient
();
AddInput
(
"X"
,
"Input X of Add"
).
NotIn
Gradient
();
AddInput
(
"b"
,
"Bias of Add"
).
NotIn
Gradient
();
AddOutput
(
"Out"
,
"Out of Add"
).
NotIn
Gradient
();
AddComment
(
"Add Op"
);
}
};
...
...
paddle/framework/framework.proto
浏览文件 @
789263b4
...
...
@@ -60,7 +60,7 @@ message OpProto {
optional
bool
duplicable
=
3
[
default
=
false
];
optional
bool
intermediate
=
4
[
default
=
false
];
optional
bool
no_gradient
=
5
[
default
=
false
];
optional
bool
no
t_in
_gradient
=
5
[
default
=
false
];
}
// AttrProto describes the C++ type Attribute.
...
...
paddle/framework/grad_op_builder.cc
浏览文件 @
789263b4
...
...
@@ -28,7 +28,7 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type,
const
auto
&
src_arg_list
=
src_type
==
OpArgType
::
IN
?
proto
->
inputs
()
:
proto
->
outputs
();
for
(
const
auto
&
arg
:
src_arg_list
)
{
if
(
arg
.
no_gradient
()
&&
!
is_grad
)
continue
;
if
(
arg
.
no
t_in
_gradient
()
&&
!
is_grad
)
continue
;
const
std
::
string
src_name
=
arg
.
name
();
std
::
string
dst_name
=
is_grad
?
GradVarName
(
src_name
)
:
src_name
;
dst_inout
[
dst_name
].
reserve
(
src_inout
.
at
(
src_name
).
size
());
...
...
paddle/framework/grad_op_builder_test.cc
浏览文件 @
789263b4
...
...
@@ -26,10 +26,10 @@ class IOIgnoredOpMaker : public OpProtoAndCheckerMaker {
IOIgnoredOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"In1"
,
"a single input"
);
AddInput
(
"In2_mult"
,
"a multiple input"
).
AsDuplicable
().
AsNo
Gradient
();
AddInput
(
"In2_mult"
,
"a multiple input"
).
AsDuplicable
().
NotIn
Gradient
();
AddInput
(
"In3_mult"
,
"another multiple input"
).
AsDuplicable
();
AddOutput
(
"Out1_mult"
,
"a multiple output"
).
AsDuplicable
();
AddOutput
(
"Out2"
,
"a single output"
).
AsNo
Gradient
();
AddOutput
(
"Out2"
,
"a single output"
).
NotIn
Gradient
();
AddComment
(
"op with inputs and outputs ignored in gradient calculating"
);
}
};
...
...
paddle/framework/operator.h
浏览文件 @
789263b4
...
...
@@ -184,11 +184,8 @@ class OpProtoAndCheckerMaker {
return
*
this
;
}
// TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it
// means that input/output is not needed when calculate gradient. It does
// not mean no gradient when backward. It should be changed soon.
VariableBuilder
&
AsNoGradient
()
{
var_
->
set_no_gradient
(
true
);
VariableBuilder
&
NotInGradient
()
{
var_
->
set_not_in_gradient
(
true
);
return
*
this
;
}
};
...
...
paddle/gserver/layers/MKLDNNFcLayer.cpp
浏览文件 @
789263b4
...
...
@@ -57,11 +57,14 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap,
}
void
MKLDNNFcLayer
::
convertWeightsFromPaddle
()
{
if
(
FLAGS_use_mkldnn_wgt
)
{
if
(
hasInitedWgt_
)
{
return
;
}
if
(
hasInitedWgt_
)
{
// TODO(TJ): dst format should get from wgtVal_
int
dstFmt
=
PARAM_FORMAT_MKLDNN_OI
;
int
srcFmt
=
weight_
->
getParameterPtr
()
->
getHeaderFormat
();
if
(
srcFmt
==
dstFmt
)
{
return
;
}
...
...
@@ -78,6 +81,7 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() {
MatrixPtr
paddleWgtT
;
paddleWgt
->
transpose
(
paddleWgtT
,
true
);
weight_
->
getW
()
->
copyFrom
(
*
paddleWgtT
);
weight_
->
getParameterPtr
()
->
setHeaderFormat
(
dstFmt
);
hasInitedWgt_
=
true
;
}
...
...
paddle/gserver/tests/MKLDNNTester.cpp
浏览文件 @
789263b4
...
...
@@ -330,9 +330,7 @@ void MKLDNNTester::run(const TestConfig& dnn,
log_
=
log
;
lvl_
=
level
;
// Firstly test FLAGS_use_mkldnn_wgt = false
FLAGS_use_mkldnn_wgt
=
false
;
// reset and run once
// Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight
reset
(
dnn
,
ref
,
batchSize
);
randomWgtDatas
();
clearWgtDiffs
();
...
...
@@ -342,17 +340,32 @@ void MKLDNNTester::run(const TestConfig& dnn,
runOnce
();
}
// Then test FLAGS_use_mkldnn_wgt = true
FLAGS_use_mkldnn_wgt
=
true
;
// after run once the mkldnn weight has been stored in dnnlayer
if
(
parameters_
[
DNN
].
empty
())
{
// has no paramters
return
;
}
// After run some iterations, the mkldnn weight has been stored in dnnLayer
// and we can also get the mkldnn weight parameter header format.
// Weight parameter should always be index 0 (and bias index 1).
// TODO(TJ): should also consider mean and var format when batchnorm ready
int
dnnWgtFmt
=
parameters_
[
DNN
][
0
]
->
getHeaderFormat
();
int
refWgtFmt
=
parameters_
[
REF
][
0
]
->
getHeaderFormat
();
if
(
dnnWgtFmt
==
refWgtFmt
)
{
// weight format are equal, so no need check more
return
;
}
// then save the weights and restart again
vector
<
VectorPtr
>
dnnWgts
,
refWgts
;
CHECK_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
saveWgt
(
parameters_
[
DNN
],
dnnWgts
);
saveWgt
(
parameters_
[
REF
],
refWgts
);
// restart again with
flag true
// restart again with
dnn weight format
reset
(
dnn
,
ref
,
batchSize
);
// TODO(TJ): should also considerate mean and var format when batchnorm ready
parameters_
[
DNN
][
0
]
->
setHeaderFormat
(
dnnWgtFmt
);
// restore wgt
restoreWgt
(
dnnWgts
,
parameters_
[
DNN
]);
...
...
paddle/gserver/tests/MKLDNNTester.h
浏览文件 @
789263b4
...
...
@@ -108,7 +108,7 @@ private:
* if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the
* max(diff/ref)
* else return sum(abs(a-b)) / sum(abs(b))
* The return value should smaller than eps when passing.
* The return value should
be
smaller than eps when passing.
*/
double
getDelta
(
const
real
*
d1
,
const
real
*
d2
,
...
...
paddle/operators/mean_op.cc
浏览文件 @
789263b4
...
...
@@ -34,7 +34,7 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
MeanOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
).
AsNo
Gradient
();
AddOutput
(
"Out"
,
"The output of mean op"
).
NotIn
Gradient
();
AddComment
(
"Mean Operator"
);
}
};
...
...
paddle/operators/mean_op.h
浏览文件 @
789263b4
...
...
@@ -55,9 +55,10 @@ class MeanGradKernel : public framework::OpKernel {
IG
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
ig_size
=
(
T
)
framework
::
product
(
IG
->
dims
());
Eigen
::
DSizes
<
int
,
1
>
bcast
(
ig_size
);
EigenVector
<
T
>::
Flatten
(
*
IG
).
device
(
context
.
GetEigenDevice
<
Place
>
())
=
EigenScalar
<
T
>::
From
(
*
OG
)
/
ig_size
;
(
EigenVector
<
T
>::
From
(
*
OG
)
/
ig_size
).
broadcast
(
bcast
)
;
}
};
...
...
paddle/operators/sgd_op.h
浏览文件 @
789263b4
...
...
@@ -30,7 +30,7 @@ class SGDOpKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
param
=
ctx
.
Input
<
Tensor
>
(
"param"
);
auto
grad
=
ctx
.
Input
<
Tensor
>
(
"grad"
);
auto
param_out
=
ctx
.
Output
<
Tensor
>
(
0
);
auto
param_out
=
ctx
.
Output
<
Tensor
>
(
"param_out"
);
float
lr
=
ctx
.
op_
.
GetAttr
<
float
>
(
"learning_rate"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
paddle/operators/sigmoid_op.cc
浏览文件 @
789263b4
...
...
@@ -44,7 +44,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
}
};
...
...
paddle/operators/sigmoid_op.h
浏览文件 @
789263b4
...
...
@@ -37,7 +37,7 @@ class SigmoidKernel : public framework::OpKernel {
auto
Y
=
EigenVector
<
T
>::
Flatten
(
*
output
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
Y
.
device
(
place
)
=
1.
0
/
(
1.0
+
(
-
1.0
*
X
).
exp
());
Y
.
device
(
place
)
=
1.
/
(
1.
+
(
-
X
).
exp
());
}
};
...
...
paddle/parameter/Parameter.cpp
浏览文件 @
789263b4
...
...
@@ -48,7 +48,8 @@ Parameter::Parameter(const ParameterConfig& config, bool useGpu, bool doInit)
deviceId_
(
-
1
),
sharedCount_
(
0
),
updateCounter_
(
0
),
updated_
(
false
)
{
updated_
(
false
),
headerFormat_
(
PARAM_FORMAT_ORIGINAL
)
{
setID
(
-
1
);
/* capture uninitialized id */
if
(
useGpu_
&&
FLAGS_parallel_nn
)
{
/* gpu environment is specified by device property */
...
...
@@ -285,7 +286,7 @@ bool Parameter::save(const std::string& filename) const {
bool
Parameter
::
save
(
std
::
ostream
&
s
)
const
{
CpuVector
vec
(
*
bufs_
[
PARAMETER_VALUE
].
get
());
Header
header
;
header
.
version
=
kFormatVersion
;
header
.
format
=
headerFormat_
;
header
.
valueSize
=
sizeof
(
real
);
header
.
size
=
getSize
();
...
...
@@ -344,8 +345,9 @@ bool Parameter::load(std::istream& s) {
Header
header
;
CHECK
(
s
.
read
(
reinterpret_cast
<
char
*>
(
&
header
),
sizeof
(
header
)))
<<
"Fail to read parameter "
<<
getName
();
CHECK_EQ
(
header
.
version
,
kFormatVersion
)
<<
"Incorrect format version: "
<<
header
.
version
;
CHECK
(
isHeaderFormatSupported
(
header
.
format
))
<<
"Incorrect format version: "
<<
header
.
format
;
headerFormat_
=
header
.
format
;
CHECK_EQ
(
header
.
size
,
getSize
())
<<
"The size ("
<<
header
.
size
<<
") in the file does not match the size "
<<
"("
<<
getSize
()
<<
") of the parameter: "
<<
getName
();
...
...
paddle/parameter/Parameter.h
浏览文件 @
789263b4
...
...
@@ -34,6 +34,20 @@ limitations under the License. */
namespace
paddle
{
typedef
enum
{
/// The paddle original basic format
PARAM_FORMAT_ORIGINAL
=
0
,
/// See mkldnn_memory_format_t in
/// https://github.com/01org/mkl-dnn/blob/master/include/mkldnn_types.h
/// for a detailed description.
/// 2D weights tensor in the format (output channels, input channels).
PARAM_FORMAT_MKLDNN_OI
,
/// The total format items numbers
PARAM_FORMAT_ITEMS
,
}
PARAM_FORMAT
;
class
SparsePrefetchRowCpuMatrix
;
class
Parameter
;
...
...
@@ -242,14 +256,30 @@ public:
/// Initialize the value to 0
void
zeroMem
();
static
const
int
kFormatVersion
=
0
;
/// file header structure
struct
Header
{
int32_t
version
;
// = 0, file format version
int32_t
format
;
// = PARAM_FORMAT
uint32_t
valueSize
;
// = sizeof(real)
uint64_t
size
;
// = getSize()
};
/**
* @brief Is the header format supported.
*/
static
bool
isHeaderFormatSupported
(
int32_t
fmt
)
{
return
fmt
<
PARAM_FORMAT_ITEMS
;
}
/**
* @brief Get the format in header.
*/
int
getHeaderFormat
()
{
return
headerFormat_
;
}
/**
* @brief Set the format in header.
*/
void
setHeaderFormat
(
int32_t
fmt
)
{
headerFormat_
=
fmt
;
}
/**
* @brief Parameter Update Hook.
*
...
...
@@ -321,6 +351,9 @@ protected:
bool
updated_
;
SparseFormat
format_
;
/// The header format for saving or loading param
int32_t
headerFormat_
;
std
::
vector
<
std
::
shared_ptr
<
IParameterUpdaterHook
>>
updaterHooks_
;
public:
...
...
paddle/pserver/ParameterServer2.cpp
浏览文件 @
789263b4
...
...
@@ -1032,8 +1032,8 @@ void ParameterServer2::loadValueVector(const LoadValueRequest& request,
Parameter
::
Header
header
;
CHECK
(
fs
.
read
(
reinterpret_cast
<
char
*>
(
&
header
),
sizeof
(
header
)))
<<
"Fail to read parameters in pserver"
;
CHECK
_EQ
(
header
.
version
,
Parameter
::
kFormatVersion
)
<<
"Incorrect format version: "
<<
header
.
version
;
CHECK
(
Parameter
::
isHeaderFormatSupported
(
header
.
format
)
)
<<
"Incorrect format version: "
<<
header
.
format
;
CHECK_EQ
(
header
.
size
,
(
size_t
)
size_
)
<<
"The size ("
<<
header
.
size
<<
") in the file does not match the size "
<<
"("
<<
size_
<<
") of the pserver: "
<<
serverId_
;
...
...
@@ -1063,7 +1063,8 @@ void ParameterServer2::saveValueVector(const SaveValueRequest& request,
CpuVector
&
vec
=
vectors_
[
PARAMETER_APPLY
]
?
*
vectors_
[
PARAMETER_APPLY
]
:
*
vectors_
[
PARAMETER_VALUE
];
Parameter
::
Header
header
;
header
.
version
=
Parameter
::
kFormatVersion
;
// TODO(TJ): save param headerFormat_
header
.
format
=
PARAM_FORMAT_ORIGINAL
;
header
.
valueSize
=
sizeof
(
real
);
header
.
size
=
size_
;
...
...
paddle/trainer/TrainerConfigHelper.cpp
浏览文件 @
789263b4
...
...
@@ -29,7 +29,6 @@ DECLARE_bool(with_gpu);
DECLARE_bool
(
parallel_nn
);
DECLARE_string
(
config_args
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_bool
(
use_mkldnn_wgt
);
const
char
*
kConfigParserModuleName
=
"paddle.trainer.config_parser"
;
const
char
*
kConfigParserFuncName
=
"parse_config_and_serialize"
;
...
...
@@ -47,7 +46,6 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath)
<<
",with_cost="
<<
FLAGS_with_cost
<<
",use_gpu="
<<
FLAGS_use_gpu
<<
",parallel_nn="
<<
FLAGS_parallel_nn
<<
",use_mkldnn="
<<
FLAGS_use_mkldnn
<<
",use_mkldnn_wgt="
<<
FLAGS_use_mkldnn_wgt
<<
",cudnn_version="
<<
hl_get_cudnn_lib_version
();
if
(
!
FLAGS_config_args
.
empty
())
{
configArgs
<<
","
<<
FLAGS_config_args
;
...
...
paddle/utils/Flags.cpp
浏览文件 @
789263b4
...
...
@@ -27,7 +27,6 @@ DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training");
DEFINE_bool
(
use_mkldnn
,
false
,
"Only support CPU training"
);
#endif
DEFINE_bool
(
use_mkldnn_wgt
,
false
,
"Init weight from CPU weight"
);
DEFINE_bool
(
parallel_nn
,
false
,
"Whether to use multi-threads to calculate one neural network."
...
...
paddle/utils/Flags.h
浏览文件 @
789263b4
...
...
@@ -41,4 +41,3 @@ DECLARE_string(predict_file);
DECLARE_bool
(
prev_batch_state
);
DECLARE_string
(
init_model_path
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_bool
(
use_mkldnn_wgt
);
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
789263b4
...
...
@@ -26,3 +26,4 @@ py_test(test_operator SRCS test_operator.py)
py_test
(
test_uniform_random_op SRCS test_uniform_random_op.py
)
py_test
(
test_recurrent_op SRCS test_recurrent_op.py
)
py_test
(
test_sgd_op SRCS test_sgd_op.py
)
py_test
(
test_gradient_checker SRCS test_gradient_checker.py
)
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
789263b4
import
unittest
import
numpy
import
itertools
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
...
...
@@ -8,6 +9,7 @@ __all__ = ['get_numeric_gradient']
def
create_op
(
op_type
):
# TODO need to set attrs
kwargs
=
dict
()
for
in_name
in
Operator
.
get_op_input_names
(
op_type
):
kwargs
[
in_name
]
=
in_name
...
...
@@ -66,7 +68,6 @@ def get_numeric_gradient(op,
local_scope
.
find_var
(
output
).
get_tensor
().
alloc_float
(
core
.
CPUPlace
(
))
# TODO(yuyang18): Only CPU is support now.
cpu_ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
def
get_output
():
...
...
@@ -109,12 +110,110 @@ def get_numeric_gradient(op,
class
GradientChecker
(
unittest
.
TestCase
):
def
assert_is_close
(
self
,
numeric_grads
,
scope
,
max_relative_error
,
msg_prefix
):
for
name
in
numeric_grads
:
b
=
numpy
.
array
(
scope
.
find_var
(
grad_var_name
(
name
)).
get_tensor
())
a
=
numeric_grads
[
name
]
def
__get_gradient
(
self
,
forward_op
,
backward_op
,
input_value
,
grad_names
,
place
):
"""Get the input gradients after running forward and backward operators
on the given places.
:param forward_op: forward operator
:type forward_op: Operator
:param backward_op: backward operator
:type backward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:param grad_names: the names of returned input gradients.
:type input_value: a list of string
:param place: the device type.
:type place: CPUPlace or GPUPlace
:return: the input grdients of given grad_names.
:rtype: a list of numpy.array
"""
scope
=
core
.
Scope
()
ctx
=
core
.
DeviceContext
.
create
(
place
)
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
outputs
=
forward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
# create input var and set value
for
name
,
value
in
input_value
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
"does not exist in Op's inputs."
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# run forward op
for
out_name
in
out_names
:
scope
.
new_var
(
out_name
)
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# set output var's shape
# set output grad to ones
for
name
in
out_names
:
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
numpy
.
ones
(
out_tensor
.
shape
(),
dtype
=
numpy
.
float32
)
grad_tensor
.
set
(
data
,
place
)
# run backward op
for
name
in
backward_op
.
outputs
():
scope
.
new_var
(
name
)
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
outs
=
[
numpy
.
array
(
scope
.
find_var
(
name
).
get_tensor
())
for
name
in
grad_names
]
return
outs
def
compare_grad
(
self
,
forward_op
,
input_value
):
""" Compare the input gradients between CPU and GPU for the given forward
operator.
:param forward_op: forward operator
:type forward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:raises: AssertionError, there is different gradient value.
"""
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
set
())
# return if not compile with GPU or not implementing GPU kernel
if
not
(
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
()):
return
outputs
=
backward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
cpu_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_value
,
out_names
,
core
.
CPUPlace
())
gpu_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_value
,
out_names
,
core
.
GPUPlace
(
0
))
for
c_grad
,
g_grad
,
name
in
itertools
.
izip
(
cpu_grads
,
gpu_grads
,
out_names
):
self
.
assertTrue
(
numpy
.
allclose
(
c_grad
,
g_grad
,
atol
=
1e-4
),
"output name: "
+
name
+
" has diff"
)
def
__assert_is_close
(
self
,
numeric_grads
,
analytic_grads
,
names
,
max_relative_error
,
msg_prefix
):
"""Use relative error for the comparison.
:param numeric_grads: the numerical graidents.
:type numeric_grads: a list of numpy.array
:param analytic_grads: the analytical graidents.
:type analytic_grads: a list of numpy.array
:param name: the names of gradients, used to print for debug.
:type names: a list of string
:param msg_prefix: string info, used to print for debug.
:type msf_prefix: string
"""
for
a
,
b
,
name
in
itertools
.
izip
(
numeric_grads
,
analytic_grads
,
names
):
abs_a
=
numpy
.
abs
(
a
)
# if abs_a is nearly zero, then use abs error for a, not relative
# error.
...
...
@@ -159,105 +258,26 @@ class GradientChecker(unittest.TestCase):
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
outputs
=
forward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
for
no_grad
in
no_grad_set
:
if
no_grad
not
in
in_names
:
raise
ValueError
(
"no_grad should be in in_names"
)
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
no_grad_set
)
bwd_outputs
=
backward_op
.
outputs
()
bwd_out_names
=
[
item
for
k
in
bwd_outputs
for
item
in
bwd_outputs
[
k
]]
places
=
[
core
.
CPUPlace
()]
if
not
only_cpu
and
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
numeric_grad
=
dict
()
# get numeric gradient
for
check_name
in
inputs_to_check
:
numeric_grad
[
check_name
]
=
\
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
check_name
)
# get numerical gradients
numeric_grads
=
[
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
name
)
for
name
in
inputs_to_check
]
# get operator gradient according to different device
check_names
=
[
grad_var_name
(
name
)
for
name
in
inputs_to_check
]
for
place
in
places
:
scope
=
core
.
Scope
()
ctx
=
core
.
DeviceContext
.
create
(
place
)
# create input var and set value
for
name
,
value
in
input_vars
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
" not in op.inputs_"
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# create output var
for
out_name
in
out_names
:
scope
.
new_var
(
out_name
).
get_tensor
()
# infer the shape of output var and compute/set value of output var
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# create output grad var
# set shape as the output var
# set value of this grad to ones
for
name
in
out_names
:
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
1.0
*
numpy
.
ones
(
out_tensor
.
shape
())
grad_tensor
.
set
(
data
,
place
)
# create input grad var
for
name
in
bwd_out_names
:
scope
.
new_var
(
name
).
get_tensor
()
# infer the shape of input gradient var and compute/set it's value
# with backward op
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
self
.
assert_is_close
(
numeric_grad
,
scope
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
if
__name__
==
'__main__'
:
class
GetNumericGradientTest
(
unittest
.
TestCase
):
def
test_add_op
(
self
):
add_op
=
Operator
(
'add_two'
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Z"
)
x
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
arr
=
get_numeric_gradient
(
add_op
,
{
'X'
:
x
,
"Y"
:
y
},
'Z'
,
'X'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-2
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
numpy
.
max
(
x
)
exps
=
numpy
.
exp
(
shiftx
)
return
exps
/
numpy
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
numpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
'Y'
,
'X'
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
unittest
.
main
()
# get analytical gradients according to different device
analytic_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_vars
,
check_names
,
place
)
self
.
__assert_is_close
(
numeric_grads
,
analytic_grads
,
check_names
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
python/paddle/v2/framework/tests/test_gradient_checker.py
0 → 100644
浏览文件 @
789263b4
import
unittest
import
numpy
from
paddle.v2.framework.op
import
Operator
from
gradient_checker
import
GradientChecker
from
gradient_checker
import
get_numeric_gradient
class
GetNumericGradientTest
(
unittest
.
TestCase
):
def
test_add_op
(
self
):
add_op
=
Operator
(
'add_two'
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Z"
)
x
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
arr
=
get_numeric_gradient
(
add_op
,
{
'X'
:
x
,
"Y"
:
y
},
'Z'
,
'X'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-4
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
numpy
.
max
(
x
)
exps
=
numpy
.
exp
(
shiftx
)
return
exps
/
numpy
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
numpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
'Y'
,
'X'
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_mean_op.py
浏览文件 @
789263b4
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
import
numpy
as
np
...
...
@@ -12,5 +13,12 @@ class TestMeanOp(unittest.TestCase):
self
.
outputs
=
{
'Out'
:
np
.
mean
(
self
.
inputs
[
'X'
])}
class
MeanGradOpTest
(
GradientChecker
):
def
test_normal
(
self
):
op
=
create_op
(
"mean"
)
inputs
=
{
"X"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_sigmoid_op.py
浏览文件 @
789263b4
import
unittest
from
op_test_util
import
OpTestMeta
import
numpy
as
np
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
class
TestSigmoidOp
(
unittest
.
TestCase
):
...
...
@@ -8,12 +9,20 @@ class TestSigmoidOp(unittest.TestCase):
def
setUp
(
self
):
self
.
type
=
"sigmoid"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
100
)).
astype
(
"float32"
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
15
,
31
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Y'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
#class TestSigmoidGradOp(unittest.TestCase):
#TODO(qingqing) add unit test
class
TestSigmoidGradOp
(
GradientChecker
):
def
test_grad
(
self
):
op
=
create_op
(
"sigmoid"
)
inputs
=
{
"X"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)}
# compare gpu and cpu results for backward op.
# this test will be skiped if only compiling CPU version.
self
.
compare_grad
(
op
,
inputs
)
# check gradients
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Y"
,
max_relative_error
=
0.007
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录