提交 70a887af 编写于 作者: P pawelpiotrowicz 提交者: tensor-tang

[NGraph] Add reduce_sum operator for Ngraph (#17450)

test=develop
上级 29baca0d
/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <functional>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace paddle {
namespace operators {
namespace ngraphs {
void BuildReduceSumNode(
const std::shared_ptr<paddle::framework::OperatorBase> &op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto input = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
bool reduce_all = op_attrs.Get<bool>("reduce_all");
bool keep_dim = op_attrs.Get<bool>("keep_dim");
std::vector<int> dim = op_attrs.Get<std::vector<int>>("dim");
auto input_shape = input->get_shape();
ngraph::AxisSet axes;
if (reduce_all == true) {
for (size_t i = 0; i < input_shape.size(); ++i) {
axes.insert(i);
}
} else {
for (auto &i : dim) {
if (i < 0) {
axes.insert(input_shape.size() + i);
} else {
axes.insert(i);
}
}
}
std::shared_ptr<ngraph::Node> reduce_sum =
std::make_shared<ngraph::op::Sum>(input, axes);
if (keep_dim == true) {
std::vector<size_t> dim_shape;
std::copy(input_shape.begin(), input_shape.end(),
std::back_inserter(dim_shape));
for (auto &i : dim) {
if (i < 0) {
i = input_shape.size() + i;
}
dim_shape[i] = 1;
}
std::vector<size_t> axis_vector(input_shape.size() - dim.size());
std::iota(axis_vector.begin(), axis_vector.end(), 0);
auto reduce_sum_dim = std::make_shared<ngraph::op::Reshape>(
reduce_sum, ngraph::AxisVector(axis_vector), ngraph::Shape(dim_shape));
paddle::platform::SetOutputNode(op, "Out", reduce_sum_dim, ngb_node_map);
} else {
if (reduce_sum->get_shape() == ngraph::Shape{}) {
reduce_sum = paddle::platform::NgReshaper(reduce_sum, ngraph::Shape{1});
}
paddle::platform::SetOutputNode(op, "Out", reduce_sum, ngb_node_map);
}
}
void BuildReduceSumGradNode(
const std::shared_ptr<paddle::framework::OperatorBase> &op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto og = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map);
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
std::vector<int> dim = op_attrs.Get<std::vector<int>>("dim");
bool reduce_all = op_attrs.Get<bool>("reduce_all");
bool keep_dim = op_attrs.Get<bool>("keep_dim");
auto og_shape = og->get_shape();
auto x_shape = x->get_shape();
float x_size = std::accumulate(std::begin(x_shape), std::end(x_shape), 1,
std::multiplies<float>());
float og_size = std::accumulate(std::begin(og_shape), std::end(og_shape), 1,
std::multiplies<float>());
ngraph::AxisSet axes;
if (reduce_all == true) {
for (size_t i = 0; i < x_shape.size(); i++) {
axes.insert(i);
}
} else {
for (auto &i : dim) {
if (i < 0) {
axes.insert(x_shape.size() + i);
} else {
axes.insert(i);
}
}
}
std::vector<size_t> axis_vector(og_shape.size());
std::iota(axis_vector.begin(), axis_vector.end(), 0);
std::vector<size_t> dim_shape;
for (size_t i = 0; i < x_shape.size(); i++) {
if (std::find(dim.begin(), dim.end(), i) == dim.end() &&
std::find(dim.begin(), dim.end(), i - x_shape.size()) == dim.end()) {
dim_shape.push_back(x_shape[i]);
}
}
if (keep_dim == true) {
// reshape
if (x_size == og_size) {
paddle::platform::SetOutputNode(op, "X@GRAD", og, ngb_node_map);
return;
}
auto og_dim = std::make_shared<ngraph::op::Reshape>(
og, ngraph::AxisVector(axis_vector), ngraph::Shape(dim_shape));
auto result =
std::make_shared<ngraph::op::Broadcast>(og_dim, x_shape, axes);
paddle::platform::SetOutputNode(op, "X@GRAD", result, ngb_node_map);
} else {
if (x_size == og_size) {
auto og_dim = std::make_shared<ngraph::op::Reshape>(
og, ngraph::AxisVector(axis_vector), x_shape);
paddle::platform::SetOutputNode(op, "X@GRAD", og_dim, ngb_node_map);
} else {
if (og->get_shape().size() == 1 && og->get_shape()[0] == 1) {
og = std::make_shared<ngraph::op::Reshape>(og, ngraph::AxisVector{0},
ngraph::Shape{});
}
auto result = std::make_shared<ngraph::op::Broadcast>(og, x_shape, axes);
paddle::platform::SetOutputNode(op, "X@GRAD", result, ngb_node_map);
}
}
}
} // namespace ngraphs
} // namespace operators
} // namespace paddle
REGISTER_NG_OP(reduce_sum, BuildReduceSumNode);
REGISTER_NG_OP(reduce_sum_grad, BuildReduceSumGradNode);
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest, sys
sys.path.append("../")
import numpy as np
from test_reduce_op import TestSumOp, Test1DReduce, \
Test2DReduce0, Test2DReduce1, Test3DReduce0, Test3DReduce1, Test3DReduce2, \
Test3DReduce3, TestKeepDimReduce, TestKeepDimReduceSumMultiAxises, \
TestReduceSumWithDimOne, TestReduceSumWithNumelOne
class Test3DReduce21(Test1DReduce):
def setUp(self):
self.op_type = "reduce_sum"
self.attrs = {'dim': [1, 2]}
self.inputs = {'X': np.random.random((20, 1, 5)).astype("float64")}
self.outputs = {
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
}
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册