Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
70a887af
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
70a887af
编写于
5月 29, 2019
作者:
P
pawelpiotrowicz
提交者:
tensor-tang
5月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NGraph] Add reduce_sum operator for Ngraph (#17450)
test=develop
上级
29baca0d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
198 addition
and
0 deletion
+198
-0
paddle/fluid/operators/ngraph/ops/reduce_sum_op.h
paddle/fluid/operators/ngraph/ops/reduce_sum_op.h
+161
-0
python/paddle/fluid/tests/unittests/ngraph/test_reduce_ngraph_op.py
...dle/fluid/tests/unittests/ngraph/test_reduce_ngraph_op.py
+37
-0
未找到文件。
paddle/fluid/operators/ngraph/ops/reduce_sum_op.h
0 → 100644
浏览文件 @
70a887af
/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <functional>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
ngraphs
{
void
BuildReduceSumNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>
&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
input
=
paddle
::
platform
::
GetInputNode
(
op
,
"X"
,
ngb_node_map
);
auto
op_attrs
=
paddle
::
framework
::
AttrReader
(
op
->
Attrs
());
bool
reduce_all
=
op_attrs
.
Get
<
bool
>
(
"reduce_all"
);
bool
keep_dim
=
op_attrs
.
Get
<
bool
>
(
"keep_dim"
);
std
::
vector
<
int
>
dim
=
op_attrs
.
Get
<
std
::
vector
<
int
>>
(
"dim"
);
auto
input_shape
=
input
->
get_shape
();
ngraph
::
AxisSet
axes
;
if
(
reduce_all
==
true
)
{
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
++
i
)
{
axes
.
insert
(
i
);
}
}
else
{
for
(
auto
&
i
:
dim
)
{
if
(
i
<
0
)
{
axes
.
insert
(
input_shape
.
size
()
+
i
);
}
else
{
axes
.
insert
(
i
);
}
}
}
std
::
shared_ptr
<
ngraph
::
Node
>
reduce_sum
=
std
::
make_shared
<
ngraph
::
op
::
Sum
>
(
input
,
axes
);
if
(
keep_dim
==
true
)
{
std
::
vector
<
size_t
>
dim_shape
;
std
::
copy
(
input_shape
.
begin
(),
input_shape
.
end
(),
std
::
back_inserter
(
dim_shape
));
for
(
auto
&
i
:
dim
)
{
if
(
i
<
0
)
{
i
=
input_shape
.
size
()
+
i
;
}
dim_shape
[
i
]
=
1
;
}
std
::
vector
<
size_t
>
axis_vector
(
input_shape
.
size
()
-
dim
.
size
());
std
::
iota
(
axis_vector
.
begin
(),
axis_vector
.
end
(),
0
);
auto
reduce_sum_dim
=
std
::
make_shared
<
ngraph
::
op
::
Reshape
>
(
reduce_sum
,
ngraph
::
AxisVector
(
axis_vector
),
ngraph
::
Shape
(
dim_shape
));
paddle
::
platform
::
SetOutputNode
(
op
,
"Out"
,
reduce_sum_dim
,
ngb_node_map
);
}
else
{
if
(
reduce_sum
->
get_shape
()
==
ngraph
::
Shape
{})
{
reduce_sum
=
paddle
::
platform
::
NgReshaper
(
reduce_sum
,
ngraph
::
Shape
{
1
});
}
paddle
::
platform
::
SetOutputNode
(
op
,
"Out"
,
reduce_sum
,
ngb_node_map
);
}
}
void
BuildReduceSumGradNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>
&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
x
=
paddle
::
platform
::
GetInputNode
(
op
,
"X"
,
ngb_node_map
);
auto
og
=
paddle
::
platform
::
GetInputNode
(
op
,
"Out@GRAD"
,
ngb_node_map
);
auto
op_attrs
=
paddle
::
framework
::
AttrReader
(
op
->
Attrs
());
std
::
vector
<
int
>
dim
=
op_attrs
.
Get
<
std
::
vector
<
int
>>
(
"dim"
);
bool
reduce_all
=
op_attrs
.
Get
<
bool
>
(
"reduce_all"
);
bool
keep_dim
=
op_attrs
.
Get
<
bool
>
(
"keep_dim"
);
auto
og_shape
=
og
->
get_shape
();
auto
x_shape
=
x
->
get_shape
();
float
x_size
=
std
::
accumulate
(
std
::
begin
(
x_shape
),
std
::
end
(
x_shape
),
1
,
std
::
multiplies
<
float
>
());
float
og_size
=
std
::
accumulate
(
std
::
begin
(
og_shape
),
std
::
end
(
og_shape
),
1
,
std
::
multiplies
<
float
>
());
ngraph
::
AxisSet
axes
;
if
(
reduce_all
==
true
)
{
for
(
size_t
i
=
0
;
i
<
x_shape
.
size
();
i
++
)
{
axes
.
insert
(
i
);
}
}
else
{
for
(
auto
&
i
:
dim
)
{
if
(
i
<
0
)
{
axes
.
insert
(
x_shape
.
size
()
+
i
);
}
else
{
axes
.
insert
(
i
);
}
}
}
std
::
vector
<
size_t
>
axis_vector
(
og_shape
.
size
());
std
::
iota
(
axis_vector
.
begin
(),
axis_vector
.
end
(),
0
);
std
::
vector
<
size_t
>
dim_shape
;
for
(
size_t
i
=
0
;
i
<
x_shape
.
size
();
i
++
)
{
if
(
std
::
find
(
dim
.
begin
(),
dim
.
end
(),
i
)
==
dim
.
end
()
&&
std
::
find
(
dim
.
begin
(),
dim
.
end
(),
i
-
x_shape
.
size
())
==
dim
.
end
())
{
dim_shape
.
push_back
(
x_shape
[
i
]);
}
}
if
(
keep_dim
==
true
)
{
// reshape
if
(
x_size
==
og_size
)
{
paddle
::
platform
::
SetOutputNode
(
op
,
"X@GRAD"
,
og
,
ngb_node_map
);
return
;
}
auto
og_dim
=
std
::
make_shared
<
ngraph
::
op
::
Reshape
>
(
og
,
ngraph
::
AxisVector
(
axis_vector
),
ngraph
::
Shape
(
dim_shape
));
auto
result
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
og_dim
,
x_shape
,
axes
);
paddle
::
platform
::
SetOutputNode
(
op
,
"X@GRAD"
,
result
,
ngb_node_map
);
}
else
{
if
(
x_size
==
og_size
)
{
auto
og_dim
=
std
::
make_shared
<
ngraph
::
op
::
Reshape
>
(
og
,
ngraph
::
AxisVector
(
axis_vector
),
x_shape
);
paddle
::
platform
::
SetOutputNode
(
op
,
"X@GRAD"
,
og_dim
,
ngb_node_map
);
}
else
{
if
(
og
->
get_shape
().
size
()
==
1
&&
og
->
get_shape
()[
0
]
==
1
)
{
og
=
std
::
make_shared
<
ngraph
::
op
::
Reshape
>
(
og
,
ngraph
::
AxisVector
{
0
},
ngraph
::
Shape
{});
}
auto
result
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
og
,
x_shape
,
axes
);
paddle
::
platform
::
SetOutputNode
(
op
,
"X@GRAD"
,
result
,
ngb_node_map
);
}
}
}
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
REGISTER_NG_OP
(
reduce_sum
,
BuildReduceSumNode
);
REGISTER_NG_OP
(
reduce_sum_grad
,
BuildReduceSumGradNode
);
python/paddle/fluid/tests/unittests/ngraph/test_reduce_ngraph_op.py
0 → 100644
浏览文件 @
70a887af
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
,
sys
sys
.
path
.
append
(
"../"
)
import
numpy
as
np
from
test_reduce_op
import
TestSumOp
,
Test1DReduce
,
\
Test2DReduce0
,
Test2DReduce1
,
Test3DReduce0
,
Test3DReduce1
,
Test3DReduce2
,
\
Test3DReduce3
,
TestKeepDimReduce
,
TestKeepDimReduceSumMultiAxises
,
\
TestReduceSumWithDimOne
,
TestReduceSumWithNumelOne
class
Test3DReduce21
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
1
,
2
]}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
20
,
1
,
5
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录