未验证 提交 7024ade7 编写于 作者: C Chen Weihang 提交者: GitHub

[Phi] Move matrix inverse into phi (#40237)

* move matrix inverse into phi

* change license year
上级 975f99ab
......@@ -19,11 +19,11 @@
#include <cmath>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
namespace paddle {
namespace operators {
......@@ -226,7 +226,7 @@ class DeterminantGradKernel : public framework::OpKernel<T> {
inverse_A.Resize(input->dims());
inverse_A.mutable_data<T>(context.GetPlace());
math::MatrixInverseFunctor<DeviceContext, T> mat_inv;
phi::funcs::MatrixInverseFunctor<DeviceContext, T> mat_inv;
mat_inv(dev_ctx, *input, &inverse_A);
VLOG(3) << "inverse(A) dims: " << inverse_A.dims();
......@@ -381,7 +381,7 @@ class SlogDeterminantGradKernel : public framework::OpKernel<T> {
inverse_A.Resize(input->dims());
inverse_A.mutable_data<T>(context.GetPlace());
math::MatrixInverseFunctor<DeviceContext, T> mat_inv;
phi::funcs::MatrixInverseFunctor<DeviceContext, T> mat_inv;
mat_inv(dev_ctx, *input, &inverse_A);
VLOG(3) << "inverse(A) dims: " << inverse_A.dims();
......
......@@ -15,8 +15,8 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
namespace paddle {
namespace operators {
......@@ -30,7 +30,7 @@ class InverseKernel : public framework::OpKernel<T> {
output->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
math::MatrixInverseFunctor<DeviceContext, T> mat_inv;
phi::funcs::MatrixInverseFunctor<DeviceContext, T> mat_inv;
mat_inv(dev_ctx, *input, output);
}
};
......
......@@ -46,7 +46,6 @@ math_library(vol2col)
math_library(prelu)
math_library(bert_encoder_functor)
math_library(tree2col DEPS math_function)
math_library(matrix_inverse)
math_library(segment_pooling)
math_library(matrix_solve)
......
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
namespace paddle {
namespace platform {
class CUDADeviceContext;
} // namespace platform
} // namespace paddle
namespace paddle {
namespace operators {
namespace math {
template <typename DeviceContext, typename T>
class MatrixInverseFunctor;
template <typename T>
class MatrixInverseFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& a, framework::Tensor* a_inv) {
#ifndef PADDLE_WITH_HIP
const auto& mat_dims = a.dims();
const int rank = mat_dims.size();
int n = mat_dims[rank - 1];
int batch_size = rank > 2 ? a.numel() / (n * n) : 1;
memory::allocation::AllocationPtr tmp_gpu_mat_data;
const T* gpu_mat = a.data<T>();
if (n >= 32) {
// Copy all elements of input matrix A to a temporary memory space to
// avoid being overriden by getrf.
tmp_gpu_mat_data = memory::Alloc(context, a.numel() * sizeof(T));
memory::Copy(context.GetPlace(), tmp_gpu_mat_data->ptr(),
context.GetPlace(), a.data(), a.numel() * sizeof(T),
context.stream());
gpu_mat = reinterpret_cast<const T*>(tmp_gpu_mat_data->ptr());
}
std::vector<const T*> cpu_ptrs(batch_size * 2);
for (int i = 0; i < batch_size; ++i) {
cpu_ptrs[i] = gpu_mat + i * n * n;
cpu_ptrs[i + batch_size] = a_inv->data<T>() + i * n * n;
}
// Copy the addresses of A and A_inv from host to device.
memory::allocation::AllocationPtr tmp_gpu_ptrs_data =
memory::Alloc(context, cpu_ptrs.size() * sizeof(T*));
memory::Copy(context.GetPlace(), tmp_gpu_ptrs_data->ptr(),
platform::CPUPlace(), static_cast<void*>(cpu_ptrs.data()),
cpu_ptrs.size() * sizeof(T*), context.stream());
T** gpu_inv_ptrs =
reinterpret_cast<T**>(tmp_gpu_ptrs_data->ptr()) + batch_size;
// Allocate device memory for info and pivots.
int num_ints = n < 32 ? batch_size : batch_size * (n + 1);
memory::allocation::AllocationPtr tmp_gpu_info_data =
memory::Alloc(context, num_ints * sizeof(int));
int* gpu_info_ptr = reinterpret_cast<int*>(tmp_gpu_info_data->ptr());
auto blas = phi::funcs::GetBlas<platform::CUDADeviceContext, T>(context);
std::vector<int> info; // only for singular checking
info.resize(batch_size);
// This functions in cuBLAS is intended to be used for matrices of small
// sizes where the launch overhead is a significant factor.
// TODO(Xreki): call function in cusolver for large matrices.
if (n < 32) {
// cublas<S/D>matinvBatched is a short cut of cublas<S/D>getrfBatched
// plus cublas<S/D>getriBatched.
// However it only works if N is less than 32. If not, we need to
// go through cublas<S/D>getrfBatched and cublas<S/D>getriBatched.
blas.BatchedMatInv(n,
reinterpret_cast<const T**>(tmp_gpu_ptrs_data->ptr()),
gpu_inv_ptrs, gpu_info_ptr, batch_size);
} else {
// This function performs the LU factorization of each matrix A by the
// equation P * A = L * U. L and U are written back to original matrix A,
// and diagonal elements of L are discarded.
int* gpu_pivot_ptr =
reinterpret_cast<int*>(tmp_gpu_info_data->ptr()) + batch_size;
blas.BatchedGETRF(n, reinterpret_cast<T**>(tmp_gpu_ptrs_data->ptr()),
gpu_pivot_ptr, gpu_info_ptr, batch_size);
blas.BatchedGETRI(n,
reinterpret_cast<const T**>(tmp_gpu_ptrs_data->ptr()),
gpu_pivot_ptr, gpu_inv_ptrs, gpu_info_ptr, batch_size);
}
memory::Copy(platform::CPUPlace(), info.data(), context.GetPlace(),
gpu_info_ptr, sizeof(int) * batch_size, context.stream());
for (int i = 0; i < batch_size; ++i) {
PADDLE_ENFORCE_EQ(info[i], 0,
platform::errors::PreconditionNotMet(
"For batch [%d]: U(%d, %d) is zero, singular U. "
"Please check the matrix value and change it to a "
"non-singular matrix",
i, info[i], info[i]));
}
#else
compute_inverse_eigen<platform::CUDADeviceContext, T>(context, a, a_inv);
#endif
}
};
template class MatrixInverseFunctor<platform::CUDADeviceContext, float>;
template class MatrixInverseFunctor<platform::CUDADeviceContext, double>;
} // namespace math
} // namespace operators
} // namespace paddle
......@@ -18,9 +18,9 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
namespace paddle {
namespace operators {
......@@ -67,7 +67,7 @@ void MatrixPowerFunction(const Tensor* X, const int n, Tensor* Out,
framework::TensorCopy(*X, ctx.GetPlace(), dev_ctx, &new_x);
} else {
// newX = X^{-1}, n = -n
math::MatrixInverseFunctor<DeviceContext, T> mat_inv;
phi::funcs::MatrixInverseFunctor<DeviceContext, T> mat_inv;
mat_inv(dev_ctx, *X, &new_x);
new_n = -n;
}
......@@ -200,7 +200,7 @@ void MatrixPowerGradFunction(const Tensor* X, const Tensor* Out,
framework::TensorCopy(*X, ctx.GetPlace(), dev_ctx, &new_x);
} else {
// newX = X^{-1}, n = -n
math::MatrixInverseFunctor<DeviceContext, T> mat_inv;
phi::funcs::MatrixInverseFunctor<DeviceContext, T> mat_inv;
mat_inv(dev_ctx, *X, &new_x);
new_n = -n;
}
......
......@@ -9,3 +9,4 @@ math_library(gru_compute DEPS activation_functions math_function)
math_library(lstm_compute DEPS activation_functions)
math_library(concat_and_split_functor DEPS dense_tensor)
math_library(matrix_reduce DEPS dense_tensor)
math_library(matrix_inverse DEPS dense_tensor eigen3 blas)
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
......@@ -12,27 +12,26 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "Eigen/Core"
#include "Eigen/LU"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
namespace paddle {
namespace operators {
namespace math {
template <typename T>
class MatrixInverseFunctor<platform::CPUDeviceContext, T> {
public:
void operator()(const platform::CPUDeviceContext& context,
const framework::Tensor& a, framework::Tensor* a_inv) {
compute_inverse_eigen<platform::CPUDeviceContext, T>(context, a, a_inv);
}
};
template class MatrixInverseFunctor<platform::CPUDeviceContext, float>;
template class MatrixInverseFunctor<platform::CPUDeviceContext, double>;
} // namespace math
} // namespace operators
} // namespace paddle
namespace phi {
namespace funcs {
template <typename Context, typename T>
void MatrixInverseFunctor<Context, T>::operator()(const Context& dev_ctx,
const DenseTensor& a,
DenseTensor* a_inv) {
ComputeInverseEigen<Context, T>(dev_ctx, a, a_inv);
}
template class MatrixInverseFunctor<CPUContext, float>;
template class MatrixInverseFunctor<CPUContext, double>;
// TODO(chenweihang): remove these instantiations later
template class MatrixInverseFunctor<paddle::platform::CPUDeviceContext, float>;
template class MatrixInverseFunctor<paddle::platform::CPUDeviceContext, double>;
} // namespace funcs
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
namespace phi {
namespace funcs {
template <typename Context, typename T>
void MatrixInverseFunctor<Context, T>::operator()(const Context& dev_ctx,
const DenseTensor& a,
DenseTensor* a_inv) {
#ifndef PADDLE_WITH_HIP
const auto& mat_dims = a.dims();
const int rank = mat_dims.size();
int n = mat_dims[rank - 1];
int batch_size = rank > 2 ? a.numel() / (n * n) : 1;
paddle::memory::allocation::AllocationPtr tmp_gpu_mat_data;
const T* gpu_mat = a.data<T>();
if (n >= 32) {
// Copy all elements of input matrix A to a temporary memory space to
// avoid being overriden by getrf.
tmp_gpu_mat_data = paddle::memory::Alloc(dev_ctx, a.numel() * sizeof(T));
paddle::memory::Copy(dev_ctx.GetPlace(),
tmp_gpu_mat_data->ptr(),
dev_ctx.GetPlace(),
a.data(),
a.numel() * sizeof(T),
dev_ctx.stream());
gpu_mat = reinterpret_cast<const T*>(tmp_gpu_mat_data->ptr());
}
std::vector<const T*> cpu_ptrs(batch_size * 2);
for (int i = 0; i < batch_size; ++i) {
cpu_ptrs[i] = gpu_mat + i * n * n;
cpu_ptrs[i + batch_size] = a_inv->data<T>() + i * n * n;
}
// Copy the addresses of A and A_inv from host to device.
paddle::memory::allocation::AllocationPtr tmp_gpu_ptrs_data =
paddle::memory::Alloc(dev_ctx, cpu_ptrs.size() * sizeof(T*));
paddle::memory::Copy(dev_ctx.GetPlace(),
tmp_gpu_ptrs_data->ptr(),
phi::CPUPlace(),
static_cast<void*>(cpu_ptrs.data()),
cpu_ptrs.size() * sizeof(T*),
dev_ctx.stream());
T** gpu_inv_ptrs =
reinterpret_cast<T**>(tmp_gpu_ptrs_data->ptr()) + batch_size;
// Allocate device memory for info and pivots.
int num_ints = n < 32 ? batch_size : batch_size * (n + 1);
paddle::memory::allocation::AllocationPtr tmp_gpu_info_data =
paddle::memory::Alloc(dev_ctx, num_ints * sizeof(int));
int* gpu_info_ptr = reinterpret_cast<int*>(tmp_gpu_info_data->ptr());
auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
std::vector<int> info; // only for singular checking
info.resize(batch_size);
// This functions in cuBLAS is intended to be used for matrices of small
// sizes where the launch overhead is a significant factor.
// TODO(Xreki): call function in cusolver for large matrices.
if (n < 32) {
// cublas<S/D>matinvBatched is a short cut of cublas<S/D>getrfBatched
// plus cublas<S/D>getriBatched.
// However it only works if N is less than 32. If not, we need to
// go through cublas<S/D>getrfBatched and cublas<S/D>getriBatched.
blas.BatchedMatInv(n,
reinterpret_cast<const T**>(tmp_gpu_ptrs_data->ptr()),
gpu_inv_ptrs,
gpu_info_ptr,
batch_size);
} else {
// This function performs the LU factorization of each matrix A by the
// equation P * A = L * U. L and U are written back to original matrix A,
// and diagonal elements of L are discarded.
int* gpu_pivot_ptr =
reinterpret_cast<int*>(tmp_gpu_info_data->ptr()) + batch_size;
blas.BatchedGETRF(n,
reinterpret_cast<T**>(tmp_gpu_ptrs_data->ptr()),
gpu_pivot_ptr,
gpu_info_ptr,
batch_size);
blas.BatchedGETRI(n,
reinterpret_cast<const T**>(tmp_gpu_ptrs_data->ptr()),
gpu_pivot_ptr,
gpu_inv_ptrs,
gpu_info_ptr,
batch_size);
}
paddle::memory::Copy(phi::CPUPlace(),
info.data(),
dev_ctx.GetPlace(),
gpu_info_ptr,
sizeof(int) * batch_size,
dev_ctx.stream());
for (int i = 0; i < batch_size; ++i) {
PADDLE_ENFORCE_EQ(info[i],
0,
phi::errors::PreconditionNotMet(
"For batch [%d]: U(%d, %d) is zero, singular U. "
"Please check the matrix value and change it to a "
"non-singular matrix",
i,
info[i],
info[i]));
}
#else
ComputeInverseEigen<Context, T>(dev_ctx, a, a_inv);
#endif
}
template class MatrixInverseFunctor<GPUContext, float>;
template class MatrixInverseFunctor<GPUContext, double>;
// TODO(chenweihang): remove these instantiations later
template class MatrixInverseFunctor<paddle::platform::CUDADeviceContext, float>;
template class MatrixInverseFunctor<paddle::platform::CUDADeviceContext,
double>;
} // namespace funcs
} // namespace phi
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
......@@ -17,17 +17,18 @@ limitations under the License. */
#include <string>
#include "Eigen/Core"
#include "Eigen/LU"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
namespace paddle {
namespace operators {
namespace math {
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
template <typename DeviceContext, typename T>
void compute_inverse_eigen(const DeviceContext& context,
const framework::Tensor& a,
framework::Tensor* a_inv) {
namespace phi {
namespace funcs {
template <typename Context, typename T>
void ComputeInverseEigen(const Context& dev_ctx,
const DenseTensor& a,
DenseTensor* a_inv) {
using Matrix =
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
using EigenMatrixMap = Eigen::Map<Matrix>;
......@@ -38,7 +39,7 @@ void compute_inverse_eigen(const DeviceContext& context,
int batch_size = rank > 2 ? a.numel() / (n * n) : 1;
const T* a_ptr = a.data<T>();
T* a_inv_ptr = a_inv->mutable_data<T>(context.GetPlace());
T* a_inv_ptr = a_inv->mutable_data<T>(dev_ctx.GetPlace());
for (int i = 0; i < batch_size; ++i) {
ConstEigenMatrixMap mat(a_ptr + i * n * n, n, n);
......@@ -47,20 +48,20 @@ void compute_inverse_eigen(const DeviceContext& context,
lu.compute(mat);
const T min_abs_pivot = lu.matrixLU().diagonal().cwiseAbs().minCoeff();
PADDLE_ENFORCE_GT(
min_abs_pivot, static_cast<T>(0),
platform::errors::InvalidArgument("Input is not invertible."));
PADDLE_ENFORCE_GT(min_abs_pivot,
static_cast<T>(0),
errors::InvalidArgument("Input is not invertible."));
mat_inv.noalias() = lu.inverse();
}
}
template <typename DeviceContext, typename T>
template <typename Context, typename T>
class MatrixInverseFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& a,
framework::Tensor* a_inv);
void operator()(const Context& dev_ctx,
const DenseTensor& a,
DenseTensor* a_inv);
};
} // namespace math
} // namespace operators
} // namespace paddle
} // namespace funcs
} // namespace phi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册