提交 6b87469c 编写于 作者: S Shang Zhizhou

add seed to random in test_activation_op

上级 78a4273e
......@@ -50,6 +50,7 @@ class TestActivation(OpTest):
self.init_dtype()
self.init_kernel_type()
np.random.seed(2048)
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.exp(x)
......@@ -99,6 +100,7 @@ class TestSigmoid(TestActivation):
self.op_type = "sigmoid"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
out = 1 / (1 + np.exp(-x))
......@@ -120,6 +122,7 @@ class TestLogSigmoid(TestActivation):
self.op_type = "logsigmoid"
self.init_dtype()
np.random.seed(2048)
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
out = np.log(1 / (1 + np.exp(-x)))
......@@ -135,6 +138,7 @@ class TestLogSigmoid(TestActivation):
class TestLogSigmoidAPI(unittest.TestCase):
# test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
def setUp(self):
np.random.seed(1024)
self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
......@@ -191,6 +195,7 @@ class TestTanh(TestActivation, TestParameter):
paddle.enable_static()
self.op_type = "tanh"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.tanh(x)
......@@ -213,6 +218,7 @@ class TestTanhAPI(unittest.TestCase):
# test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
def setUp(self):
self.dtype = 'float32'
np.random.seed(1024)
self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
......@@ -271,6 +277,7 @@ class TestAtan(TestActivation, TestParameter):
self.op_type = "atan"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.arctan(x)
......@@ -308,6 +315,7 @@ class TestSinh(TestActivation):
self.op_type = "sinh"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.sinh(x)
......@@ -381,6 +389,7 @@ class TestCosh(TestActivation):
self.op_type = "cosh"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.cosh(x)
......@@ -459,6 +468,7 @@ class TestTanhshrink(TestActivation):
self.op_type = "tanh_shrink"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
out = ref_tanhshrink(x)
......@@ -474,6 +484,7 @@ class TestTanhshrink(TestActivation):
class TestTanhshrinkAPI(unittest.TestCase):
# test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
def setUp(self):
np.random.seed(1024)
self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
......@@ -539,6 +550,7 @@ class TestHardShrink(TestActivation):
self.threshold = 0.5
self.set_attrs()
np.random.seed(1024)
x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
out = ref_hardshrink(x, self.threshold)
......@@ -564,6 +576,7 @@ class TestHardShrinkAPI(unittest.TestCase):
# test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
def setUp(self):
paddle.enable_static()
np.random.seed(1024)
self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
......@@ -633,6 +646,7 @@ def ref_hardtanh(x, min=-1.0, max=1.0):
class TestHardtanhAPI(unittest.TestCase):
# test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
def setUp(self):
np.random.seed(1024)
self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
......@@ -696,6 +710,7 @@ class TestSoftshrink(TestActivation):
threshold = 0.8
np.random.seed(1023)
x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
out = ref_softshrink(x, threshold)
self.inputs = {'X': x}
......@@ -712,6 +727,7 @@ class TestSoftshrinkAPI(unittest.TestCase):
# test paddle.nn.Softshrink, paddle.nn.functional.softshrink
def setUp(self):
self.threshold = 0.8
np.random.seed(1024)
self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
......@@ -772,6 +788,7 @@ class TestSqrt(TestActivation, TestParameter):
self.op_type = "sqrt"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.sqrt(x)
......@@ -790,6 +807,7 @@ class TestRsqrt(TestActivation):
self.op_type = "rsqrt"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
out = 1.0 / np.sqrt(x)
......@@ -808,6 +826,7 @@ class TestAbs(TestActivation):
self.op_type = "abs"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
# Because we set delta = 0.005 in calculating numeric gradient,
# if x is too small, such as 0.002, x_neg will be -0.003
......@@ -831,6 +850,7 @@ class TestCeil(TestActivation):
self.op_type = "ceil"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
out = np.ceil(x)
......@@ -848,6 +868,7 @@ class TestFloor(TestActivation):
self.op_type = "floor"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
out = np.floor(x)
......@@ -867,6 +888,7 @@ class TestCos(TestActivation):
self.op_type = "cos"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
out = np.cos(x)
......@@ -885,6 +907,7 @@ class TestAcos(TestActivation):
self.op_type = "acos"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
out = np.arccos(x)
......@@ -903,6 +926,7 @@ class TestSin(TestActivation, TestParameter):
self.op_type = "sin"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
out = np.sin(x)
......@@ -921,6 +945,7 @@ class TestAsin(TestActivation):
self.op_type = "asin"
self.init_dtype()
np.random.seed(2048)
x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
out = np.arcsin(x)
......@@ -939,6 +964,7 @@ class TestRound(TestActivation):
self.op_type = "round"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
out = np.round(x)
......@@ -955,6 +981,7 @@ class TestRelu(TestActivation):
self.op_type = "relu"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
# The same reason with TestAbs
x[np.abs(x) < 0.005] = 0.02
......@@ -972,6 +999,7 @@ class TestRelu(TestActivation):
class TestReluAPI(unittest.TestCase):
# test paddle.nn.ReLU, paddle.nn.functional.relu
def setUp(self):
np.random.seed(1024)
self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
......@@ -1029,7 +1057,7 @@ class TestLeakyRelu(TestActivation):
self.init_dtype()
alpha = self.get_alpha()
np.random.seed(10)
np.random.seed(1024)
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
# The same reason with TestAbs
x[np.abs(x) < 0.005] = 0.05
......@@ -1064,6 +1092,7 @@ class TestLeakyReluAPI(unittest.TestCase):
# test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
# fluid.layers.leaky_relu
def setUp(self):
np.random.seed(1024)
self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
......@@ -1137,6 +1166,7 @@ class TestGeluApproximate(TestActivation):
self.op_type = "gelu"
self.init_dtype()
approximate = True
np.random.seed(1024)
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
out = gelu(x, approximate)
......@@ -1156,6 +1186,7 @@ class TestGelu(TestActivation):
self.op_type = "gelu"
self.init_dtype()
approximate = False
np.random.seed(2048)
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
out = gelu(x, approximate)
......@@ -1172,6 +1203,7 @@ class TestGelu(TestActivation):
class TestGELUAPI(unittest.TestCase):
# test paddle.nn.GELU, paddle.nn.functional.gelu
def setUp(self):
np.random.seed(1024)
self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
......@@ -1226,6 +1258,7 @@ class TestBRelu(TestActivation):
self.op_type = "brelu"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
t_min = 1.0
t_max = 4.0
......@@ -1274,6 +1307,7 @@ class TestRelu6(TestActivation):
self.op_type = "relu6"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
x[np.abs(x) < 0.005] = 0.02
out = ref_relu6(x)
......@@ -1291,6 +1325,7 @@ class TestRelu6(TestActivation):
class TestRelu6API(unittest.TestCase):
# test paddle.nn.ReLU6, paddle.nn.functional.relu6
def setUp(self):
np.random.seed(1024)
self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
self.x_np[np.abs(self.x_np) < 0.005] = 0.02
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
......@@ -1349,6 +1384,7 @@ class TestHardSwish(TestActivation):
self.op_type = 'hard_swish'
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
threshold = 6.0
scale = 6.0
......@@ -1388,6 +1424,7 @@ class TestSoftRelu(TestActivation):
self.op_type = "soft_relu"
self.init_dtype()
np.random.seed(4096)
x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
threshold = 2.0
# The same reason with TestAbs
......@@ -1433,6 +1470,7 @@ class TestELU(TestActivation):
self.op_type = "elu"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
alpha = 1.
out = elu(x, alpha)
......@@ -1506,6 +1544,7 @@ class TestReciprocal(TestActivation):
self.op_type = "reciprocal"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.reciprocal(x)
......@@ -1524,6 +1563,7 @@ class TestLog(TestActivation):
self.op_type = "log"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.log(x)
......@@ -1551,6 +1591,7 @@ class TestLog1p(TestActivation):
self.op_type = "log1p"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.log1p(x)
......@@ -1596,6 +1637,7 @@ class TestSquare(TestActivation):
self.op_type = "square"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.square(x)
......@@ -1614,6 +1656,7 @@ class TestPow(TestActivation):
self.op_type = "pow"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.power(x, 3)
......@@ -1633,6 +1676,7 @@ class TestPow_factor_tensor(TestActivation):
self.op_type = "pow"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.power(x, 3)
......@@ -1710,6 +1754,7 @@ class TestSTanh(TestActivation):
self.op_type = "stanh"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
scale_a = 2.0 / 3.0
scale_b = 1.7159
......@@ -1755,6 +1800,7 @@ class TestSoftplus(TestActivation):
beta = 2
threshold = 15
np.random.seed(1024)
x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
out = ref_softplus(x, beta, threshold)
self.inputs = {'X': x}
......@@ -1772,6 +1818,7 @@ class TestSoftplusAPI(unittest.TestCase):
def setUp(self):
self.beta = 2
self.threshold = 15
np.random.seed(1024)
self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
......@@ -1834,6 +1881,7 @@ class TestSoftsign(TestActivation):
self.op_type = "softsign"
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
out = ref_softsign(x)
self.inputs = {'X': x}
......@@ -1848,6 +1896,7 @@ class TestSoftsign(TestActivation):
class TestSoftsignAPI(unittest.TestCase):
# test paddle.nn.Softsign, paddle.nn.functional.softsign
def setUp(self):
np.random.seed(1024)
self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
else paddle.CPUPlace()
......@@ -1907,6 +1956,7 @@ class TestThresholdedRelu(TestActivation):
threshold = 0.25
self.delta = 0.005
np.random.seed(1024)
X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
# Same reason as TestAbs
......@@ -1943,6 +1993,7 @@ class TestHardSigmoid(TestActivation):
self.op_type = "hard_sigmoid"
self.init_dtype()
np.random.seed(1024)
X = np.random.uniform(-5, 5, [10, 12]).astype("float32")
slope = 0.2
offset = 0.5
......@@ -1987,6 +2038,7 @@ class TestSwish(TestActivation):
self.op_type = "swish"
self.init_dtype()
np.random.seed(1024)
X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
beta = 2.3
out = X * expit(beta * X)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册