Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
67eff9fa
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
67eff9fa
编写于
8月 31, 2017
作者:
H
Helin Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
polish
上级
c2a16b5c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
8 addition
and
5 deletion
+8
-5
doc/design/ops/dist_train.md
doc/design/ops/dist_train.md
+8
-5
未找到文件。
doc/design/ops/dist_train.md
浏览文件 @
67eff9fa
...
@@ -65,7 +65,8 @@ After converting:
...
@@ -65,7 +65,8 @@ After converting:
-
Model parallelism become easier to implement: it's an extension to
-
Model parallelism become easier to implement: it's an extension to
the trainer - parameter server approach. we already have the
the trainer - parameter server approach. we already have the
communication OPs, but need to extend the graph converter.
communication OPs, but need to extend the graph converter's
placement functionality.
-
User-defined optimizer is easier to add - user can now express it as
-
User-defined optimizer is easier to add - user can now express it as
a subgraph.
a subgraph.
...
@@ -90,14 +91,16 @@ After converting:
...
@@ -90,14 +91,16 @@ After converting:
-
In the "Aync SGD" figure, the "W" variable on the parameter server
-
In the "Aync SGD" figure, the "W" variable on the parameter server
could be read and wrote concurrently, what is our locking strategy?
could be read and wrote concurrently, what is our locking strategy?
E.g., each variable have a lock cpp method to be invoked by every
OP, or, have a lock OP.
-
Does our current tensor design supports enqueue (put the input tensor
-
Can the Enqueue OP be implemented under our current tensor design
into the queue tensor)?
(puts the input tensor
into the queue tensor)?
-
*Dequeue*
OP will have variable numbers of output (depends on the
-
*Dequeue*
OP will have variable numbers of output (depends on the
`min_count`
attribute), does our current design support it? (similar
`min_count`
attribute), does our current design support it? (similar
question for the
*Add*
OP)
question for the
*Add*
OP)
References:
###
References:
[1]
(TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems)[https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf]
[
1]
[TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
](
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录