Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
672d94b2
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
672d94b2
编写于
12月 17, 2021
作者:
F
feng_shuai
提交者:
GitHub
12月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add test for conv_transpose_bn_fuse_pass (#38203)
上级
6d1b8c52
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
230 addition
and
0 deletion
+230
-0
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
+5
-0
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
.../paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/ir/inference/test_conv_transpose_bn_fuse_pass.py
...nittests/ir/inference/test_conv_transpose_bn_fuse_pass.py
+224
-0
未找到文件。
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
浏览文件 @
672d94b2
...
...
@@ -744,3 +744,8 @@ REGISTER_PASS_CAPABILITY(conv_transpose_eltwiseadd_bn_fuse_pass)
.
LE
(
"conv2d_transpose"
,
2
)
.
LE
(
"elementwise_add"
,
1
)
.
EQ
(
"batch_norm"
,
0
));
REGISTER_PASS_CAPABILITY
(
conv_transpose_bn_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
LE
(
"conv2d_transpose"
,
2
)
.
EQ
(
"batch_norm"
,
0
));
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
浏览文件 @
672d94b2
...
...
@@ -89,5 +89,6 @@ if (WITH_MKLDNN)
set_tests_properties
(
test_mkldnn_depthwise_conv_pass PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_mkldnn_prelu_op PROPERTIES TIMEOUT 300
)
set_tests_properties
(
test_conv_transpose_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 250
)
set_tests_properties
(
test_conv_transpose_bn_fuse_pass PROPERTIES TIMEOUT 300
)
endif
()
endif
()
python/paddle/fluid/tests/unittests/ir/inference/test_conv_transpose_bn_fuse_pass.py
0 → 100644
浏览文件 @
672d94b2
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
PassAutoScanTest
,
IgnoreReasons
from
program_config
import
TensorConfig
,
ProgramConfig
,
OpConfig
import
numpy
as
np
import
copy
as
cp
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
import
hypothesis
from
hypothesis
import
given
,
settings
,
seed
,
example
,
assume
,
reproduce_failure
import
hypothesis.strategies
as
st
class
TestConvTransposeBnFusePass
(
PassAutoScanTest
):
'''
conv_input conv_weight_var(persistable)
\ /
conv_op
|
conv_out_var (bn_scale_var, bn_bias_var, bn_mean_var,bn_variance_var)
| /
batch_norm_op
|
\
bn_out_var (bn_mean_out_var, bn_variance_out_var,bn_saved_mean_var, bn_saved_variance_var)
'''
def
test
(
self
):
self
.
run_and_statis
(
quant
=
False
,
max_examples
=
150
,
max_duration
=
250
,
passes
=
[
"conv_transpose_bn_fuse_pass"
])
def
sample_program_config
(
self
,
draw
):
# generate random number
random_batch_size
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
3
))
random_channel
=
draw
(
st
.
integers
(
min_value
=
2
,
max_value
=
10
))
random_input_dim1
=
draw
(
st
.
integers
(
min_value
=
20
,
max_value
=
50
))
random_input_dim2
=
draw
(
st
.
integers
(
min_value
=
20
,
max_value
=
50
))
random_groups
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
2
))
random_dilations
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
3
),
min_size
=
2
,
max_size
=
2
))
random_strides
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
4
),
min_size
=
2
,
max_size
=
2
))
random_paddings
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
0
,
max_value
=
4
),
min_size
=
2
,
max_size
=
2
))
random_padding_algorithm
=
draw
(
st
.
sampled_from
([
"EXPLICIT"
,
"SAME"
,
"VALID"
]))
random_data_layout
=
draw
(
st
.
sampled_from
([
"NCHW"
,
"NHWC"
]))
random_use_mkldnn
=
draw
(
st
.
booleans
())
random_output_size
=
[]
random_filter
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
4
),
min_size
=
2
,
max_size
=
2
))
random_out_channel
=
draw
(
st
.
integers
(
min_value
=
10
,
max_value
=
25
))
random_epsilon
=
draw
(
st
.
floats
(
min_value
=
0.0
,
max_value
=
0.001
))
def
generate_conv2d_Input
():
shape
=
[
random_input_dim1
,
random_input_dim2
]
if
random_data_layout
==
"NCHW"
:
shape
.
insert
(
0
,
random_channel
*
random_groups
)
shape
.
insert
(
0
,
random_batch_size
)
else
:
shape
.
append
(
random_channel
)
shape
.
insert
(
0
,
random_batch_size
)
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
def
generate_conv2d_Filter
():
shape
=
cp
.
copy
(
random_filter
)
shape
.
insert
(
0
,
random_out_channel
*
random_groups
)
shape
.
insert
(
0
,
random_channel
*
random_groups
)
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
def
generate_batch_norm_Scale
():
return
np
.
random
.
random
(
[
random_out_channel
*
random_groups
*
random_groups
]).
astype
(
np
.
float32
)
def
generate_batch_norm_Bias
():
return
np
.
random
.
random
(
[
random_out_channel
*
random_groups
*
random_groups
]).
astype
(
np
.
float32
)
def
generate_batch_norm_Mean
():
return
np
.
random
.
random
(
[
random_out_channel
*
random_groups
*
random_groups
]).
astype
(
np
.
float32
)
def
generate_batch_norm_Variance
():
return
np
.
random
.
random
(
[
random_out_channel
*
random_groups
*
random_groups
]).
astype
(
np
.
float32
)
# define op
conv2d_op
=
OpConfig
(
type
=
"conv2d_transpose"
,
inputs
=
{
"Input"
:
[
"conv2d_Input"
],
"Filter"
:
[
"conv2d_Filter"
],
#"Bias": ["conv2d_Bias"],
},
outputs
=
{
"Output"
:
[
"conv2d_Out"
],
},
attrs
=
{
'groups'
:
random_groups
,
'dilations'
:
random_dilations
,
'strides'
:
random_strides
,
'paddings'
:
random_paddings
,
'padding_algorithm'
:
random_padding_algorithm
,
'data_format'
:
random_data_layout
,
'output_size'
:
random_output_size
,
'output_padding'
:
random_output_size
,
'use_mkldnn'
:
random_use_mkldnn
,
'is_test'
:
True
,
})
batch_norm_op
=
OpConfig
(
type
=
"batch_norm"
,
inputs
=
{
"X"
:
[
"conv2d_Out"
],
"Scale"
:
[
"batch_norm_Scale"
],
"Bias"
:
[
"batch_norm_Bias"
],
"Mean"
:
[
"batch_norm_Mean"
],
"Variance"
:
[
"batch_norm_Variance"
],
},
outputs
=
{
"Y"
:
[
"batch_norm_Y"
],
"MeanOut"
:
[
"batch_norm_Mean"
],
"VarianceOut"
:
[
"batch_norm_Variance"
],
"SavedMean"
:
[
"batch_norm_SavedMean"
],
"SavedVariance"
:
[
"batch_norm_SavedVariance"
],
"ReserveSpace"
:
[
"batch_norm_ReserveSpace"
],
},
attrs
=
{
'epsilon'
:
random_epsilon
,
'is_test'
:
True
,
'trainable_statistics'
:
False
,
'data_layout'
:
random_data_layout
,
'use_mkldnn'
:
random_use_mkldnn
,
})
# define model_net
model_net
=
[
conv2d_op
,
batch_norm_op
]
# set tensor
program_config
=
ProgramConfig
(
ops
=
model_net
,
inputs
=
{
"conv2d_Input"
:
TensorConfig
(
data_gen
=
generate_conv2d_Input
),
},
weights
=
{
"conv2d_Filter"
:
TensorConfig
(
data_gen
=
generate_conv2d_Filter
),
"batch_norm_Scale"
:
TensorConfig
(
data_gen
=
generate_batch_norm_Scale
),
"batch_norm_Bias"
:
TensorConfig
(
data_gen
=
generate_batch_norm_Bias
),
"batch_norm_Mean"
:
TensorConfig
(
data_gen
=
generate_batch_norm_Mean
),
"batch_norm_Variance"
:
TensorConfig
(
data_gen
=
generate_batch_norm_Variance
),
},
outputs
=
[
"batch_norm_Y"
])
return
program_config
def
sample_predictor_configs
(
self
,
program_config
):
# for mkldnn
config
=
self
.
create_inference_config
()
if
program_config
.
ops
[
0
].
attrs
[
'use_mkldnn'
]:
config
.
enable_mkldnn
()
yield
config
,
[
'conv2d_transpose'
],
(
1e-5
,
1e-5
)
# for cpu
else
:
yield
config
,
[
'conv2d_transpose'
,
'elementwise_add'
],
(
1e-5
,
1e-5
)
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
if
attrs
[
0
][
'data_format'
]
==
"NHWC"
:
return
False
return
True
def
add_ignore_pass_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
program_config
.
ops
[
0
].
attrs
[
'data_format'
]
==
"NHWC"
:
return
True
return
False
def
teller2
(
program_config
,
predictor_config
):
if
program_config
.
ops
[
0
].
attrs
[
'groups'
]
!=
1
:
return
True
return
False
self
.
add_ignore_check_case
(
teller1
,
IgnoreReasons
.
PASS_ACCURACY_ERROR
,
"The output format of conv2d_transpose is wrong when data_format attribute is NHWC"
)
self
.
add_ignore_check_case
(
teller2
,
IgnoreReasons
.
PASS_ACCURACY_ERROR
,
"there is diff when group >1 in this pass"
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录