Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
65e9bd90
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
65e9bd90
编写于
9月 02, 2022
作者:
Y
ykkk2333
提交者:
GitHub
9月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
migrate sigmoid with cross entropy, and tile xpu kernels to phi, test=kunlun (#45621)
上级
0b9d4c56
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
308 addition
and
321 deletion
+308
-321
paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op_xpu.cc
...uid/operators/sigmoid_cross_entropy_with_logits_op_xpu.cc
+0
-179
paddle/fluid/operators/tile_op_xpu.cc
paddle/fluid/operators/tile_op_xpu.cc
+0
-142
paddle/phi/kernels/xpu/sigmoid_cross_entropy_with_logits_grad_kernel.cc
...nels/xpu/sigmoid_cross_entropy_with_logits_grad_kernel.cc
+91
-0
paddle/phi/kernels/xpu/sigmoid_cross_entropy_with_logits_kernel.cc
...i/kernels/xpu/sigmoid_cross_entropy_with_logits_kernel.cc
+87
-0
paddle/phi/kernels/xpu/tile_kernel.cc
paddle/phi/kernels/xpu/tile_kernel.cc
+130
-0
未找到文件。
paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op_xpu.cc
已删除
100644 → 0
浏览文件 @
0b9d4c56
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
SigmoidCrossEntropyWithLogitsXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_xpu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
Unavailable
(
"This kernel only runs on XPU."
));
// input and output data
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
// attrs
int
ignore_index
=
context
.
Attr
<
int
>
(
"ignore_index"
);
bool
normalize
=
context
.
Attr
<
bool
>
(
"normalize"
);
// allocate temp memory
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
*
hit
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
input
->
numel
());
PADDLE_ENFORCE_NOT_NULL
(
hit
,
platform
::
errors
::
External
(
"XPU alloc_l3_or_gm returns nullptr"
));
int
r
=
xpu
::
sigmoid_cross_entropy_with_logits
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
input
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
label
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
output
->
data
<
T
>
()),
1
,
input
->
numel
(),
hit
,
ignore_index
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"sigmoid_cross_entropy_with_logits"
);
if
(
normalize
)
{
int
*
non_zero
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
1
);
PADDLE_ENFORCE_NOT_NULL
(
non_zero
,
platform
::
errors
::
External
(
"XPU alloc_l3_or_gm returns nullptr"
));
int
r
=
xpu
::
nonzero_count
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
hit
),
non_zero
,
input
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"nonzero_count"
);
int
non_zero_cpu
=
0
;
memory
::
Copy
(
platform
::
CPUPlace
(),
static_cast
<
void
*>
(
&
non_zero_cpu
),
context
.
GetPlace
(),
static_cast
<
void
*>
(
non_zero
),
sizeof
(
int
));
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
output
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
output
->
data
<
T
>
()),
input
->
numel
(),
false
,
1.0
f
/
static_cast
<
float
>
(
non_zero_cpu
),
0.0
f
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"scale"
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SigmoidCrossEntropyWithLogitsGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_xpu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
Unavailable
(
"This kernel only runs on XPU."
));
// input and output data
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
auto
*
dy
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
// attrs
int
ignore_index
=
context
.
Attr
<
int
>
(
"ignore_index"
);
bool
normalize
=
context
.
Attr
<
bool
>
(
"normalize"
);
// allocate temp memory
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
*
hit
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
input
->
numel
());
PADDLE_ENFORCE_NOT_NULL
(
hit
,
platform
::
errors
::
External
(
"XPU alloc_l3_or_gm returns nullptr"
));
int
r
=
xpu
::
sigmoid_cross_entropy_with_logits_grad
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
input
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
label
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
dy
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
dx
->
data
<
T
>
()),
1
,
input
->
numel
(),
hit
,
ignore_index
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"sigmoid_cross_entropy_with_logits"
);
if
(
normalize
)
{
int
*
non_zero
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
1
);
PADDLE_ENFORCE_NOT_NULL
(
non_zero
,
platform
::
errors
::
External
(
"XPU alloc_l3_or_gm returns nullptr"
));
int
r
=
xpu
::
nonzero_count
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
hit
),
non_zero
,
input
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"nonzero_count"
);
int
non_zero_cpu
=
0
;
memory
::
Copy
(
platform
::
CPUPlace
(),
static_cast
<
void
*>
(
&
non_zero_cpu
),
context
.
GetPlace
(),
static_cast
<
void
*>
(
non_zero
),
sizeof
(
int
));
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
dx
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
dx
->
data
<
T
>
()),
input
->
numel
(),
false
,
1.0
f
/
static_cast
<
float
>
(
non_zero_cpu
),
0.0
f
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"scale"
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
sigmoid_cross_entropy_with_logits
,
ops
::
SigmoidCrossEntropyWithLogitsXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
sigmoid_cross_entropy_with_logits_grad
,
ops
::
SigmoidCrossEntropyWithLogitsGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/fluid/operators/tile_op_xpu.cc
已删除
100644 → 0
浏览文件 @
0b9d4c56
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/tile_op_functor.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
TileXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
PADDLE_ENFORCE_GE
(
rank
,
1
,
platform
::
errors
::
InvalidArgument
(
"The rank of the input 'x' for tile op must be a positive "
"integer, but the value received is %d."
,
rank
));
PADDLE_ENFORCE_LE
(
rank
,
MAX_RANK_SUPPORTED
,
platform
::
errors
::
InvalidArgument
(
"The rank of the input 'x' for tile op "
"must be less than or equal to %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
rank
));
auto
repeat_times
=
get_repeat_times
(
context
);
int
repeat_times_size
=
repeat_times
.
size
();
PADDLE_ENFORCE_GE
(
repeat_times_size
,
1
,
platform
::
errors
::
InvalidArgument
(
"The number of elements of the input 'repeat_times' for tile "
"op must be positive, but the value received is %d."
,
repeat_times_size
));
PADDLE_ENFORCE_LE
(
repeat_times_size
,
MAX_RANK_SUPPORTED
,
platform
::
errors
::
InvalidArgument
(
"The number of elements of the input 'repeat_times' for tile op "
"must be less than or equal to %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
repeat_times_size
));
auto
*
in0
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
in_dims
=
in0
->
dims
();
for
(
size_t
i
=
0
;
i
<
repeat_times
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
repeat_times
[
i
],
0
,
platform
::
errors
::
InvalidArgument
(
"All elements of the input 'repeat_times' for tile op must "
"be positive integers, but the value received is %d."
,
repeat_times
[
i
]));
}
auto
vec_in_dims
=
phi
::
vectorize
<
int
>
(
in_dims
);
if
(
repeat_times
.
size
()
<
vec_in_dims
.
size
())
{
int
diff
=
vec_in_dims
.
size
()
-
repeat_times
.
size
();
repeat_times
.
insert
(
repeat_times
.
begin
(),
diff
,
1
);
}
else
{
int
diff
=
repeat_times
.
size
()
-
vec_in_dims
.
size
();
vec_in_dims
.
insert
(
vec_in_dims
.
begin
(),
diff
,
1
);
}
PADDLE_ENFORCE_EQ
(
repeat_times
.
size
(),
vec_in_dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The rank (%d) of the input 'x' and the rank (%d) of the input "
"'repeat_times' for tile op must match after promotion."
,
vec_in_dims
.
size
(),
repeat_times
.
size
()));
auto
*
out0
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
framework
::
DDim
new_in_dims
=
phi
::
make_ddim
(
vec_in_dims
);
framework
::
DDim
out_dims
(
new_in_dims
);
for
(
size_t
i
=
0
;
i
<
repeat_times
.
size
();
++
i
)
{
out_dims
[
i
]
*=
repeat_times
[
i
];
}
auto
vec_out_dims
=
phi
::
vectorize
<
int
>
(
out_dims
);
out0
->
Resize
(
out_dims
);
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
std
::
vector
<
int
>
temp
(
repeat_times
.
size
(),
1
);
if
(
repeat_times
==
temp
)
{
framework
::
TensorCopy
(
*
in0
,
context
.
GetPlace
(),
dev_ctx
,
out0
);
return
;
}
int
ret
=
XPU_SUCCESS
;
if
(
std
::
is_same
<
T
,
bool
>::
value
)
{
ret
=
xpu
::
broadcast
<
int8_t
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
int8_t
*>
(
in0
->
data
<
T
>
()),
reinterpret_cast
<
int8_t
*>
(
out0
->
data
<
T
>
()),
vec_in_dims
,
vec_out_dims
);
}
else
{
ret
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
in0
->
data
<
T
>
(),
out0
->
data
<
T
>
(),
vec_in_dims
,
vec_out_dims
);
}
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU tile kernel return wrong value[%d %s]"
,
ret
,
XPUAPIErrorMsg
[
ret
]));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
tile
,
ops
::
TileXPUKernel
<
bool
>
,
ops
::
TileXPUKernel
<
int
>
,
ops
::
TileXPUKernel
<
int64_t
>
,
ops
::
TileXPUKernel
<
float
>
);
#endif
paddle/phi/kernels/xpu/sigmoid_cross_entropy_with_logits_grad_kernel.cc
0 → 100644
浏览文件 @
65e9bd90
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "paddle/phi/kernels/sigmoid_cross_entropy_with_logits_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/memory/memcpy.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SigmoidCrossEntropyWithLogitsGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
label
,
const
DenseTensor
&
out_grad
,
bool
normalize
,
int
ignore_index
,
DenseTensor
*
in_grad
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
PADDLE_ENFORCE_EQ
(
x
.
place
().
GetType
()
==
phi
::
AllocationType
::
XPU
,
true
,
errors
::
Unavailable
(
"This kernel only runs on XPU."
));
dev_ctx
.
template
Alloc
<
T
>(
in_grad
);
// allocate temp memory
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
*
hit
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
x
.
numel
());
PADDLE_ENFORCE_NOT_NULL
(
hit
,
errors
::
External
(
"XPU alloc_l3_or_gm returns nullptr"
));
int
r
=
xpu
::
sigmoid_cross_entropy_with_logits_grad
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x
.
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
label
.
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
in_grad
->
data
<
T
>
()),
1
,
x
.
numel
(),
hit
,
ignore_index
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"sigmoid_cross_entropy_with_logits"
);
if
(
normalize
)
{
int
*
non_zero
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
1
);
PADDLE_ENFORCE_NOT_NULL
(
non_zero
,
errors
::
External
(
"XPU alloc_l3_or_gm returns nullptr"
));
int
r
=
xpu
::
nonzero_count
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
hit
),
non_zero
,
x
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"nonzero_count"
);
int
non_zero_cpu
=
0
;
paddle
::
memory
::
Copy
(
CPUPlace
(),
static_cast
<
void
*>
(
&
non_zero_cpu
),
dev_ctx
.
GetPlace
(),
static_cast
<
void
*>
(
non_zero
),
sizeof
(
int
));
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
in_grad
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
in_grad
->
data
<
T
>
()),
x
.
numel
(),
false
,
1.0
f
/
static_cast
<
float
>
(
non_zero_cpu
),
0.0
f
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"scale"
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
sigmoid_cross_entropy_with_logits_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
SigmoidCrossEntropyWithLogitsGradKernel
,
float
)
{}
paddle/phi/kernels/xpu/sigmoid_cross_entropy_with_logits_kernel.cc
0 → 100644
浏览文件 @
65e9bd90
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "paddle/phi/kernels/sigmoid_cross_entropy_with_logits_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/memory/memcpy.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SigmoidCrossEntropyWithLogitsKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
label
,
bool
normalize
,
int
ignore_index
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
PADDLE_ENFORCE_EQ
(
x
.
place
().
GetType
()
==
phi
::
AllocationType
::
XPU
,
true
,
errors
::
Unavailable
(
"This kernel only runs on XPU."
));
dev_ctx
.
template
Alloc
<
T
>(
out
);
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
*
hit
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
x
.
numel
());
PADDLE_ENFORCE_NOT_NULL
(
hit
,
errors
::
External
(
"XPU alloc_l3_or_gm returns nullptr"
));
int
r
=
xpu
::
sigmoid_cross_entropy_with_logits
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x
.
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
label
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
1
,
x
.
numel
(),
hit
,
ignore_index
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"sigmoid_cross_entropy_with_logits"
);
if
(
normalize
)
{
int
*
non_zero
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
1
);
PADDLE_ENFORCE_NOT_NULL
(
non_zero
,
errors
::
External
(
"XPU alloc_l3_or_gm returns nullptr"
));
int
r
=
xpu
::
nonzero_count
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
hit
),
non_zero
,
x
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"nonzero_count"
);
int
non_zero_cpu
=
0
;
paddle
::
memory
::
Copy
(
CPUPlace
(),
static_cast
<
void
*>
(
&
non_zero_cpu
),
dev_ctx
.
GetPlace
(),
static_cast
<
void
*>
(
non_zero
),
sizeof
(
int
));
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
x
.
numel
(),
false
,
1.0
f
/
static_cast
<
float
>
(
non_zero_cpu
),
0.0
f
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"scale"
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
sigmoid_cross_entropy_with_logits
,
XPU
,
ALL_LAYOUT
,
phi
::
SigmoidCrossEntropyWithLogitsKernel
,
float
)
{}
paddle/phi/kernels/xpu/tile_kernel.cc
0 → 100644
浏览文件 @
65e9bd90
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <type_traits>
#include <vector>
#include "paddle/phi/kernels/tile_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
TileKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
IntArray
&
repeat_times_arr
,
DenseTensor
*
out
)
{
auto
rank
=
x
.
dims
().
size
();
PADDLE_ENFORCE_GE
(
rank
,
1
,
errors
::
InvalidArgument
(
"The rank of the input 'x' for tile op must be a positive "
"integer, but the value received is %d."
,
rank
));
PADDLE_ENFORCE_LE
(
rank
,
MAX_RANK_SUPPORTED
,
errors
::
InvalidArgument
(
"The rank of the input 'x' for tile op "
"must be less than or equal to %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
rank
));
std
::
vector
<
int64_t
>
repeat_times
=
repeat_times_arr
.
GetData
();
int
repeat_times_size
=
repeat_times
.
size
();
PADDLE_ENFORCE_GE
(
repeat_times_size
,
1
,
errors
::
InvalidArgument
(
"The number of elements of the input 'repeat_times' for tile "
"op must be positive, but the value received is %d."
,
repeat_times_size
));
PADDLE_ENFORCE_LE
(
repeat_times_size
,
MAX_RANK_SUPPORTED
,
errors
::
InvalidArgument
(
"The number of elements of the input 'repeat_times' for tile op "
"must be less than or equal to %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
repeat_times_size
));
auto
in_dims
=
x
.
dims
();
for
(
size_t
i
=
0
;
i
<
repeat_times
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
repeat_times
[
i
],
0
,
errors
::
InvalidArgument
(
"All elements of the input 'repeat_times' for tile op must "
"be positive integers, but the value received is %d."
,
repeat_times
[
i
]));
}
auto
vec_in_dims
=
phi
::
vectorize
<
int
>
(
in_dims
);
if
(
repeat_times
.
size
()
<
vec_in_dims
.
size
())
{
int
diff
=
vec_in_dims
.
size
()
-
repeat_times
.
size
();
repeat_times
.
insert
(
repeat_times
.
begin
(),
diff
,
1
);
}
else
{
int
diff
=
repeat_times
.
size
()
-
vec_in_dims
.
size
();
vec_in_dims
.
insert
(
vec_in_dims
.
begin
(),
diff
,
1
);
}
PADDLE_ENFORCE_EQ
(
repeat_times
.
size
(),
vec_in_dims
.
size
(),
errors
::
InvalidArgument
(
"The rank (%d) of the input 'x' and the rank (%d) of the input "
"'repeat_times' for tile op must match after promotion."
,
vec_in_dims
.
size
(),
repeat_times
.
size
()));
DDim
new_in_dims
=
phi
::
make_ddim
(
vec_in_dims
);
DDim
out_dims
(
new_in_dims
);
for
(
size_t
i
=
0
;
i
<
repeat_times
.
size
();
++
i
)
{
out_dims
[
i
]
*=
repeat_times
[
i
];
}
auto
vec_out_dims
=
phi
::
vectorize
<
int
>
(
out_dims
);
out
->
Resize
(
out_dims
);
dev_ctx
.
template
Alloc
<
T
>(
out
);
std
::
vector
<
int64_t
>
temp
(
repeat_times
.
size
(),
1
);
if
(
repeat_times
==
temp
)
{
phi
::
Copy
(
dev_ctx
,
x
,
dev_ctx
.
GetPlace
(),
false
,
out
);
return
;
}
int
ret
=
XPU_SUCCESS
;
if
(
std
::
is_same
<
T
,
bool
>::
value
)
{
ret
=
xpu
::
broadcast
<
int8_t
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
int8_t
*>
(
x
.
data
<
T
>
()),
reinterpret_cast
<
int8_t
*>
(
out
->
data
<
T
>
()),
vec_in_dims
,
vec_out_dims
);
}
else
{
ret
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
x
.
data
<
T
>
(),
out
->
data
<
T
>
(),
vec_in_dims
,
vec_out_dims
);
}
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"broadcast"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
tile
,
XPU
,
ALL_LAYOUT
,
phi
::
TileKernel
,
bool
,
float
,
int
,
int64_t
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录