Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
63ade29b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
63ade29b
编写于
9月 24, 2020
作者:
C
cryoco
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add unittests and op version register for tensorrt_subgraph_pass
上级
c7e5cf16
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
626 addition
and
15 deletion
+626
-15
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+29
-0
paddle/fluid/inference/tensorrt/convert/softmax_op.cc
paddle/fluid/inference/tensorrt/convert/softmax_op.cc
+21
-1
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+5
-1
paddle/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.cu
...e/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.cu
+14
-10
python/paddle/fluid/tests/unittests/ir/inference/inference_pass_test.py
...fluid/tests/unittests/ir/inference/inference_pass_test.py
+11
-3
python/paddle/fluid/tests/unittests/ir/inference/test_tensorrt_subgraph_pass.py
...sts/unittests/ir/inference/test_tensorrt_subgraph_pass.py
+546
-0
未找到文件。
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
63ade29b
...
@@ -18,6 +18,7 @@
...
@@ -18,6 +18,7 @@
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h"
#include "paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
...
@@ -358,3 +359,31 @@ REGISTER_PASS(tensorrt_subgraph_pass,
...
@@ -358,3 +359,31 @@ REGISTER_PASS(tensorrt_subgraph_pass,
.
RequirePassAttr
(
"max_batch_size"
)
.
RequirePassAttr
(
"max_batch_size"
)
.
RequirePassAttr
(
"workspace_size"
)
.
RequirePassAttr
(
"workspace_size"
)
.
RequirePassAttr
(
"min_subgraph_size"
);
.
RequirePassAttr
(
"min_subgraph_size"
);
REGISTER_PASS_CAPABILITY
(
tensorrt_subgraph_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
EQ
(
"conv2d"
,
0
)
.
EQ
(
"pool2d"
,
0
)
.
EQ
(
"relu"
,
0
)
.
EQ
(
"softmax"
,
0
)
.
EQ
(
"sigmoid"
,
0
)
.
EQ
(
"hard_swish"
,
0
)
.
EQ
(
"depthwise_conv2d"
,
0
)
.
EQ
(
"batch_norm"
,
0
)
.
EQ
(
"concat"
,
0
)
.
EQ
(
"tanh"
,
0
)
.
EQ
(
"pad"
,
0
)
.
EQ
(
"elementwise_add"
,
0
)
.
EQ
(
"elementwise_mul"
,
0
)
.
EQ
(
"prelu"
,
0
)
.
LE
(
"conv2d_transpose"
,
1
)
.
LE
(
"leaky_relu"
,
1
)
.
EQ
(
"fc"
,
0
)
.
EQ
(
"shuffle_channel"
,
0
)
.
EQ
(
"swish"
,
0
)
.
EQ
(
"split"
,
0
)
.
EQ
(
"instance_norm"
,
0
)
.
EQ
(
"gelu"
,
0
)
.
EQ
(
"layer_norm"
,
0
)
.
EQ
(
"scale"
,
0
));
paddle/fluid/inference/tensorrt/convert/softmax_op.cc
浏览文件 @
63ade29b
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <algorithm>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -30,9 +31,28 @@ class SoftMaxOpConverter : public OpConverter {
...
@@ -30,9 +31,28 @@ class SoftMaxOpConverter : public OpConverter {
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
// Declare inputs
auto
*
input1
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
*
input1
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
nvinfer1
::
Dims
input_shape
=
input1
->
getDimensions
();
int
input_dims
=
input_shape
.
nbDims
;
int
axis
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"axis"
));
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
SoftMax
,
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
SoftMax
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input1
));
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input1
));
uint32_t
axes
=
std
::
max
(
0
,
input_dims
-
3
);
if
(
!
engine_
->
with_dynamic_shape
())
{
if
(
axis
==
-
1
)
{
axes
=
input_dims
-
1
;
}
else
{
axes
=
axis
;
}
layer
->
setAxes
(
1
<<
axes
);
}
else
{
if
(
axis
==
-
1
)
{
axes
=
input_dims
-
1
;
}
else
{
axes
=
axis
+
1
;
}
layer
->
setAxes
(
1
<<
axes
);
}
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"softmax"
,
{
output_name
},
test_mode
);
RreplenishLayerAndOutput
(
layer
,
"softmax"
,
{
output_name
},
test_mode
);
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
63ade29b
...
@@ -107,7 +107,11 @@ bool OpTeller::Tell(const std::string& op_type, const framework::OpDesc& desc,
...
@@ -107,7 +107,11 @@ bool OpTeller::Tell(const std::string& op_type, const framework::OpDesc& desc,
op_type
==
"depthwise_conv2d"
||
op_type
==
"conv2d_transpose"
)
{
op_type
==
"depthwise_conv2d"
||
op_type
==
"conv2d_transpose"
)
{
std
::
vector
<
int
>
paddings
=
std
::
vector
<
int
>
paddings
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"paddings"
));
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"paddings"
));
if
(
paddings
.
size
()
>
2
)
return
false
;
std
::
string
padding_algorithm
=
BOOST_GET_CONST
(
std
::
string
,
desc
.
GetAttr
(
"padding_algorithm"
));
if
(
paddings
.
size
()
>
2
||
(
padding_algorithm
==
"SAME"
&&
op_type
!=
"pool2d"
))
return
false
;
}
}
if
((
*
teller
)(
op_type
,
desc
,
use_no_calib_int8
))
return
true
;
if
((
*
teller
)(
op_type
,
desc
,
use_no_calib_int8
))
return
true
;
}
}
...
...
paddle/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.cu
浏览文件 @
63ade29b
...
@@ -50,10 +50,18 @@ int LayerNormPlugin::enqueue(int batch_size, const void *const *inputs,
...
@@ -50,10 +50,18 @@ int LayerNormPlugin::enqueue(int batch_size, const void *const *inputs,
float
*
output
=
reinterpret_cast
<
float
**>
(
outputs
)[
0
];
float
*
output
=
reinterpret_cast
<
float
**>
(
outputs
)[
0
];
int
begin_norm_axis
=
begin_norm_axis_
;
int
begin_norm_axis
=
begin_norm_axis_
;
float
eps
=
eps_
;
float
eps
=
eps_
;
int
c
=
input_dims
.
d
[
begin_norm_axis
-
1
];
scale_t
.
Resize
(
framework
::
make_ddim
({
c
}));
std
::
vector
<
int
>
input_shape
;
bias_t
.
Resize
(
framework
::
make_ddim
({
c
}));
input_shape
.
push_back
(
batch_size
);
for
(
int
i
=
0
;
i
<
input_dims
.
nbDims
;
i
++
)
{
input_shape
.
push_back
(
input_dims
.
d
[
i
]);
}
const
auto
input_ddim
=
framework
::
make_ddim
(
input_shape
);
auto
matrix_dim
=
framework
::
flatten_to_2d
(
input_ddim
,
begin_norm_axis
-
1
);
int
feature_size
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
scale_t
.
Resize
(
framework
::
make_ddim
({
feature_size
}));
bias_t
.
Resize
(
framework
::
make_ddim
({
feature_size
}));
mean_t
.
Resize
(
framework
::
make_ddim
(
mean_shape_
));
mean_t
.
Resize
(
framework
::
make_ddim
(
mean_shape_
));
variance_t
.
Resize
(
framework
::
make_ddim
(
variance_shape_
));
variance_t
.
Resize
(
framework
::
make_ddim
(
variance_shape_
));
int
device_id
;
int
device_id
;
...
@@ -63,15 +71,11 @@ int LayerNormPlugin::enqueue(int batch_size, const void *const *inputs,
...
@@ -63,15 +71,11 @@ int LayerNormPlugin::enqueue(int batch_size, const void *const *inputs,
float
*
mean_d
=
mean_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
float
*
mean_d
=
mean_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
float
*
variance_d
=
float
*
variance_d
=
variance_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
variance_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
cudaMemcpyAsync
(
scale_d
,
scale_
.
data
(),
sizeof
(
float
)
*
c
,
cudaMemcpyAsync
(
scale_d
,
scale_
.
data
(),
sizeof
(
float
)
*
feature_size
,
cudaMemcpyHostToDevice
,
stream
);
cudaMemcpyHostToDevice
,
stream
);
cudaMemcpyAsync
(
bias_d
,
bias_
.
data
(),
sizeof
(
float
)
*
c
,
cudaMemcpyAsync
(
bias_d
,
bias_
.
data
(),
sizeof
(
float
)
*
feature_size
,
cudaMemcpyHostToDevice
,
stream
);
cudaMemcpyHostToDevice
,
stream
);
std
::
vector
<
int
>
input_shape
;
input_shape
.
push_back
(
batch_size
);
for
(
int
i
=
0
;
i
<
input_dims
.
nbDims
;
i
++
)
{
input_shape
.
push_back
(
input_dims
.
d
[
i
]);
}
paddle
::
operators
::
LayerNormDirectCUDAFunctor
<
float
>
layer_norm
;
paddle
::
operators
::
LayerNormDirectCUDAFunctor
<
float
>
layer_norm
;
layer_norm
(
stream
,
input
,
input_shape
,
bias_d
,
scale_d
,
output
,
mean_d
,
layer_norm
(
stream
,
input
,
input_shape
,
bias_d
,
scale_d
,
output
,
mean_d
,
variance_d
,
begin_norm_axis
,
eps
);
variance_d
,
begin_norm_axis
,
eps
);
...
...
python/paddle/fluid/tests/unittests/ir/inference/inference_pass_test.py
浏览文件 @
63ade29b
...
@@ -133,7 +133,7 @@ class InferencePassTest(unittest.TestCase):
...
@@ -133,7 +133,7 @@ class InferencePassTest(unittest.TestCase):
for
place_
in
use_gpu
:
for
place_
in
use_gpu
:
self
.
check_output_with_option
(
place_
,
atol
)
self
.
check_output_with_option
(
place_
,
atol
)
def
check_output_with_option
(
self
,
use_gpu
,
atol
=
1e-5
):
def
check_output_with_option
(
self
,
use_gpu
,
atol
=
1e-5
,
flatten
=
False
):
'''
'''
Check whether calculating on CPU and GPU, enable TensorRT
Check whether calculating on CPU and GPU, enable TensorRT
or disable TensorRT, enable MKLDNN or disable MKLDNN
or disable TensorRT, enable MKLDNN or disable MKLDNN
...
@@ -155,9 +155,13 @@ class InferencePassTest(unittest.TestCase):
...
@@ -155,9 +155,13 @@ class InferencePassTest(unittest.TestCase):
format
(
device
))
format
(
device
))
for
out
,
analysis_output
in
zip
(
outs
,
analysis_outputs
):
for
out
,
analysis_output
in
zip
(
outs
,
analysis_outputs
):
out
=
np
.
array
(
out
)
if
flatten
:
out
=
out
.
flatten
()
analysis_output
=
analysis_output
.
flatten
()
self
.
assertTrue
(
self
.
assertTrue
(
np
.
allclose
(
np
.
allclose
(
np
.
array
(
out
)
,
analysis_output
,
atol
=
atol
),
out
,
analysis_output
,
atol
=
atol
),
"Output has diff between inference and training forward at {} "
.
"Output has diff between inference and training forward at {} "
.
format
(
device
))
format
(
device
))
...
@@ -172,9 +176,13 @@ class InferencePassTest(unittest.TestCase):
...
@@ -172,9 +176,13 @@ class InferencePassTest(unittest.TestCase):
"The number of outputs is different between GPU and TensorRT. "
)
"The number of outputs is different between GPU and TensorRT. "
)
for
out
,
tensorrt_output
in
zip
(
outs
,
tensorrt_outputs
):
for
out
,
tensorrt_output
in
zip
(
outs
,
tensorrt_outputs
):
out
=
np
.
array
(
out
)
if
flatten
:
out
=
out
.
flatten
()
tensorrt_output
=
tensorrt_output
.
flatten
()
self
.
assertTrue
(
self
.
assertTrue
(
np
.
allclose
(
np
.
allclose
(
np
.
array
(
out
)
,
tensorrt_output
,
atol
=
atol
),
out
,
tensorrt_output
,
atol
=
atol
),
"Output has diff between GPU and TensorRT. "
)
"Output has diff between GPU and TensorRT. "
)
# Check whether the mkldnn results and the CPU results are the same.
# Check whether the mkldnn results and the CPU results are the same.
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_tensorrt_subgraph_pass.py
0 → 100644
浏览文件 @
63ade29b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
inference_pass_test
import
InferencePassTest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.core
import
PassVersionChecker
from
paddle.fluid.core
import
AnalysisConfig
class
TensorRTSubgraphPassConvTest
(
InferencePassTest
):
def
setUp
(
self
):
self
.
set_params
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
6
,
64
,
64
],
dtype
=
"float32"
)
conv_out
=
fluid
.
layers
.
conv2d
(
input
=
data
,
num_filters
=
self
.
conv_num_filters
,
filter_size
=
self
.
conv_filter_size
,
groups
=
self
.
conv_groups
,
padding
=
self
.
conv_padding
,
bias_attr
=
False
,
act
=
None
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
([
1
,
6
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassConvTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
conv_out
]
def
set_params
(
self
):
self
.
conv_num_filters
=
6
self
.
conv_filter_size
=
6
self
.
conv_groups
=
3
self
.
conv_padding
=
[
1
,
1
]
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassConvValidPaddingTest
(
TensorRTSubgraphPassConvTest
):
def
set_params
(
self
):
self
.
conv_num_filters
=
6
self
.
conv_filter_size
=
6
self
.
conv_groups
=
3
self
.
conv_padding
=
'VALID'
'''
# conv2d padded in 'SAME' mode is not yet supported in TRT, reopen this when support is complete.
class TensorRTSubgraphPassConvSamePaddingTest(InferencePassTest):
def set_params(self):
self.conv_num_filters = 6
self.conv_filter_size = 6
self.conv_groups = 3
self.conv_padding = 'SAME'
'''
class
TensorRTSubgraphPassDepthwiseConvTest
(
TensorRTSubgraphPassConvTest
):
def
set_params
(
self
):
self
.
conv_num_filters
=
6
self
.
conv_filter_size
=
6
self
.
conv_groups
=
6
self
.
conv_padding
=
[
1
,
1
]
class
TensorRTSubgraphPassConvTransposeTest
(
InferencePassTest
):
def
setUp
(
self
):
self
.
set_params
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
6
,
64
,
64
],
dtype
=
"float32"
)
conv_out
=
fluid
.
layers
.
conv2d_transpose
(
input
=
data
,
num_filters
=
self
.
conv_num_filters
,
filter_size
=
self
.
conv_filter_size
,
groups
=
self
.
conv_groups
,
padding
=
self
.
conv_padding
,
bias_attr
=
False
,
act
=
None
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
([
1
,
6
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassConvTransposeTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
conv_out
]
def
set_params
(
self
):
self
.
conv_num_filters
=
6
self
.
conv_filter_size
=
6
self
.
conv_groups
=
1
self
.
conv_padding
=
[
1
,
1
]
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassConvTransposeValidPaddingTest
(
TensorRTSubgraphPassConvTransposeTest
):
def
set_params
(
self
):
self
.
conv_num_filters
=
6
self
.
conv_filter_size
=
6
self
.
conv_groups
=
1
self
.
conv_padding
=
'VALID'
'''
# conv2d_transpose padded in 'SAME' mode is not yet supported in TRT, reopen this when support is complete.
class TensorRTSubgraphPassConvTransposeSamePaddingTest(TensorRTSubgraphPassConvTransposeTest):
def set_params(self):
self.conv_num_filters = 6
self.conv_filter_size = 6
self.conv_groups = 1
self.conv_padding = 'SAME'
'''
class
TensorRTSubgraphPassDepthwiseConvTransposeTest
(
TensorRTSubgraphPassConvTransposeTest
):
def
set_params
(
self
):
self
.
conv_num_filters
=
6
self
.
conv_filter_size
=
6
self
.
conv_groups
=
1
self
.
conv_padding
=
[
1
,
1
]
class
TensorRTSubgraphPassFcTest
(
InferencePassTest
):
def
setUp
(
self
):
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
6
,
64
,
64
],
dtype
=
"float32"
)
fc_out
=
fluid
.
layers
.
fc
(
input
=
[
data
],
act
=
None
,
size
=
1000
)
reshape_out
=
fluid
.
layers
.
reshape
(
x
=
fc_out
,
shape
=
[
1
,
1000
])
self
.
feeds
=
{
"data"
:
np
.
random
.
random
([
1
,
6
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassFcTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
reshape_out
]
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
# TRT output shape of fc is (1, 1000, 1, 1). To compare the output value only, flatten the results.
self
.
check_output_with_option
(
use_gpu
,
flatten
=
True
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassPoolTest
(
InferencePassTest
):
def
setUp
(
self
):
self
.
set_params
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
6
,
64
,
64
],
dtype
=
"float32"
)
pool_out
=
fluid
.
layers
.
pool2d
(
input
=
data
,
pool_size
=
self
.
pool_size
,
pool_type
=
self
.
pool_type
,
pool_stride
=
self
.
pool_stride
,
pool_padding
=
self
.
pool_padding
,
global_pooling
=
self
.
global_pooling
,
ceil_mode
=
self
.
ceil_mode
,
exclusive
=
self
.
exclusive
)
out
=
fluid
.
layers
.
batch_norm
(
pool_out
,
is_test
=
True
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
([
1
,
6
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassPoolTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
out
]
def
set_params
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
0
self
.
global_pooling
=
False
self
.
ceil_mode
=
False
self
.
exclusive
=
False
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassAvgPoolTest
(
TensorRTSubgraphPassPoolTest
):
def
set_params
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'avg'
self
.
pool_stride
=
1
self
.
pool_padding
=
0
self
.
global_pooling
=
False
self
.
ceil_mode
=
False
self
.
exclusive
=
False
class
TensorRTSubgraphPassGlobalPoolTest
(
TensorRTSubgraphPassPoolTest
):
def
set_params
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
0
self
.
global_pooling
=
True
self
.
ceil_mode
=
False
self
.
exclusive
=
False
class
TensorRTSubgraphPassCeilPoolTest
(
TensorRTSubgraphPassPoolTest
):
def
set_params
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
0
self
.
global_pooling
=
False
self
.
ceil_mode
=
True
self
.
exclusive
=
False
class
TensorRTSubgraphPassExclusivePoolTest
(
TensorRTSubgraphPassPoolTest
):
def
set_params
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
0
self
.
global_pooling
=
False
self
.
ceil_mode
=
False
self
.
exclusive
=
True
class
TensorRTSubgraphPassSamePaddingPoolTest
(
InferencePassTest
):
def
set_params
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
'SAME'
self
.
global_pooling
=
False
self
.
ceil_mode
=
False
self
.
exclusive
=
False
class
TensorRTSubgraphPassValidPaddingPoolTest
(
InferencePassTest
):
def
set_params
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
'VALID'
self
.
global_pooling
=
False
self
.
ceil_mode
=
False
self
.
exclusive
=
False
class
TensorRTSubgraphPassActivationTest
(
InferencePassTest
):
def
setUp
(
self
):
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
6
,
64
,
64
],
dtype
=
"float32"
)
act_out
=
self
.
append_act
(
data
)
out
=
fluid
.
layers
.
batch_norm
(
act_out
,
is_test
=
True
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
([
1
,
6
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassActivationTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
out
]
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
relu
(
x
)
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassLeakyReluTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
leaky_relu
(
x
)
class
TensorRTSubgraphPassRelu6Test
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
relu6
(
x
)
class
TensorRTSubgraphPassSoftMaxTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
softmax
(
x
)
class
TensorRTSubgraphPassSigmoidTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
sigmoid
(
x
)
class
TensorRTSubgraphPassHardSwishTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
hard_swish
(
x
)
class
TensorRTSubgraphPassHardSigmoidTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
hard_sigmoid
(
x
)
class
TensorRTSubgraphPassTanhTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
tanh
(
x
)
class
TensorRTSubgraphPassSwishTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
swish
(
x
)
class
TensorRTSubgraphPassPreluAllTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
prelu
(
x
,
mode
=
'all'
)
class
TensorRTSubgraphPassPreluChannelTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
prelu
(
x
,
mode
=
'channel'
)
class
TensorRTSubgraphPassPreluElementTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
prelu
(
x
,
mode
=
'element'
)
class
TensorRTSubgraphPassGeluTest
(
TensorRTSubgraphPassActivationTest
):
def
append_act
(
self
,
x
):
return
fluid
.
layers
.
gelu
(
x
)
class
TensorRTSubgraphPassConcatTest
(
InferencePassTest
):
def
setUp
(
self
):
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data1
=
fluid
.
data
(
name
=
"data1"
,
shape
=
[
-
1
,
3
,
64
,
64
],
dtype
=
"float32"
)
data2
=
fluid
.
data
(
name
=
"data2"
,
shape
=
[
-
1
,
3
,
64
,
64
],
dtype
=
"float32"
)
concat_out
=
fluid
.
layers
.
concat
([
data1
,
data2
],
axis
=
2
)
out
=
fluid
.
layers
.
batch_norm
(
concat_out
,
is_test
=
True
)
self
.
feeds
=
{
"data1"
:
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
"float32"
),
"data2"
:
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassConcatTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
out
]
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassSplitTest
(
InferencePassTest
):
def
setUp
(
self
):
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
3
,
64
,
64
],
dtype
=
"float32"
)
split_out
=
fluid
.
layers
.
split
(
data
,
dim
=-
1
,
num_or_sections
=
2
)
out
=
fluid
.
layers
.
batch_norm
(
split_out
[
0
],
is_test
=
True
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassSplitTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
out
]
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassInstanceNormTest
(
InferencePassTest
):
def
setUp
(
self
):
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
3
,
64
,
64
],
dtype
=
"float32"
)
fc_out
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
200
)
param_attr
=
fluid
.
ParamAttr
(
name
=
'instance_norm_w'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
))
bias_attr
=
fluid
.
ParamAttr
(
name
=
'instance_norm_b'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
out
=
fluid
.
layers
.
instance_norm
(
input
=
fc_out
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassInstanceNormTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
out
]
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
,
atol
=
1e-4
,
flatten
=
True
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassLayerNormTest
(
InferencePassTest
):
def
setUp
(
self
):
self
.
set_params
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
3
,
64
,
64
],
dtype
=
"float32"
)
out
=
fluid
.
layers
.
layer_norm
(
data
,
begin_norm_axis
=
self
.
begin_norm_axis
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassLayerNormTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
out
]
def
set_params
(
self
):
self
.
begin_norm_axis
=
1
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassLayerNormBeginNormAxis2Test
(
TensorRTSubgraphPassLayerNormTest
):
def
set_params
(
self
):
self
.
begin_norm_axis
=
2
class
TensorRTSubgraphPassLayerNormBeginNormAxis3Test
(
TensorRTSubgraphPassLayerNormTest
):
def
set_params
(
self
):
self
.
begin_norm_axis
=
3
class
TensorRTSubgraphPassElementwiseTest
(
InferencePassTest
):
def
setUp
(
self
):
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data1
=
fluid
.
data
(
name
=
"data1"
,
shape
=
[
-
1
,
3
,
64
,
64
],
dtype
=
"float32"
)
data2
=
fluid
.
data
(
name
=
"data2"
,
shape
=
[
-
1
,
3
,
64
,
64
],
dtype
=
"float32"
)
eltwise_out
=
self
.
append_eltwise
(
data1
,
data2
)
out
=
fluid
.
layers
.
batch_norm
(
eltwise_out
,
is_test
=
True
)
self
.
feeds
=
{
"data1"
:
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
"float32"
),
"data2"
:
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassElementwiseTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
out
]
def
append_eltwise
(
self
,
data1
,
data2
):
return
fluid
.
layers
.
elementwise_add
(
x
=
data1
,
y
=
data2
)
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassElementwiseMulTest
(
TensorRTSubgraphPassElementwiseTest
):
def
append_eltwise
(
self
,
data1
,
data2
):
return
fluid
.
layers
.
elementwise_mul
(
x
=
data1
,
y
=
data2
)
class
TensorRTSubgraphPassShuffleChannelTest
(
InferencePassTest
):
def
setUp
(
self
):
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
6
,
64
,
64
],
dtype
=
"float32"
)
sc_out
=
fluid
.
layers
.
shuffle_channel
(
data
,
group
=
3
)
out
=
fluid
.
layers
.
batch_norm
(
sc_out
,
is_test
=
True
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
([
1
,
6
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassShuffleChannelTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
out
]
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录