提交 628bb27a 编写于 作者: C chengduoZH

refine prior_boxes

上级 cf2ed179
......@@ -26,12 +26,15 @@ import device
from device import *
import math_op_patch
from math_op_patch import *
import detection
from detection import *
__all__ = []
__all__ += math_op_patch.__all__
__all__ += nn.__all__
__all__ += io.__all__
__all__ += tensor.__all__
__all__ += control_flow.__all__
__all__ += ops.__all__
__all__ += device.__all__
__all__ += math_op_patch.__all__
__all__ += detection.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""
from ..layer_helper import LayerHelper
from ..framework import Variable
from ..param_attr import ParamAttr
from ..framework import Variable
from layer_function_generator import autodoc
from tensor import concat
from nn import flatten
import math
__all__ = [
'prior_box',
'prior_boxes',
]
def prior_box(input,
image,
min_sizes,
max_sizes,
aspect_ratios,
variance,
flip=False,
clip=False,
step_w=0.0,
step_h=0.0,
offset=0.5,
name=None):
"""
**Prior_box**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
the count of min_sizes, max_sizes and aspect_ratios, The size of the
box is in range(min_size, max_size) interval, which is generated in
sequence according to the aspect_ratios.
Args:
input(variable): The input feature data of PriorBox,
the layout is NCHW.
image(variable): The input image data of PriorBox, the
layout is NCHW.
min_sizes(list): the min sizes of generated prior boxes.
max_sizes(list): the max sizes of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
variance(list): the variances to be encoded in prior boxes.
flip(bool, optional, default=False): Whether to flip aspect ratios.
clip(bool, optional, default=False)): Whether to clip
out-of-boundary boxes.
step_w(int, optional, default=0.0): Prior boxes step across
width, 0.0 for auto calculation.
step_h(int, optional, default=0.0): Prior boxes step across
height, 0.0 for auto calculation.
offset(float, optional, default=0.5): Prior boxes center offset.
name(str, optional, default=None): Name of the prior box layer.
Returns:
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
[H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position. Where num_priors =
len(aspect_ratios) * len(min_sizes) + len(max_sizes)
Variances(variable): the expanded variances of PriorBoxOp. The layout
is [H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position. Where num_priors =
len(aspect_ratios) * len(min_sizes) + len(max_sizes)
Examples:
.. code-block:: python
data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
conv2d = fluid.layers.conv2d(
input=data, num_filters=2, filter_size=3)
box, var = fluid.layers.prior_box(conv2d, data,
min_size, max_size, aspect_ratio,
variance, flip, clip,
step_w, step_h, offset)
"""
helper = LayerHelper("prior_box", **locals())
dtype = helper.input_dtype()
box = helper.create_tmp_variable(dtype)
var = helper.create_tmp_variable(dtype)
helper.append_op(
type="prior_box",
inputs={"Input": input,
"Image": image},
outputs={"Boxes": box,
"Variances": var},
attrs={
'min_sizes': min_sizes,
'max_sizes': max_sizes,
'aspect_ratios': aspect_ratios,
'variances': variance,
'flip': flip,
'clip': clip,
'step_w': step_w,
'step_h': step_h,
'offset': offset
})
return box, var
def prior_boxes(inputs,
image,
min_ratio,
max_ratio,
aspect_ratios,
base_size,
steps=None,
step_w=None,
step_h=None,
offset=0.5,
variance=[0.1, 0.1, 0.1, 0.1],
flip=False,
clip=False,
name=None):
"""
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the inputs produces many prior boxes respectly, the number
of prior boxes which is produced by inputs respectly is determined by
the count of min_ratio, max_ratio and aspect_ratios, The size of the
box is in range(min_ratio, max_ratio) interval, which is generated in
sequence according to the aspect_ratios.
Args:
inputs(list): The list of input variables, the format of all variables is NCHW.
image(variable): The input image data of PriorBoxOp, the layout is NCHW.
min_ratio(int): the min ratio of generated prior boxes.
max_ratio(int): the max ratio of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
The length of input and aspect_ratios must be equal.
base_size(int): the base_size is used to get min_size and max_size
according to min_ratio and max_ratio.
step_w(list, optional, default=None): Prior boxes step across width.
If step_w[i] == 0.0, the prior boxes step across width of the inputs[i]
will be automatically calculated.
step_h(list, optional, default=None): Prior boxes step across height,
If step_h[i] == 0.0, the prior boxes step across height of the inputs[i]
will be automatically calculated.
offset(float, optional, default=0.5): Prior boxes center offset.
variance(list, optional, default=[0.1, 0.1, 0.1, 0.1]): the variances
to be encoded in prior boxes.
flip(bool, optional, default=False): Whether to flip aspect ratios.
clip(bool, optional, default=False): Whether to clip out-of-boundary boxes.
name(str, optional, None): Name of the prior box layer.
Returns:
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
[num_priors, 4]. num_priors is the total box count of each
position of inputs.
Variances(variable): the expanded variances of PriorBoxOp. The layout
is [num_priors, 4]. num_priors is the total box count of each
position of inputs
Examples:
.. code-block:: python
prior_boxes(
inputs = [conv1, conv2, conv3, conv4, conv5, conv6],
image = data,
min_ratio = 20, # 0.20
max_ratio = 90, # 0.90
steps = [8., 16., 32., 64., 100., 300.],
aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
base_size = 300,
offset = 0.5,
variance = [0.1,0.1,0.1,0.1],
flip=True,
clip=True)
"""
assert isinstance(inputs, list), 'inputs should be a list.'
num_layer = len(inputs)
assert num_layer > 2 # TODO(zcd): currently, num_layer must be bigger than two.
min_sizes = []
max_sizes = []
if num_layer > 2:
step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
for ratio in xrange(min_ratio, max_ratio + 1, step):
min_sizes.append(base_size * ratio / 100.)
max_sizes.append(base_size * (ratio + step) / 100.)
min_sizes = [base_size * .10] + min_sizes
max_sizes = [base_size * .20] + max_sizes
if step_h:
assert isinstance(step_h,list) and len(step_h) == num_layer, \
'step_h should be list and inputs and step_h should have same length'
if step_w:
assert isinstance(step_w,list) and len(step_w) == num_layer, \
'step_w should be list and inputs and step_w should have same length'
if steps:
assert isinstance(steps,list) and len(steps) == num_layer, \
'steps should be list and inputs and step_w should have same length'
step_w = steps
step_h = steps
if aspect_ratios:
assert isinstance(aspect_ratios, list) and len(aspect_ratios) == num_layer, \
'aspect_ratios should be list and inputs and aspect_ratios should ' \
'have same length'
box_results = []
var_results = []
for i, input in enumerate(inputs):
min_size = min_sizes[i]
max_size = max_sizes[i]
aspect_ratio = []
if not isinstance(min_size, list):
min_size = [min_size]
if not isinstance(max_size, list):
max_size = [max_size]
if aspect_ratios:
aspect_ratio = aspect_ratios[i]
if not isinstance(aspect_ratio, list):
aspect_ratio = [aspect_ratio]
box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
variance, flip, clip, step_w[i]
if step_w else 0.0, step_h[i]
if step_w else 0.0, offset)
box_results.append(box)
var_results.append(var)
if len(box_results) == 1:
box = box_results[0]
var = var_results[0]
else:
axis = 3
reshaped_boxes = []
reshaped_vars = []
for i in range(len(box_results)):
reshaped_boxes += [flatten(box_results[i], axis=3)]
reshaped_vars += [flatten(var_results[i], axis=3)]
helper = LayerHelper("concat", **locals())
dtype = helper.input_dtype()
box = helper.create_tmp_variable(dtype)
var = helper.create_tmp_variable(dtype)
box = concat(reshaped_boxes)
var = concat(reshaped_vars)
return box, var
......@@ -67,9 +67,8 @@ __all__ = [
'beam_search',
'row_conv',
'reshape_with_axis',
'flatten',
'multiplex',
'prior_box',
'prior_boxes',
'layer_norm',
]
......@@ -3149,242 +3148,33 @@ def reshape_with_axis(input, axis):
return out
def prior_box(input,
image,
min_sizes,
max_sizes,
aspect_ratios,
variance,
flip=False,
clip=False,
step_w=0.0,
step_h=0.0,
offset=0.5,
name=None):
def flatten(input, axis=1):
"""
**Prior_box**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
the count of min_sizes, max_sizes and aspect_ratios, The size of the
box is in range(min_size, max_size) interval, which is generated in
sequence according to the aspect_ratios.
**Flatten Layer**
ReshapeWithAxis is used to merge adjacent dimensions according to axis.
Args:
input(variable): The input feature data of PriorBox,
the layout is NCHW.
image(variable): The input image data of PriorBox, the
layout is NCHW.
min_sizes(list): the min sizes of generated prior boxes.
max_sizes(list): the max sizes of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
variance(list): the variances to be encoded in prior boxes.
flip(bool, optional, default=False): Whether to flip aspect ratios.
clip(bool, optional, default=False)): Whether to clip
out-of-boundary boxes.
step_w(int, optional, default=0.0): Prior boxes step across
width, 0.0 for auto calculation.
step_h(int, optional, default=0.0): Prior boxes step across
height, 0.0 for auto calculation.
offset(float, optional, default=0.5): Prior boxes center offset.
name(str, optional, default=None): Name of the prior box layer.
input(variable): The input tensor.
axis(int):
Returns:
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
[H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position. Where num_priors =
len(aspect_ratios) * len(min_sizes) + len(max_sizes)
Variances(variable): the expanded variances of PriorBoxOp. The layout
is [H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position. Where num_priors =
len(aspect_ratios) * len(min_sizes) + len(max_sizes)
Variable: A tensor variable.
Examples:
.. code-block:: python
data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
conv2d = fluid.layers.conv2d(
input=data, num_filters=2, filter_size=3)
box, var = fluid.layers.prior_box(conv2d, data,
min_size, max_size, aspect_ratio,
variance, flip, clip,
step_w, step_h, offset)
"""
helper = LayerHelper("prior_box", **locals())
dtype = helper.input_dtype()
box = helper.create_tmp_variable(dtype)
var = helper.create_tmp_variable(dtype)
helper.append_op(
type="prior_box",
inputs={"Input": input,
"Image": image},
outputs={"Boxes": box,
"Variances": var},
attrs={
'min_sizes': min_sizes,
'max_sizes': max_sizes,
'aspect_ratios': aspect_ratios,
'variances': variance,
'flip': flip,
'clip': clip,
'step_w': step_w,
'step_h': step_h,
'offset': offset
})
return box, var
def prior_boxes(inputs,
image,
min_ratio,
max_ratio,
aspect_ratios,
base_size,
steps=None,
step_w=None,
step_h=None,
offset=0.5,
variance=[0.1, 0.1, 0.1, 0.1],
flip=False,
clip=False,
name=None):
x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
reshaped = fluid.layers.reshape_with_axis(input=x, axis=2)
reshaped.shape
>> [-1, 1024]
"""
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the inputs produces many prior boxes respectly, the number
of prior boxes which is produced by inputs respectly is determined by
the count of min_ratio, max_ratio and aspect_ratios, The size of the
box is in range(min_ratio, max_ratio) interval, which is generated in
sequence according to the aspect_ratios.
Args:
inputs(list): The list of input variables, the format of all variables is NCHW.
image(variable): The input image data of PriorBoxOp, the layout is NCHW.
min_ratio(int): the min ratio of generated prior boxes.
max_ratio(int): the max ratio of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
The length of input and aspect_ratios must be equal.
base_size(int): the base_size is used to get min_size and max_size
according to min_ratio and max_ratio.
step_w(list, optional, default=None): Prior boxes step across width.
If step_w[i] == 0.0, the prior boxes step across width of the inputs[i]
will be automatically calculated.
step_h(list, optional, default=None): Prior boxes step across height,
If step_h[i] == 0.0, the prior boxes step across height of the inputs[i]
will be automatically calculated.
offset(float, optional, default=0.5): Prior boxes center offset.
variance(list, optional, default=[0.1, 0.1, 0.1, 0.1]): the variances
to be encoded in prior boxes.
flip(bool, optional, default=False): Whether to flip aspect ratios.
clip(bool, optional, default=False): Whether to clip out-of-boundary boxes.
name(str, optional, None): Name of the prior box layer.
Returns:
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
[num_priors, 4]. num_priors is the total box count of each
position of inputs.
Variances(variable): the expanded variances of PriorBoxOp. The layout
is [num_priors, 4]. num_priors is the total box count of each
position of inputs
Examples:
.. code-block:: python
prior_boxes(
inputs = [conv1, conv2, conv3, conv4, conv5, conv6],
image = data,
min_ratio = 20, # 0.20
max_ratio = 90, # 0.90
steps = [8., 16., 32., 64., 100., 300.],
aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
base_size = 300,
offset = 0.5,
variance = [0.1,0.1,0.1,0.1],
flip=True,
clip=True)
"""
assert isinstance(inputs, list), 'inputs should be a list.'
num_layer = len(inputs)
assert num_layer > 2 # TODO(zcd): currently, num_layer must be bigger than two.
min_sizes = []
max_sizes = []
if num_layer > 2:
step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
for ratio in xrange(min_ratio, max_ratio + 1, step):
min_sizes.append(base_size * ratio / 100.)
max_sizes.append(base_size * (ratio + step) / 100.)
min_sizes = [base_size * .10] + min_sizes
max_sizes = [base_size * .20] + max_sizes
if step_h:
assert isinstance(step_h,list) and len(step_h) == num_layer, \
'step_h should be list and inputs and step_h should have same length'
if step_w:
assert isinstance(step_w,list) and len(step_w) == num_layer, \
'step_w should be list and inputs and step_w should have same length'
if steps:
assert isinstance(steps,list) and len(steps) == num_layer, \
'steps should be list and inputs and step_w should have same length'
step_w = steps
step_h = steps
if aspect_ratios:
assert isinstance(aspect_ratios, list) and len(aspect_ratios) == num_layer, \
'aspect_ratios should be list and inputs and aspect_ratios should ' \
'have same length'
box_results = []
var_results = []
for i, input in enumerate(inputs):
min_size = min_sizes[i]
max_size = max_sizes[i]
aspect_ratio = []
if not isinstance(min_size, list):
min_size = [min_size]
if not isinstance(max_size, list):
max_size = [max_size]
if aspect_ratios:
aspect_ratio = aspect_ratios[i]
if not isinstance(aspect_ratio, list):
aspect_ratio = [aspect_ratio]
box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
variance, flip, clip, step_w[i]
if step_w else 0.0, step_h[i]
if step_w else 0.0, offset)
box_results.append(box)
var_results.append(var)
if len(box_results) == 1:
box = box_results[0]
var = var_results[0]
else:
axis = 3
reshaped_boxes = []
reshaped_vars = []
for i in range(len(box_results)):
reshaped_boxes += [reshape_with_axis(box_results[i], axis=[axis])]
reshaped_vars += [reshape_with_axis(var_results[i], axis=[axis])]
helper = LayerHelper("concat", **locals())
dtype = helper.input_dtype()
box = helper.create_tmp_variable(dtype)
var = helper.create_tmp_variable(dtype)
assert len(input.shape) > axis and axis > 0, \
"the axis should be litter than input.shape's."
input_shape = input.shape
axis = 0
helper.append_op(
type="concat",
inputs={"X": reshaped_boxes},
outputs={"Out": box},
attrs={'axis': axis})
new_shape = [-1, reduce(mul, input_shape[axis:len(input_shape)], 1)]
var = helper.create_tmp_variable(dtype)
helper = LayerHelper('reshape', **locals())
out = helper.create_tmp_variable(helper.input_dtype())
helper.append_op(
type="concat",
inputs={"X": reshaped_vars},
outputs={"Out": var},
attrs={'axis': axis})
return box, var
type='reshape',
inputs={'X': [input]},
outputs={'Out': [out]},
attrs={'shape': new_shape})
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册